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Abstract  
This paper presents the basic of data compressor 

and the different types of data compressor techniques. 

Various data compressor techniques which have 

developed in past are compared.  A comprehensive list 

of references is reported and the data compression 

techniques are classified in to following main types: 1) 

lossless compression; 2) lossy compression. The 

objective of this paper is to identify various 

compression techniques that can be useful in the 

monitoring systems which are used in home care and 

hospital system comparative study of data compression 

techniques and the algorithms has been described in 

this paper. 

Index Terms— Data compression, lossless, lossy, 

compression techniques. 

  

1. Introduction  
Compression is used just about everywhere. All the 

images you get on the web are compressed, typically in 

the JPEG or GIF formats, most modems use 

compression, HDTV will be compressed using MPEG-

2, and several file systems automatically compress files 

when stored, and the rest of us do it by hand. 

The neat thing about compression, [1] is that the 

algorithms used in the real world make heavy use of a 

wide set of algorithmic tools. Furthermore, algorithms 

with strong theoretical foundations play a critical role 

in real-world applications. In this,   the generic term 

message for the objects we want to compress, which 

could be either files or messages. The task of 

compression consists of two components, an encoding 

algorithm that takes a message and generates a 

“compressed” representation (hopefully with fewer 

bits), [2] and a decoding algorithm that  reconstructs 

the original message or some approximation of it from 

the compressed representation. These two components 

are typically intricately tied together since they both 

have to understand the shared compressed 

representation. The difference is made between lossless 

algorithms, [3] which can reconstruct the original 

message exactly from the compressed message, and 

lossy algorithms, which can only reconstruct an 

approximation of the original message. Lossless 

algorithms are typically used for text, and lossy for 

images and Sound where a little bit of loss in resolution 

is often undetectable, or at least acceptable. Lossy is 

used in an abstract sense, however, and does not mean 

random lost pixels, but instead means loss of a quantity 

such as a frequency component, or perhaps loss of 

noise.  

For example, one might think that lossy text 

compression would be unacceptable because they are 

imagining missing or switched characters. Consider 

instead a system that reworded sentences into a more 

standard form, or replaced words with synonyms so 

that the file can be better compressed. Technically the 

compression would be lossy since the text has changed, 

but the “meaning” and clarity of the message might be 

fully maintained, or even improved. 

2. Data Compression 
 
Compression: 

 The process of coding that will effectively reduce 

the total number of bits needed to represent certain 

information. Compression ratio is defined as the ratio 

of number of bits before compression to the number of 

bits after compression. 

Compression issues: 

 There are basically two types of compression 

techniques. The one compression technique is lossless 

and the technique of compression is lossy   technique. 

3. LOSSLESS COMPRESSION 
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Lossless data compression has been suggested for 

many space science exploration mission applications 

either to increase the science return or to reduce the 
requirement for on-board memory, station contact time, 

and data archival volume. 

         A Lossless compression technique [5] guarantees 

full reconstruction of the original data without 

incurring any distortion in the process. The Lossless 

Data Compression technique recommended preserves 

the source data accuracy by removing redundancy from 

the application source data. In the decompression 

processes the original source data is reconstructed from 

the compressed data by restoring the removed 

redundancy. The reconstructed data is an exact replica 

of the original source data. The quantity of redundancy 

removed from the source data is variable and is highly 

dependent on the source data statistics, which are often 

non-stationary. 

 The Lossless Data Compression algorithm can be 

applied at the application data source or performed as a 

function of the on-board data system as shown in the 

following figure. The performance of the data 

compression algorithm is independent of where it is 

applied. However, if the data compression algorithm is 

part of the on-board data system, the on-board data 

system will, in general, have to capture the data in a 

buffer. In both cases, it may be necessary to rearrange 

the data into appropriate sequence before applying the 

data compression algorithm. The purpose of 

rearranging data is to improve the compression ratio. 

