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Abstract- image interpolation is very interesting areaof 

research in image processing which consists of various 

processing tasks such as compression, restoration, 

denoising, enhancement. Reconstruction quality of any 

image interpolation algorithm depends on it’s ability to 

adapt changing pixel structures across image. 

Interpolation is method of creating new data points 

from set of available or known data points which helps 

in analyzing exact details of images which is required in 

many applications such as medical imaging. By 

interpolation methods many artifacts in low resolution 

image such as blurring, ringing can be removed. 

I. INTRODUCTION 

Image interpolation is very important task in medical 

imaging,remote sensing, digital photographs and satellite 

imaging where analysis require conversion from LR image 

to HR image to study minute details. So many image 

interpolation techniques were developed. In this work, we 

are going to review five image interpolation methods such 

as Bi-cubic interpolation,New edge directed 

interpolation(NEDI), interpolation via directional filtering 

and data fusion(DSDF, soft decision and adaptive 2-d 

autoregressive model(SAI), nonlocal autoregressive 

model(NARM). Bi-cubic interpolation method is simplest 

is having lower complexity among all but  

cannot reconstruct edge hence produces artifacts. NEDI 

improves visual quality of image by reconstructing edges 

however in case of multiple intersect it produces speckle 

interpolation noise. DSDF method reduces this speckle 

interpolation noise using minimum mean square error 

method when edge direction learned from LR image is not 

reliable. SAI method reduces most of visual defects 

associated with above methods. NARM method efficiently 

uses non-local neighboring pixels to construct HR image 

from LR counterpart.  

 

 

II. INTERPOLATION TECHNIQUES 

A.BI-Cubic Interpolation 

This interpolation technique is extension of cubic 

interpolation used for obtaining high resolution (HR) image 

from low resolution (LR) counterpart or resampling of 

discrete data .This can be accomplished by using 

Lagrange‟s polynomial or cubic splines or cubic 

interpolation algorithm. 

Interpolation function meet sampled data at sample points 

i.e. if A is sampled function and B is interpolation 

function,, we can write B(sk)=A (sk) where sk  is sample 

points.If the sample points are equally apart from each 

other, we can write interpolation function as 

B(s)= 𝑘 Ck u 
𝑆−𝑆𝑘

ℎ
  

Where h is increment in samples equally apart from each 

other and sk are sample points, u kernel for bi-cubic 

interpolation, Ck are coefficients which depends on 

sampled data. „u‟ helps in converting discrete data into 

continuous. This cubic interpolation is achieved by 

constraining kernel. 

Let‟s consider „u‟ is contains piecewise polynomials 

defined in interval (-2,2).we can divide this interval into 

subintervals as (-2,-1),(-1,0),(0,1),(1,2). So we can write 

kernel „u‟ as follows 

u(x)= P1  x
3
 +  Q1  x

2
  +  R1  x  +  S1  0<x<1 

= P2x
3
 + Q2 x

2
 +R2x +  S21<x<2 

            = 0x<2 

This kernel must assume values u(0)=1,u(n)=0 i.e. 

u(1)=u(2)=0 this gives us following equations for 

coeff.1=u(0)= S1 

0=u(1
-
)=P1 + Q1+ R1+ S1 
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0=u(1
+
)=P2 + Q2+ R2+ S2 

0=u(2
-
)=8P2 +4 Q2+ 2R2+ S2 

If we select P2, the interpolation function B matches with 

the original function A. Let P2 =p and determine remaining 

coeff. In terms of p using Taylor‟s series expansion. 

So the interpolation kernel in terms of p becomes as 

follows 

u(x)= (p+2) x
3
 –(p+3) x

2
  +  10<x<1 

=px
3
 -5 p  x

2
  + 8p x  - 4p1<x<2 

=0                                  x<2 

This interpolation technique can reconstruct any second-

degree polynomial; however this method of interpolation 

fails catch varying statistics around edges so produce 

blurred HR images. Computational complexity of bi-cubic 

algorithm is low.  

