

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS

Shantanu Sasane Abhilash Bari Kaustubh Memane Aniket Pathak Prof. A. A.Deshmukh

University of Pune

University of Pune University of Pune

University of Pune

University of Pune

Smt. Kashibai Navale College of Engineering, Vadgaon Budruk, Pune, Maharashtra, India

Abstract

Cloud computing has been proved as a boon to

distributed computing over a network, having ability to

run a program on many connected computing at a same

time. It is network based service provided by real server

hardware, in fact served by virtual network. It is

essential for using any service that makes uses of the

Internet Network along with any non native hardware

and software. Data center setup and maintenance is

very expensive task thus many small scale businesses

rely on hosting center to provide the cloud

infrastructure to run their systems. In order to deliver

hosted services fulfilling service level agreement (SLA),

Software as a service provider companies have to

satisfy minimum service level of customer that to in less

cost. Optimal allocation is tedious task due to 1)

heterogeneity in resource allocation 2) difficult to map

customer request to infrastructure level parameter. 3)

Managing dynamic change of customer. In this paper

we introduce a framework called SLA-Based resource

based allocation to reduce infrastructure cost and

service level agreement violation offering control over

all elements of the supplied by infrastructure provides.

General Terms

Software as a Service; Platform as a Service;

Infrastructure as a Service; SLA violations.

Keywords

Cloud Computing; Resource Allocation; Service Level

Agreement (SLA); Hosting center.

1. INTRODUCTION
E-commerce and digital services depend on data center

and continue in increment of information technology.

History of Software focuses mainly on shrink-wrapped

software sales model. Customer need to purchase

subscription- based license. It also included

management of development and proposed and pays for

non needed software or hardware cost. Although

requirements are decreased, we need to pay for those

unrequited services. Then there is introduction of cloud

parameters which made available us utilizes like all

other utilities you are charged based on what you

consume. There was a transition from traditional

software system to Software as a Service (SaaS).

Cloud service provides after their services in either (or

both) of this two paradigms "Infrastructure as a Service

(IaaS) and Platform as a Service (PaaS) with the help of

software as a service in application layer of cloud

parameters. We provide a brief overview of these

impediments.

Infrastructure as a Service: The provider is responsible

for providing instances of machines as per the user

specification. The resource available for each instance

can be scaled on demand i.e. user can increase or

decrease the number of CPUs, RAM, or storage through

a web control panel or an Application Programming

Interface (API).

Platform as a Service: This model locates above IaaS in

the cloud framework and provides the user with an

execution runtime, framework, operating system,

database and web servers.

Software as a Service: SaaS provides any form of

software or application as a service. A SaaS encourage

a subscription model rather than a purchasing model.

Customer simply subscribe to a number of users they

need concurrently working on the software on the

cloud.

A system model of SaaS layers for serving customers in

cloud frameworks is shown in fig-1. A customer

requests SaaS provider to satisfy requirements to utilize

enterprise software services. It uses three layers, namely

application layer, platform layers, and infrastructure

layer. The application layer manages services offered to

the customers by service provide. The platform layer

includes scheduling and mapping policies for covering

customer's quality of service (QoS). Parameters into

infrastructure level parameter with allocation of virtual

machine. The Infrastructure layer plays role of initiation

and removal of VM‟s [1].

Service Level Agreement: A service Level Agreement

(SLA) is a part of service contract where a service is

defined formally. It is an agreement between customers

and service from providers. It is legal binding map be

formal or informal contract. IT records a common

understanding about services, priorities, responsibilities,

guarantees, and warrantees. The SLA may Specify the

level of availability, serviceability, performance,

operation, or other attributes of the service. [3]

3091

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11070

Fig 1: System Model of SaaS layer

2. Research Contribution
Previous works [1], [2], [3] have addressed the issue

and SLA based Resource Allocation, minimizing cost

of service provide and maximizing profit. We highlight

the contribution of this paper in comparison to two

closely related previous works, namely [1] and [2]: But

still works related to SaaS provider with SLA violation

avoidance are in their infancy. Dynamic allocation of

resource, dynamic change and customer request, cost

effective mapping and scheduling policies is the

purpose of this paper.

The key contributions of this paper are as follows-

 Definition of SLA with respect QOS

parameters.