 

 

Fig. 1 Packet telemetry for lossless compressor [5] 

 

4. LOSSY COMPRESSION 
    Lossy compression is compression in which 

some of the information from the original message 

sequence is lost. This means the original 

sequences cannot be regenerated from the 

compressed sequence. Just because information is 

lost doesn‟t mean the quality of the output is 

reduced. 

   For example, random noise has very high 

information content, but when present in an image 

or a sound file, we would typically be perfectly happy 

to drop it. Also certain losses in images or sound might 

be completely imperceptible to a human viewer (e.g. 

the loss of very high frequencies). 

For this reason, lossy compression algorithms on 

images can often get a factor of 2 better compressions 

than lossless algorithms with an imperceptible loss in 

quality. However, when quality does start degrading in 

a noticeable way, it is important to make sure it 

degrades in a way that is least objectionable to the 

viewer (e.g., dropping random pixels is probably more 

objectionable than dropping some colour information).  

For these reasons, the ways most lossy compression 

techniques are used are highly dependent on the media 

that is being compressed. Lossy compression for sound, 

for example, is very different than lossy compression 

for images. 

 

5. Lossless Compression Techniques 

The main  types of lossless  compression techniques 

includes[4] the Huffman coding, Arithmetic coding, 

Run length coding, Variable length coding and the 

most recently used coding which is known as the 

Golomb-Rice coding. 

 

1. Huffman Codes: 

 

     David Huffman developed the algorithm as a 

student in a class on information theory at MIT in 

1950. The algorithm is now probably [6] the most 

prevalently Huffman codes are optimal prefix codes 

generated from a set of probabilities by a particular 

algorithm, the Huffman Coding Algorithm. 

The algorithm is now probably [6] the most prevalently 

used component of compression algorithms used 

component of compression algorithms, used as the back 

end of GZIP, JPEG and many other utilities. The 

Huffman algorithm is very simple shown in Fig.3. And 

is most easily described in terms of how it generates the 

prefix-code tree. 

 1. Start with a forest of trees, one for each message. 

Each tree contains a single vertex with weight wi = pi. 

Application 

data source 
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 2. Repeat until only a single tree remains. 

 3. Select two trees with the lowest weight roots (w1 

and w2).  

4. Combine them into a single tree by adding a new 

root with weight w1+w2, and making the two trees its 

children. It does not matter which is the left or right 

child, but the convention will be to put the lower 

weight root on the left if w1≠w2. 

For a code of size n this algorithm will require n−1 

steps since every complete binary tree with n leaves has 

n−1 internal nodes, and each step creates one internal 

node. If we use a priority queue with O(log n) time 

insertions and find-mins (e.g., a heap) the algorithm 

will run in O(n log n) time. 

The key property of Huffman codes is that they 

generate optimal prefix codes. The Huffman algorithm 

generates an optimal prefix code. Since Huffman 

coding is optimal we know that for any probability 

distribution S and associated Huffman code C  H(S) ≤ 

la(C) ≤ H(S) + 1. 

 

Fig. 2 Binary tree for Huffman Code [6] 

 

2. Run Length coding: 

 

This encoding method is frequently applied to 

images (or pixels in a scan line).[5]  It is a small 

compression component used in JPEG compression.  In 

this instance, sequences of image elements X1, X2, …, 

Xn  are mapped to pairs   (c1, l1), (c1, L2), …, (cn, ln) 

where ci represent image intensity or colour and li the 

length of the ith run of pixels (Not dissimilar to zero 

length suppression above). 

 Original Sequence: 11112223333331111222  can be 

encoded as: (1,4),(2,3),(3,6),(1,4),(2,4) The savings are 

dependent on the data. In the worst case (Random 

Noise) encoding is heavier than original file: 2*integer 

rather 1* integer if data is represented as integers. 

 

3. Arithmetic Coding: 

  Arithmetic coding is a technique for coding that 

allows the information from the messages in a message 

sequence to be combined to share the same bits. [7] The 

technique allows the total number of bits sent to 

asymptotically approach the sum of the self 

information of the individual messages (recall that the 

self information of a message is defined as log2 1 pi). 