B. New Edge Directed Interpolation(NEDI) 

 For an ideal step edge, image intensity evolves  faster 

across the edge orientation than along the edge orientation. 

As edges are important in images, reconstructing the 

geometry of edges is paramount in image processing. In 

this method first covariance coefficients of LR image are 

obtained. Then HR covariance coefficientsare obtained 

from LR covariance coefficients using geometrical 

similarity among them. By considering image as stationary 

Gaussian process, we can obtain interpolation by minimum 

mean square error method (MMSE). This improves visual 

quality of pixel around edges but this also increases 

computational complexity to high extent as compared to 

linear methods of interpolation.so mixed approach was 

proposed to tackle above problem. Covariance based 

method was employed for pixels around edges only and for 

other parts linear interpolation methods were used. 

Consider Xi,jbe the LR image and Y2i,2j be the HR image 

such that Xi,j= Y2i,2j. If we want to obtain 

Y2i+1,2j+1 , we will have to interpolate Xi,j i.e. in turn we will 

have to interpolate Y2i,2j. The interpolation function is 

given as follows which contains four nearest neighbor in 

diagonal direction. 

              Y2i+1,2j+1=  1
𝑙=0

1
𝑘=0 𝛼2𝑘+𝑙𝑌2 𝑖+𝑘 ,2(𝑗+𝑙) 

Where „𝛼 ′ represents interpolation coefficients and given 

by 

𝛼     = R
-1𝑟  

Where R and 𝑟  represents high resolution covariance 

Important applications of this algorithm are resolution 

enhancement of gray scale image and reconstruction of 

color images from CCD samples in which visual quality of 

reconstructed image is improved. Since this method 

requires big window to calculate covariance coefficients 

for each missing pixel, this may introduce artifacts  in local 

structure which causes faulty calculation of covariance 

C. Edge-Guided Image Interpolation via Directional 

Filtering and Data Fusion (DSDF) 

In this method, missing pixel is interpolated in two 

mutually orthogonal directions. These two different 

observations of missing pixels are combined using local 

window. Finally the pixel is interpolated by fusing two 

directional observations using linear minimum mean 

square error estimation. 

Let‟s assume Ih and Ilare the HR and LR images 

respectively. We are considering that LR image is directly 

down sampled from HR image. Hence we can write 

Il(n,m)= Ih(2n-1,2m-1)   ,1≤n≤N,1≤m≤M 

Where N= no. of pixel rows in LR image, M=no. of pixel 

columns in LR image 

 

Fig.(a) 

Black dots represent available pixels of LR image and 

white dots represents missing pixels in HR image. 

As human eye is sensitive to edges, it is important to 

decrease effect of artifacts while maintaining edge 

sharpness. Direction of edge is important information in 

interpolation; to use this we partition neighboring pixels of 

each missing pixel into two directional (observational) 

subsets which are orthogonal to each other. In this method 

we reconstruct HR image in two steps. In first,we 

reconstruct center pixels like Ih(2n,2m) surrounded by four 

known and four unknown pixels. In fig.(b),there are two 

orthogonal directions ,one along 45
0 

 and other along 135
0
. 

If we want to reconstruct missing pixel Ih(2n,2m), consider 

two directional observations as 𝐼 45(2n,2m) and 𝐼 135(2n,2m) 

by linear interpolation methods. Let the observations are as 

follows 
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𝐼 45(2n, 2m) =Ih(2n,2m) + v45(2n,2m) 

𝐼 135(2n, 2m)=Ih(2n,2m) + v135(2n,2m) 

 

                                          Fig.(b) 

Where v45 and v135 represents noise along two mutually 

orthogonal directions. We can combine above two 

observations in matrix form as follows: 

                           Y=1.Ih +V  

Where Y,1,V all are 2×1 matrices as follows. 

