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Abstract: Flood is a most serious hazard to life and property. The traditional 

probability statistical method is acceptable in analyzing the flood risk but requires a 

large sample size of hydrological data. This paper puts forward a method based on 

artificial neural network (ANN) for flood analysis. An artificial neural network 

model-BP neural network is used to map multi-dimensional space of disaster situation 

to one-dimensional disaster situation and to raise the grade resolution of flood disaster 

loss. This technique contributes to a reasonable prediction of natural disasters risk. As 

an example, its application is verified in the flood risk analysis in China, and the risks 

of different flood grades are obtained. Our model yield very good results and suggests 

that the methodology is effective and practical so that it has the potentiality to be used 

to forecast the flood risk in flood risk management.  
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1 Introduction 

Natural disasters are increasing alarmingly worldwide. Flooding is a common 

natural disaster which very often causes property and human losses. Recent flooding 

disasters have shown the vulnerability of the so called developed and developing 

countries to such events. In China, flood disasters occur frequently, and about 

two-thirds of its area are facing the threat of different types and degrees of floods 

which is the result of natural and unnatural reasons such as social, economic factors. 

Given this, natural disasters present a great challenge to society today. And flood risk 
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assessment of an area is important for flood disaster managers so they could 

implement a compensation and disaster-reduction plan. As severe floods occurring 

frequently, flood risk assessment and management play an important role in guiding 

the government take timely and correct decision for disaster rescue and relief. 

Risk management for the operation of an existing flood protection system is the 

sum of actions for a rational approach to flood disaster mitigation. Its purpose is the 

control of flood disasters, in the sense of being prepared for a flood, and to minimize 

its impact. It includes the process of risk analysis, which forms the basis for decisions 

on maintaining and improving the system.  

  Risk analysis, one of the main subjects of flood management is a challenging task 

at the present. However, assessing flood risk is difficult because of the lack of 

objective measures of acceptable risk, scarcity of data, and abundance of unknown 

probability distributions. The flood risk analysis methods have shown a progress from 

direct integral method, Monte Carlo method, and mean first-order-second-moment 

method, to advanced first-order-second-moment method, second-order-method and JC 

method. The theories and methods of flood risk analysis were established according to 

the studied by the authors (Ang and Tang, 1984, Ashkar and Rousselle, 1981, 

Diaz-Granados et al. , 1984, Kuczera, 1982, Stedinger and Taylor, 1982, Todorovic 

and Rousselle, 1971, Todorovic and Zelenhasic, 1970, Wood and Rodríguez-Iturbe, 

1975). Recently, many risk analysis approaches have been based on using linguistic 

assessments instead of numerical values. Using fuzzy sets theory (Zadeh 1965), data 

may be defined on vague, linguistic terms such as low probability, serious impact, or 

high risk.  

In traditional flood risk assessment, probability statistics method is usually used to 

estimate hydrological variables’ exceedance probability because of its mature basic 

theory and easy application. But in the case of practical issues, problems exist in the 

feasibility and reliability. Especially in small sample issues, results based on the 

classical statistical methods are usually unreliable. In fact, it is rather difficult to 

collect long sequence flood data and the sample is usually small.  

Till now, scholars have made a deep research on the flood’s random characteristics 
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in risk analysis, but the study on some aspects such as its fuzziness (Chen 1998), gray 

characteristic (Xia 2000), unascertained characteristic (Liu et al. 1994), fractal 

dimension characteristic and chaos characteristic of the flood is relatively weak, so 

the researches of the risk analysis on such aspects need to be developed further. And 

neural network is data driven, and it can be described as mapping an input space to an 

output space. Many problems exist for which there is no underlying knowledge of the 

process that converts the measured inputs into the observed outputs. Artificial neural 

networks are well suited to this class of problem because they are excellent data 

mappers in that they map inputs to outputs. It’s suggested that some neural net 

algorithm might provide a solution. Therefore, an artificial neural network model-BP 

neural network is used in this paper for evaluating the degree of flood disaster, where 

the disaster loss degree is a more reasonable continuous real number. 

 

2 Basis of Artificial Neural Network  

The essential of the risk analysis is to estimate the probability density of an index. 

Because of the incompleteness of the data, the application of traditional statistical 

methods can not guarantee a high precision. So we use the neural network with the 

observed sample and get their degree values, and then get the risk estimations by risk 

analysis. This paper uses artificial neural network and gets continuous degree index 

values of the samples, then it turns the degree values of observed sample into the 

continuous real degree number and then gets the risk values. It is tested by a case 

showing that the method is superior to traditional statistic model , so as to improve the 

result of traditional estimation. 