To see the significance of this, consider sending a 

thousand messages each having probability .999. Using 

a Huffman code, each message has to take at least 1 bit, 

requiring 1000 bits to be sent. On the other hand the 

self information of each message is log2 1 pi = .00144 

bits, so the sum of this self-information over 1000 

messages is only 1.4 bits. It turns out that arithmetic 

coding will send all the messages using only 3 bits, a 

factor of hundreds less than a Huffman coder. Of 

course this is an extreme case, and when all the 

probabilities are small, the gain will be less significant. 

Arithmetic coders are therefore most useful when there 

are large probabilities in the probability distribution. 

The main idea of arithmetic coding is to represent each 

possible sequence of n messages by a separate interval 

on the number line between 0 and 1, e.g. the interval 

from .2 to .5. For a sequence of messages with 

probabilities p1, . . . , pn, the algorithm will assign the 

sequence to an interval of size 1
n

i
pi , by starting with 

an interval of size 1 (from 0 to 1) and narrowing the 

interval by a Factor of pi on each message i. We can 

bind the number of bits required to uniquely identify an 

interval of size s, and use this to relate the length of the 

representation to the self information of the messages. 

[8] In arithmetic coding, a message is represented by an 

interval of real numbers between 0 and 1. As the 

message becomes longer, the interval needed „to 

represent it becomes smaller, and the number of bits 

needed to specify that interval grows. Successive 

symbols of the message reduce the size of the interval 

in accordance with the symbol probabilities generated 

by the model. The more likely symbols reduce the 

range by less than the unlikely symbols and hence add 

fewer bits to the message. 
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4. Golomb Rice Coding: 

  A Golomb-Rice code is a Golomb code where the 

divisor is a power of two, enabling an efficient 

implementation using shifts and masks rather than 

division and modulo. A Golomb code is variable-length 

code, a bit like Huffman; however, rather than being 

based on the data, like Huffman, it's based on a simple 

model of the probability of the values. To Golomb-

code a number, find the quotient and remainder of 

division by the divisor. Write the quotient in unary 

notation, then the remainder in truncated binary 

notation. In practice, you need a stop bit after the 

quotient: if the quotient is written as a sequence of 

zeroes, the stop bit is a one. The length of the 

remainder can be determined from the divisor. 

6. Lossy compression techniques: 

 
The various types of lossy compression techniques 

includes the Scalar  Quantization , Vector Quantization, 

in addition to this wavelet compression and fractal 

compression are also included under the category of 

lossy compression methods. 

1. Scalar Quantization: 

 
    A simple way to implement lossy compression is to 

take the set of possible messages S and reduce it to a 

smaller set S′ by mapping each element of S to an 

element in S′. 

    For example  take 8-bit integers and divide by 4 (i.e., 

drop the lower two bits), or take a character set in 

which upper and lowercase characters are distinguished 

and replace all the uppercase ones with lowercase ones. 

This general technique is called quantization. 

     Since the mapping used in quantization is many-to 

one, it is irreversible and therefore lossy. In the case 

that the set S comes from a total order and the total 

order is broken up into regions that map onto the 

elements of S′, the mapping is called scalar 

quantization.  

Applications of scalar quantization include reducing the 

number of colour bits or gray-scale levels in images 

(used to save memory on many computer monitors), 

and classifying the intensity of frequency components 

in images or sound into groups (used in JPEG 

compression). 

2. Vector Quantization: 

    Scalar quantization allows one to separately map 

each color of a color image into a smaller set of output 

values. In practice, however, it can be much more 

effective to map regions of 3-d color space into output 

values.  By more effective we mean that a better 

compression ratio can be achieved based on an 

equivalent loss of quality. The general idea of mapping 

a multidimensional space into a smaller set of messages 

S′ is called vector quantization. Vector quantization is 

typically implemented by selecting a set of 

representatives from the input space, and then mapping 

all other points in the space to the closest 

representative.  