             Y=
𝐼 45

𝐼 135

 ,        1=
1
1

,      V=
𝑉45

𝑉135
 

Now we have to calculate value of Ih  from observation Y. 

this can be achieved by use of linear minimum mean 

square estimation as follows 

       Ih =𝜇ℎ  + cov(Ih,Y)(Var(Y))
-1 

(Y-E[Y]) 

Where 𝜇 is mean, cov stands for covariance, Var stands for 

variance, E stands for mean or expectation. 

D. Image Interpolation by Adaptive 2-D Autoregressive 

Modeling and Soft-Decision Estimation (SAI) 

In this method, value of missing pixels is calculated in 

group instead of one at a time like in NEDI, DSDF. 

Interpolation means to increase inborn resolution of thee 

image. 

The reconstruction capacity of any image interpolation 

algorithm depends on ability to adapt nonstationarypixel 

across image.In this method, natural image is taken as 

piecewise 2-D autoregressive process. Model parameters 

are measured for each sample using sample statistics of 

local window. Sample set should be causal for estimation 

of current sample. 

In this method first step is define piecewise autoregressive 

model (PAR). Then apply PAR model  to soft-decision 

estimation technique for adaptive interpolation (SAI). 

According to PAR model, image can be represented as 

X(i,j) =  𝑚 ,𝑛 ∈ 𝑇 𝛼(m,n) X(i+m,j+n)   + 𝑣𝑖 ,𝑗  

Where 𝑣𝑖 ,𝑗  is random perturbation independent of location 

of samples. Effectiveness of PAR model depends on how 

model parameters 𝛼(m, n) matches with local pixel 

structures. 

 

Fig.(a) 

 

Fig.(b) 

 

Fig.(c) 

Fig. (a) shows solid black spots which represents LR image 

pixels, missing circles represents HR image pixels which 

are to be calculated  

Let Ihand Ilbe the HR, LR image respectively. From Fig.(a) 

, we can say that LR image is obtained by down sampling 

HR image by factor of two. Let xi ,yi belongs to LR,HR 

image respectively. 

By using Fig.(b)  we can write  

yi= 1≤𝑡≤4  at 𝑥𝑖◊𝑡
(8)

 + 𝑣𝑖  
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With above model we can interpolate n missing pixels in 

given window by least squares block estimation with 

parameters at. similarly PAR model can be written by using 

parameters bt as follows 

yi= 1≤𝑡≤4   ⃦bt𝑦𝑖◊𝑡
(4)

⃦  + 𝑣𝑖  

while model parameters at and bt are using following 

equation 

𝑏  =argminb 𝑖∈𝑊  𝑥𝑖   − 1≤𝑡≤4 𝑏𝑡𝑥𝑖◊𝑡
(4)

 2 

Similarly for model parameters of at. 

This algorithm gives better results in terms of PSNR as 

compared to previous methods such ass bi-

cubic,NEDI,DSDF. 

E. Sparse Representation Based Image Interpolation with 

Nonlocal Autoregressive Modeling (NARM)  

  In this method, low resolution image (LR) is considered 

as down-sampled version of high resolution image (HR) 

after blurring. If we consider blurring kernel ass Dirac-

delta function, this method becomes less effective as it fails 

to constrain local image structure. Soin this method we are 

adding nonlocal similarity of image into conventional 

sparse representation models(SRM). According to 

compressive sensing theory, dictionary should be less 

coherent with sampling matrix. So this newly proposed 

algorithm (NARM) produces best result so far in terms of 

PSNR as well as SSIM, FSIM. 