 Mapping customer request to infrastructure

level parameter.

 Ability to manage dynamic change of

customers.

 It also focuses on handling heterogeneity of

VM.

 Design a scheduling mechanism to maximize

SaaS provider's profit by reduction in

infrastructure cost.

 Managing to reduce incurred penalties for

handling dynamic service demands.

The paper also focuses on arrival and proportion of

upgrade request of customer and service initiation time

and penalty rate according to SaaS provider.

3. Related Work
Research on resource allocation was started in 1980‟s.

Most of these methods are non-pricing based [5]. Our

works focus on profit maximization of SaaS providers.

I. Popovici et al. [6] focused on QoS parameters on the

resource providers‟ side such as price and offered load,

but user's side is not focused. We focus on QoS

parameters from both the customers and SaaS

provider‟s point of view. We also consider user driven

scenarios.

Lee et al. [7] considered profit driven service, request

scheduling for workflow. Here our work focuses on

challenges of dynamic changes in customer request to

gain profit.

Patel et al. [2] investigated data content, resource

heterogeneity, generalized network flow-based resource

allocation for hosting enters our work in addition handle

resource heterogeneity and SLA violations.

Lenlin et al. [1] contributed in ensuring mapping

customer request to infrastructure level parameter. Our

work suggest WIN-WIN situation between customer

and service provider using cloud mapping.

4. System Model
Our paper proposes that customer requires for

enterprise services from a SaaS provider by agreeing to

SLA parameters and mentioning QOS parameters. The

Saas provider can use their provider [ref-SLACE]. The

SaaS provider objective is to schedule job as per SLA

given at the time of registration. It should be capable to

change its state once SaaS changes its SLA. System

should provide separate process to schedule which jobs

should be placed into execution. System should be

scalable, which means that its performance should not

degrade with the addition of nodes and jobs. It should

be configuration, and allow for various scheduling

polices that can be modified to incorporate QOS

parameters, system handles dynamic VM switching as

per SLA and support dynamic load scheduling. The

main task is of minimizing the number of SLA violation

in a dynamic resource sharing. To satisfy customer's

requests in order to enlarge market store and minimize

cost, the following question have to be addressed.

Fig 2: Cloud Provisioning and Deployment Model

3092

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11070

We consider the customer's request for the enterprise

software services from a SaaS provider by agreeing to

the predefined SLA clauses and submitting their QOS

parameters. Customer can dynamically change their

requirement and usage of the hosted software services.

The SaaS provider can use their own infrastructure or

outsourced resources from public IaaS providers. A

scheduling mechanism to maximize a SaaS provider's

by reducing the infrastructure cost and minimizing SLA

violation is designed. The scheduling mechanism

determines where and which type of VM has to be

initiated by incorporating the heterogeneity of VM's in

terms of their price, dynamic service initiation time and

data transfer time. It also manages to reduce penalties

for handling dynamic service demands when customer

is sharing resource.

The main purpose of the scheduler is to maximize use

utility. The scheduler will aim to optimize resource

utilization within user imposed constraints. Thus, user

satisfaction is the primary concern as opposed to

maximizing CPU utilization. The scheduler will

allocate job based in the job parameters, which are job

specification submitted by the user with the job.

4.1 Scheduling Strategies
Figure2 shows cloud provisioning and deployment

model and use case scenario of combining three

different layers, namely IaaS, PaaS, and SaaS [1]. The

customer places their service deployment request to the

service portal [SaaS Application]. Then this request is

passing to CPU allocator. Here memory allocation and

storage allocation taken into consideration. If the

request is valid, it is then forwarded to the scheduler.

The scheduler selects the appropriated VM through

VM's manager in PaaS layer for deploying the

requested service. Balancing of service provisioning

among the running VM's is balanced by load balancer.

The VM manager manages the VM's on the

virtualization layer which interacts with physical

resource. There is possibility of provisioning at the

single layer alone. But our proposed scheduling

consider at this layers are not trivial considering their

different requirement and constraint. At IaaS layer,

VM's are to be deployed with respect to agreed SLA's

with the customer. Deploying application at SaaS layer

is very challenging as each application leads to fulfill

the SLA terms.