    The representatives could be fixed for all time and 

part of the compression protocol, or they could be 

determined for each file (message sequence) and sent 

as part of the sequence. The most interesting aspect of 

vector quantization is how one selects the 

representatives. 

7. ALGORITHM FOR LOW-POWER 

BIOMEDICAL SYSTEMS 

The lossless data compression algorithm is largely 

based on a basic discrete pulse code modulation 

(DPCM) predictor followed by Golomb-Rice entropy 

coding, [4] whose block diagram and algorithm flow is 

shown in Fig. 3. 

 

Fig.3. Basic DPCM Prediction Followed By 

Golomb-    Rice Entropy Coding [10] 

1. Set Window Size WS = 64,128 or 256 
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2. Set Sample Precision SP = 8 or 10 

3. Output the First Sample x [0] 

4. Set Sample Pointer S_PTR = 1 

5. Set Sum_Abs_Err = 0 

6. for n from S_PTR to S_PTR+WS-1: 

SET SUM_ABS_ERR = SUM_ABS_ERR 

+abs(x[n]-x [n-1]) 

7. SET K = ceil (log2 (SUM_ABS_ERR/WS)) 

8. Output Golomb- Rice Parameter K 

9. for n from S_PTR to S_PTR+WS-1: 

Output GR- ENCODE(x[n]-x [n-1], k) 

10. Advance to next window: S_PTR = S_PTR + WS 

11. Repeat steps 5 to 10 still all samples are processed 

 

8. RESULT & ANALYSIS 

The  previous sample is taken as the prediction for the 

current sample, and the prediction error is obtained by 

subtracting the two.[4]  

From a window size WS of prediction errors, the 

Golomb-Rice code scaling K parameter is estimated 

and the prediction errors are Golomb-Rice entropy 

coded using this parameter.  Finally, the encoded 

stream is packed into data chunks of fixed width for 

output.  

This algorithm is then implemented in brain-heart 

monitoring system and the Golomb-Rice coding gives 

the better compression ratio as compared to the other 

coding techniques in the particular brain-heart 

monitoring system.  

 

Fig. 4 Chip implementation in 65 nm CMOS 

technology [10] 

The ECG/EEG/DOT data in chip is them implemented 

in 65 nm CMOS technology as shown in Fig. 4. For 

this technique, the compressor comprises 53,969 gates 

and occupying a total of 58k μm2. Simulated power 

consumption using a full operation test case reports 

170μW under the condition of 24MHz clock frequency 

and 1.0V core supply voltage. Thus after implementing 

lossless data compressor algorithm, the compression 

ratio results are found out to be as shown in the table I 

Table I. Compression Ratio Results [10] 

Bio signal Compression Ratio 

ECG 2.38 

EOG 1.37/1.55 

DOT 2.10 

AVERAGE 2.05 

The results are calculated from MATLAB simulations 

whereas EEG and ECG raw data were obtained from 

EEGLab and the MIT-BIH Arrhythmia Database, 

respectively. 
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9. CONCLUSION 

 
The data compression and to develop the various 

techniques of data compression is a still a challenging 

task for researchers and academicians. As reported by 

included references a large majority of research was 

oriented to data compression techniques. This paper 

presents the study and the comparison of various data 

compression techniques. After studying all these 

techniques it is found that the lossless data compressor 

technique is most effective over the lossy one. The 

papers published in the past years reflect experimental 

results for the compression techniques.  Finally it is 

seen that the lossless Golomb-Rice entropy coding after 

implementing in the brain-heart monitoring system give 

the better compression results. In the future, it will be 

of interest to push further the limits of low power 

compression in terms of Ecomp and CR, possibly by 

investigating optimized implementations of more 

complex algorithms as well as more aggressive power 

optimizations at both algorithm and architectural levels. 
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