General super-resolution algorithm can be modeled as y = 

DHx + v ,where y is observed(LR) image after blurring in 

original(HR) image x, v is additive noise, D is down-

sampling factor, H is Dirac-delta function i.e. identity 

matrix. For reconstructing image x from observed image y 

can be through iterative back projection algorithm but it 

produces noisy image so regularization terms were added 

in that. Sparse representation model assumes that image x 

is sparse in some domain spanned by dictionary ′Ψ′ i.e. 

x ≈  Ψ𝛼. Here most of coefficients in 𝛼 are zero. Using 𝑙1 

minimization model, SRM based model can be written as 

follows 

𝛼 =arg𝑚𝑖𝑛𝛼    ( ⃦y-DH Ψ𝛼  ⃦2
2 + 𝜆   ⃦ 𝛼   1⃦). 

Once coding vector 𝛼   is obtained, x can be calculated with 

help of dictionary. In autoregressive modeling, given pixel 

is represented as linear combination of it‟s local neighbors. 

While in NARM , nonlocal neighbors are taken into 

consideration  and  missing pixel is assumed to be equal to 

weighted sum off it‟s nonlocal neighbors, hence  equation 

for coding coefficients  𝛼  written as 

 

𝛼 =arg𝑚𝑖𝑛𝛼    ( ⃦y-DS Ψ𝛼  ⃦2
2 +  𝑁

𝑖=1   ⃦ 𝜆𝑖  𝛼𝑖 1⃦  +  

 𝑁
𝑖=1 ⃦𝜂𝑖 (𝛼𝑖 −  𝛼𝑖

∗)  ⃦2
2 ) 

By using variable splitting method, above problem can be 

solved by dividing it into smaller problems. 

III. COMPARISON BETWEEN DIFFERENT 

INTERPOLATION TECHNIQUES 

So far we have discussed five interpolation techniques such 

as bi-cubic,NEDI, DSDF, SAI and NARM. 

Among all above, NARM gives best results in terms of 

PSNR,SSIM,FSIM   as compared to others when applied 

on test images. Test images are Lena , house, girl, leaves, 

camera man, starfish as follows 

            

Lena                               Girl 

Images 

Bi-

cubic NEDI DSDF SAI NARM 

            

Lena 33.91 33.76 33.89 34.68 35.01 

  0.914 0.9134 0.9122 0.9184 0.9238 

  0.9872 0.9868 0.9867 0.9882 0.9893 

house 32.15 31.67 32.57 32.84 33.52 

  0.8772 0.8743 0.8775 0.8778 0.8841 

  0.9404 0.9434 0.9478 0.9496 0.9567 

leaves 26.85 26.23 27.22 28.72 29.76 

  0.9365 0.9403 0.9433 0.9575 0.9661 

  0.9259 0.9429 0.9478 0.9591 0.9674 

camera 

man 25.36 25.42 25.67 25.88 25.94 

  0.8639 0.8626 0.867 0.8709 0.8781 

  0.9041 0.9059 0.9143 0.9177 0.9231 

girl 33.83 33.85 33.79 34.13 34.46 

  0.8533 0.857 0.852 0.8588 0.8658 

  0.9416 0.9412 0.9395 0.9444 0.9434 

starfish 30.22 29.36 30.07 30.76 31.72 

  0.9169 0.8987 0.9118 0.9207 0.9299 

  0.9522 0.9458 0.9541 0.9577 0.9648 
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Starfish                   house

 

Leaves                     camera man 

When BI-cubic, NEDI,DSDF,SAI,NARM methods are 

applied to the above test images,we get results as shown in 

table. 

IV. CONCLUSION 

  In this paper we have seen five different interpolation 

methods .Bi-cubic interpolation is having relatively lower 

complexity than others but it cannot reconstruct edges 

which creates artifacts such as ringing. Hence new method 

such as NEDI  was developed which can reconstruct edges 

so that visual quality is good . SAI method eliminates most 

of visual defects associated with other methods.In SAI, 

estimation of model parameters assume that spatial co-

relation between HR,LR pixels is same but if this 

assumption is wrong, this method produces some false 

edges or textures. NARM method uses non-local self-

similarity between image patches or pixels to develop 

reconstruction algorithm which gives better results than 

other method. 
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