  Artificial Neural Network (ANN) are massively parallel interconnected networks of 

simple (usually adaptive) nodes which are intended to interact with objects of the real 

world in the same way as biological nervous systems do(Simon Haykin, 2009). It was 

proposed based on modern biology research concerning human brain tissue, and can 

be used to simulate neural activity in the human brain (Markopoulos1, Manolakos, & 

Vaxevanidis, 2008). ANN has the topological structures of information processing, 

distributing parallel. The mappings of input and output estimation responses are 
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obtained via combinations of nonlinear functions. 

  In terms of their structures, neural networks can be divided into two types: 

feedforward networks and recurrent networks. In a feedforward network, the neurons 

are generally grouped into layers. Signals flow from the input layer through to the 

output layer via unidirectional connections, the neurons being connected from one 

layer to the next, but not within the same layer. The multi-layer perceptron (MLP) is 

perhaps the best known type of feedforward networks. For the typical multi-layer 

perceptron of the feed-forward mode neural network, it consists of the input layer, 

output layer, and hidden layer. Neurons in the input layer only act as buffers for 

distributing the input signals jx  to neurons in the hidden layer. Each neuron j in the 

hidden layer sums up its input signals jx  after weighting them with the strengths of 

the respective connections jiw  from the input layer and computes its output jy as a 

function f of the sum,viz.  

)( ijij xwfy                             (1) 

In which f can be a simple threshold function or sigmoidal, hyperbolic tangent or 

radial basis function. The output of neurons in the output layer is computed similarly. 

The backpropagation (BP) algorithm, a gradient descent algorithm, is the most 

commonly adopted MLP training algorithm. It gives the change jiw the weight of a 

connection between neurons i and j as follows: 

ijji xw                               (2) 

Where   is a parameter called the learning rate and j  is a factor depending on 

whether neuron j is an output neuron or a hidden neuron. For output neurons,  
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In Equation (3), net j is the total weighted sum of input signals to neuron j and 
)(t

jy  

is the target output for neuron j. 

The neural cell of each layer only affects the status of the next neural cell. If the 

expected output signals cannot be obtained in the output layer, the weight values of 

each layer of the neural cells must be modified. Erroneous output signals will be 

backward from the source. Finally, the signal error will arrive in certain areas with 

repeated propagation. After the neural networks’ training procedure is complete we 

can start to analyze the forecast information with weight values and thresholds. 

 

3 Flood Disaster Risk Assessment 

According to the above theory, we can calculated the probabilities of each degree of 

flood disasters in China based on the historical data from 1950 to 2009 collected by 

the Ministry of Water Resources of the People’s Republic of China(see Table 1). We 

select the set of 60 records as the large sample, and then 30 records are randomly 

chosen to form a small sample in order to compare the results of them by the method. 

Damage area, inundated area, dead population, and collapsed houses have been 

chosen as the disaster indicator in flood risk analysis. And by frequency analysis we 

classify it into four levels: small, medium, large and extreme (see Table 2). 

 

Table 1  Values of flood indexes during 60 years 

 

Table 2  Flood disaster rating standard 

3.1 Artificial Neural Network Procession  

In order to map multi-dimentional space of disaster situation to one-dimensional 

disaster situation, a relationship between the disaster degree and the degree indexes is 

needed. But it is impossible to describe the relationship using a related function. 

Therefore, we adopt the ‘‘simulation” and ‘‘memory” of the neural networks in flood 

degree evaluation. This is because the advantages of neural networks can be used to 

simulate and record the relationship of the input variables and output variables in the 
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complex ‘‘function” through training and learning without any mathematical models. 

We take damage area, inundated area, dead population, and collapsed houses as 

input variables and disaster grading value as an output variable, and then we set the 

nodes of the input as 4 and of the output layers as 1. It follows on from Kolmogorov’s 

theorem(Hecht-Nielsen, 1987) that the number of nodes in the hidden layer is at least 

2n + 1, where n is the number of nodes in the input layer. Since n = 4, the number of 

nodes in the hidden layer is at least 9. Considering the accuracy, we determine that the 

number of nodes in the hidden layer is 10. Thus, we can obtain the topology structure 

(4, 10, and 1) of the neural networks for flood degree forecasting. 

The four flood grades are small, medium, large and extreme flood, whose degree 

value are in the interval [0,1]、[1,2]、[2,3]、[3,4]; We use the disaster grading standard 

boundary values (table 1) as 5 two-dimensional training samples for training and 

learning in the BP neural network. Meanwhile initial parameters of BP model weights 

and biases are randomly assigned before the commencement of training. With 

100,000 cycles of training and learning in the training samples, the global error of the 

networks was set E=10
-6

. Learning rate and impulse parameter of the network are 

changed adaptive, and function trainlm is used for fast training. 