4.2 Properties defined in SLA
1. SLA Request Type (slaRequest): It defines the

type of request stated by customer. Whether it

is 'Initial Rent or Promote Services.' 'Initial

Rent' refers to customer who is renting a new

service. 'Promote Services' refers 'add account'

and 'Up gradation of product'.

2. SLA Product Type (slaProduct): It is a type a

software product that is offered to customer.

For example, SaaS provider offers different

types of product viz. basic, professional and

enterprise. Each product type supports

various types of accounts.

3. SLA Account Type (slaAccount): It refers to

maximum number of accounts a customer can

create. For example Group account, Team

Account, Department Account, which allows

customer to create up to n, 3n and 7n number

of accounts respectively.

4. SLA Contract Length (slaLength): It is the

actual number at account that a customer want

to create.

5. SLA Account Count (slaAccNo): it is an actual

number of accounts that a customer want to

create.

4.3 Mapping Strategy

Table 1. Mapping Strategy

Mapping strategy defines the way of mapping of

customer Quality of Services (QoS) requirement to the

resource. Our paper proposes Infrastructure Layer

focusing on the VM level, but not the host level. For

example, if a service provider is restricted to create

maximum n number of record, the mapping of product

type and number of account is shown in Table 1.

4.4 Mathematical Model
Set Theory

Set Theory Analysis

Let „S‟ be the “SLA-based Resource Allocation in

cloud”

S= {…………….}

Set S is divided into 6 modules

S= {S1, S2, S3, S4, S5, S6}

S1= GUI Handlers (GH)

S2= Configuration Manager (CM)

S3= VM Manager (VMM)

S4= SLA Manager (SLAM)

S5= Policy Manager (PM)

S6= Database Manager (DM)

VM

Type

Product

Type

Account

Type

Max

Account

Min

Accoun

t #

Minor Basic Group n 1

Mode

rate

Basic,

Professional

Team 3n n+1

Exten

ded

Basic,

Professional,

Enterprise

Departm

ent

7n 3n+1

3093

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11070

Identify the inputs.

Inputs = {X1, X2, X3, ……..Xn}

X1= SLA

X2= Account addition

X3= Update SLA

Identify the output as O.

Outputs = {Y1, Y2, Y3, ……..Yn}

Y1= VM Allocation

Y2= Resource Allocation

Problem Description: Let S be a system which do

SLA-based Resource Allocation in cloud; such that S =

{S1, S2, S3, S4, S5, S6} where S1 represents GUI

Handlers (GH) Module; S2 represents Configuration

Manager (CM) Module; S3 represents VM Manager

(VMM) Module; S4 represents SLA Manager (SLAM)

Module; S5 represents Policy Manager (PM) Module;

S6 represents Database Manager (DM) Module.

4.5 UML Design Observations

S holds list of modules in the system

Activities:

4.5.1 Activity I: SaaS Provider SLA Creation

Let S1 be a set of SaaS provider parameters for

SLA creation.

S1= {user_id, sla_id, sla_values}

Where,

user_id: user‟s id

sla_id: defined SLA id

sla_values: SLA values

Table 2. SaaS Provider SLA Creation

Condition/Parameter Operation/Function

If no change in SLA data Discard value

Else. f1:Proceed()

UML Design observations:

If user‟s SLA info is not updated or changes then please

discard the value Else read the SLA value any send data

to database.

4.5.2 Activity II: Allow number of accounts as per

SLA defined

Lets S2 be a set of accounts policy details

parameters:

S2= {user_id, sla_id, sla_type, account_count}

Where,

user_id: user‟s ID

sla_id: SLA ID

sla_type: Type of SLA like basic, enterprise, etc…

account_count: No of account allowed in SLA type

Table 3. Allow number of accounts as per SLA

defined

UML Design observations:

Search in the user‟s SLA policy that the user‟s can

create account or not. If the user‟s SLA policy allow

then add account. Else don‟t add account and show

error messages.

4.5.3 Activity III: Allocation of VM as per SLA

Let S3 be a set of user‟s VM allocation parameters:

S3= {user_id, sla_id, sla_type, vm}

Where,

user_id: user‟s ID

sla_id: SLA ID

sla_type: Type of SLA like basic, enterprise, etc…

vm = Virtual machine to be added on host

Table 4. Allocation of VM as per SLA

UML Design Observations:

Search in the user‟s SLA policy that the user‟s VM

should be added. If the user‟s policy allow then add

VM. Else don‟t add VM and throw error.