The calculated output values are compared with the expected values where the 

mean square error is 5.49809*exp(-8), indicating a good fitting. Thus the BP neural 

network has completed the training procedure. So we can use the BP network to 

forecast disaster degrees of all the samples with the weighting coefficients and the 

thresholds modified. The flood degree estimations of the 60 samples can be calculated 

out in Table 3 with BP neural network. 

 

Table3  Disaster degree estimations based on the BP network evaluation 

 

3.2 Flood risk assessment  

 

In this way, the disaster degree values of all the 60 samples are obtained as shown in 
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Table 3. The relationship between the recurrence interval N and probability p can 

be expressed as 
1N

p


, and then the exceedance probability curve of flood to 

disaster degree value is shown as Figure 1 using 

piecewise cubic hermite interpolating polynomial. 

 

 

Figure 1: The exceedance probability curves of flood to disaster degree value 

based on neural network and piecewise cubic hermite interpolating polynomial 

 

Due to the standard of four grades, so we have: 

(a) If 
10  ix

, then flood degree belongs to small. 

(b) If 
21  ix

, then it belongs to medium. 

(c) If 
32  ix

, then it belongs to large. 

(d) If 
43  ix

, then it belongs to extreme. 

The result in Figure 1 illustrates the risk estimation i.e. the probability of exceeding 
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the disaster degree value. From Figure 1 we know the risk estimation is 0.1180 when 

the disaster index is 3, in other words, in China, floods exceeding 3 degree value 

(extreme floods) occur every 8.4757 years. Similarly, the probability of floods 

exceeding 2 degree (large floods) is 0.3246, namely China suffers the floods 

exceeding that intensity every 3.0807 years. This indicates the serious situation of 

floods in China whether on the aspect of frequency or intensity. It also means that BP 

neural network is useful to analyze probability risk of flood disaster. The frequency 

and the recurrence interval of the floods of the four grades are shown in Table 4 . 

These indicate the serious situation of floods in China. The frequency and the 

recurrence interval of the floods of the four grades are shown in Table 4. 

 

Table 4 Flood disaster risk assessment values in China 

 

Then we calculate the mean error between the results with large sample and small 

sample by neural network method and traditional statistics. From Table 5, it can be 

seen that errors given by neural network method are much smaller than that by 

statistical method, so neural network method is more efficient in solving this 

problem． 

Compared with traditional probabilistic method, the risk values obtained by this 

neural network method can provide more characteristics of risk system when we 

analyze the risk of system. The result could help in strategic decision making to 

manage flood disasters. 

Table 5 Comparison of two methods 

 

4 Conclusion 

Floods occur frequently in China and cause significant property losses and 

casualties. In order to implement a compensation and disaster reduction plan, the 

losses caused by flood disasters are among critically important information to flood 

disaster managers. This study develops a method of flood risk assessment disasters 

based on artificial neural network, and some preliminary findings of the analysis of 
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the disaster flood of the state of china have been presented. The approach has been the 

application of the technique and it has been tested that the method is reliable and that 

the results are reasonable and stable. 

Moreover, the analysis has shown that the method has the potentiality to be used to 

identify the risks of natural disasters in some area. In view of the facts that the 

theoretic system of flood risk assessment has been developed enough so far, and the 

observed series of disasters are quite short or even unavailable, the method based on 

BP neural network adopted in the paper is indisputably an effective and practical 

method. This is a new attempt that the model is applied to the case of flood disaster, 

and more work is needed in order to draw some final lessons from the flood disaster.  
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Tables and Figures: 

Table 1: Values of flood indexes during 60 years 

year 

disaster area 

(thousand hectares) 

inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed houses 

(ten thousand) 

1950 6559.00 4710.00 1982 130.50 

1951 4173.00 1476.00 7819 31.80 

1952 2794.00 1547.00 4162 14.50 

1953 7187.00 3285.00 3308 322.00 

1954 16131.00 11305.00 42447 900.90 

1955 5247.00 3067.00 2718 49.20 

1956 14377.00 10905.00 10676 465.90 

1957 8083.00 6032.00 4415 371.20 

1958 4279.00 1441.00 3642 77.10 

1959 4813.00 1817.00 4540 42.10 

1960 10155.00 4975.00 6033 74.70 

1961 8910.00 5356.00 5074 146.30 

1962 9810.00 6318.00 4350 247.70 

1963 14071.00 10479.00 10441 1435.30 

1964 14933.00 10038.00 4288 246.50 

1965 5587.00 2813.00 1906 95.60 

1966 2508.00 950.00 1901 26.80 

1967 2599.00 1407.00 1095 10.80 

1968 2670.00 1659.00 1159 63.00 

1969 5443.00 3265.00 4667 164.60 

1970 3129.00 1234.00 2444 25.20 

1971 3989.00 1481.00 2323 30.20 

1972 4083.00 1259.00 1910 22.80 
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year 

disaster area 

(thousand hectares) 

inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed houses 

(ten thousand) 

1973 6235.00 2577.00 3413 72.30 

1974 6431.00 2737.00 1849 120.00 

1975 6817.00 3467.00 29653 754.30 

1976 4197.00 1329.00 1817 81.90 

1977 9095.00 4989.00 3163 50.60 

1978 2820.00 924.00 1796 28.00 

1979 6775.00 2870.00 3446 48.80 

1980 9146.00 5025.00 3705 138.30 

1981 8625.00 3973.00 5832 155.10 

1982 8361.00 4463.00 5323 341.50 

1983 12162.00 5747.00 7238 218.90 

1984 10632.00 5361.00 3941 112.10 

1985 14197.00 8949.00 3578 142.00 

1986 9155.00 5601.00 2761 150.90 

1987 8686.00 4104.00 3749 92.10 

1988 11949.00 6128.00 4094 91.00 

1989 11328.00 5917.00 3270 100.10 

1990 11804.00 5605.00 3589 96.60 

1991 24596.00 14614.00 5113 497.90 

1992 9423.30 4464.00 3012 98.95 

1993 16387.30 8610.40 3499 148.91 

1994 18858.90 11489.50 5340 349.37 

1995 14366.70 8000.80 3852 245.58 

1996 20388.10 11823.30 5840 547.70 

1997 13134.80 6514.60 2799 101.06 

1998 22291.80 13785.00 4150 685.03 
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year 

disaster area 

(thousand hectares) 

inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed houses 

(ten thousand) 

1999 9605.20 5389.12 1896 160.50 

2000 9045.01 5396.03 1942 112.61 

2001 7137.78 4253.39 1605 63.49 

2002 12384.21 7439.01 1819 146.23 

2003 20365.70 12999.80 1551 245.42 

2004 7781.90 4017.10 1282 93.31 

2005 14967.48 8216.68 1660 153.29 

2006 10521.86 5592.42 2276 105.82 

2007 12548.92 5969.02 1230 102.97 

2008 8867.82 4537.58 633 44.70 

2009 8748.16 3795.79 538 55.59 

 

Table 2  Flood disaster rating standard 

Disaster 

level 

Damage area 

(thousand 

hectares) 

Inundated area 

(thousand hectares) 

Dead 

population 

(persons) 

Collapsed 

houses 

(ten thousand) 

Recurrence 

interval 

(years) 

Degree 

value 

Small 

flood 

0~9045 0~4989 0~3446 0~112.1 <2 0~1 

Medium 

flood 

9045~14197 4989~8216.7 3446~5113 112.1~247.7 2~5 1~2 

Large 

flood 

14197~20388 8216.7~13000 5113~10676 247.7~754.3 5~20 2~3 

Extreme 

flood 

20388~80000 13000~50000 10676~10000

0 

754.3~5000 >20 3~4 
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Table 3：disaster degree estimations based on the BP network evaluation during the 60 years in China 

Year Degree value Year Degree value 

1950 0.4968 1980 1.1020 

1951 3.4372 1981 2.6992 

1952 1.9236 1982 1.6720 

1953 1.6588 1983 3.4072 

1954 3.1968 1984 2.0740 

1955 1.1336 1985 0.6060 

1956 0.2592 1986 0.3456 

1957 0.3244 1987 1.9396 

1958 2.3124 1988 2.3460 

1959 2.4576 1989 1.7848 

1960 2.7404 1990 2.7104 

1961 0.9520 1991 3.2744 

1962 0.3892 1992 1.8760 

1963 0.2496 1993 3.0172 

1964 0.1996 1994 2.2672 

1965 1.0908 1995 2.100 

1966 1.7048 1996 3.1532 

1967 1.4108 1997 2.5816 

1968 1.4584 1998 2.1920 

1969 1.4224 1999 0.5588 

1970 1.8180 2000 0.2980 

1971 1.7900 2001 0.4520 

1972 1.8504 2002 0.4144 

1973 1.9704 2003 0.6748 

1974 1.3876 2004 0.6804 

1975 4.0000 2005 1.7912 

1976 1.7960 2006 1.1428 
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1977 0.9656 2007 2.3168 

1978 1.7068 2008 0.6428 

1979 1.9700 2009 1.3928 

 

 

Table 4：Flood disaster risk evaluation values  

Disasters level 

Small flood 

Medium 

flood 

Large flood Extreme flood 

Exceedance 

probability risk 

1.0000 0.7269 0.3246 0.1180 

Recurrence 

interval(years) 

1.0000 1.3757 3.0807 8.4757 

 

 

 

Table 5 Comparison of two methods 

Method BP network  Statistics 

Mean error 0.0421 0.0428 
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