4.5.4 Activity I: Show Result graphs

Let S4 be a set of parameters required for graph

generation.

S4= {user_id, sla_id, reports}

Where,

user_id: user‟s ID

sla_id: SLA ID

Condition/Parameters Operation/Function

account_count f1:searchSLAPolicy();

If (user is allowed to add

account)

f2:checkSLAPolicy() ;

Add Account f3:CreateAccount();

Else, discard account add

info

Condition/Parameters Operation/Function

Vm_policy f1:searchVMPolicy();

If (user is allowed to add

VM on host)

f2:checkVMPolicy();

Allocated and add new VM

as per available space on

host

f3:AllocateVM();

Else, discard users VM

request

F4: discard()

3094

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11070

 reports= Reports to be Displayed

UML Design Observations:

Here dynamically graphs will be shown to user.

5. Implementation Issues and Performance

Evaluation
The proposed scheduling is implemented as a new

scheduling policy in the CloudSim simulation tool for

the purpose of evaluation. It is a framework for

modeling and simulation of cloud computing

infrastructure and services in repeatable and

controllable environment free of cost and tunes the

performance bottleneck before deploying on real

clouds. At the provider side, simulation environments

allow evaluation of different kinds of resources leasing

schematic under varying load and pricing distribution,

studies could did the provider in optimizing the

resource access cost with focus on improving profit. It

helps in finding and removal of errors before

implementing in real time.

6. Conclusion and Future Work
Though there is revolution in cloud computing, there

are still open research challenges in maintaining

application‟s required quality of service and achieving

resource efficiency. This paper focused on scheduling

of resource utilization and customer requests for

Software as Service providers with cost minimization

and profit maximization. Simultaneously resource level

heterogeneity and dynamic changes of customer

requests is addressed. Paper also focused on mapping

customer requirement to infrastructure level parameters.

In future work, we will investigate scheduling and

application deployment in cloud considering increased

in efficiency in allocation and utilization of resources.

Furthermore, we would like to add more services and

various strategies that will maximize the profit of

service providers. Moreover, we will strictly look into

penalty limitation considering system failures.

7. Acknowledgements
We thank anonymous reviewers and staff of Smt.

Kashibai Navale College of Engineering, Pune who

helped us to improve the quality of this paper.

8. References
[1] Linlin Wu, Saurabh Kumar Garg and Rajkumar Buyya,

“SLA-based Resource Allocation for Software as a

Service Provider (SaaS) in Cloud Computing

Environments” in Proceedings of the 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid

Computing.

[2] Kimish Patel and Murli Annavaram, “NFRA:Generalized

Network Flow-Based Resource Allocation for Hosting

Centers” in IEEE TRANSACTIONS ON

COMPUTERS, VOL 62, NO. 9, SEPTEMBER 2013.

[3] Mojun Su, Shenglin, Yang, Hao Li and Joan Lu, “A

Service Level Agreement for the Resource Transaction

Risk Based on Cloud Bank Model” in Proceedings of

International Conference on Cloud Computing and

Service Computing, 2012.

[4] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer

and Ivan Berskovic, “SLA-Aware Application

Deployment and Resource Allocation in Clouds”, in

proceedings of 35th IEEE Annual Computer Software

and Applications Conference Workshops, 2011.

[5] J. Broberg, S. Venugopal, and R Buyya, Market-

oriented Grids and Utility Computing: The state-of-the-

art and future directions, Journal of Grid Computing,

3(6), (pp.255-276).

[6] I. Popovici, and J. Wiles, “Proitable services in an

uncertain world”. In Proceeding of the18th Conference

on Supercomputing (SC 2005), Seattle, WA.

[7] Y.C. Lee, C. Wang, A . Y. Zomaya and B.B. Zhou,

“Profit-driven Service Request Scheduling in Clouds”. In

Proceedings of the International Symposium on Cluster

and Grid Computing, (CCGrid 2010), Melbourne,

Australia.

3095

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11070

