
Review of Regression Test Case Selection

Techniques

Manisha Rani

CSE Department, DeenBandhuChhotu Ram University of Science and Technology,

Murthal, Haryana, India

Ajmer Singh

CSE Department, DeenBandhuChhotu Ram University of Science and Technology,

Murthal, Haryana, India

Abstract - Regression Testing is the most important

activity that is done to ensure that the modifications do

not introduce new errors in the previous existing code.

An important research problem is the selection of

relevant test cases from the initial suite that would

minimize the test time and efforts without affecting test

quality. In this paper, we review various test case

selection techniques and do their comparisons.

1 INTRODUCTION

1.1 Background

Regression testing is the testing strategy which guarantees

that newly introduced changes in software do not affect the

unchanged parts of the software. We can apply “Retest All”

Strategy to regression testing in which all of the existing test

cases are executed to ensure that new changes do not

introduce any error. But it is a very expensive process , it

consumes a lot of time and resources. Therefore, we

consider test case selection and prioritization techniques.

Test Case Selection Techniques reduce the number of test

cases and satisfy the testing requirements. There are various

test criteria on which we can perform testing e.g. fault

detection ability, code coverage, time taken to detect fault,

past fault detection history. This is beneficial for the tester

to consider multiple test criteria. We are not only concerned

with quality of test data but with cost also. The purpose of

test case selection is to achieve effective test case selection

in terms of minimum cost.

Regression Test Selection consists of mainly two activities:

a) Firstly, we identify the affected part of the code. This

involves identifying the unmodified part of program that

gets affected due to modifications.

b) Secondly, we select the test case that involves the

selection of subset of test cases from the initial test suit T.

Regression Testing

Let P be our original program. Let P' be a modified version

of P and T be a test suite for P. A typical regression test

proceeds as follows:

(1) Select T' subset of T, a set of test cases to execute on P.

(2) Test P' with T' to check whether P' is correct with

respect to T'.

(3) Create T'', a set of new functional or structural test cases

for P'.

(4) Test P' with T'' to check whether P' is corrected with

respect to T''.

(5) Create T''' that includes test cases from T' and T''.

 T is the original regression test set. Fig: 1 Classification of test cases

 1.2 Classification

of Test Cases

Leung and White [1] classify test cases into five classes.

The first three classes consist of test cases which already

exist in T.

 Reusable: Reusable test cases execute the parts of the

program that remain unchanged

and common to program P and P‟. It is not needed to

execute these test cases on P‟. These are called reusable

because we can use them for the future version of P.

Re-testable: Re-testable test cases execute the parts of P that

get changed in P‟. Thus

T’’=test case Execute

modification

 T-T’’

 {Test case

that does not execute

modification}

T’’=test case Execute

modification

 T-T’’

 {Test case

that does not execute

modification}

T’’=test case Execute

modification

 T-T’’

 {Test case

that does not execute

modification}

T‟‟=Test case Execute

modification

 T-T‟‟ {Test case that

does not execute

modification}

1029

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051262

Vol. 3 Issue 5, May - 2014

Re-testable test cases should be re-executed in order to test

P‟.

Obsolete: Test cases can be considered obsolete because

1) Their input/output relation get changed due to changes in

specifications

 2) They no longer test what they were designed to test due

to modifications in the program

 3) They are „structurally‟ test cases that no longer

contribute to structural coverage of the program.

The remaining two classes consist of test cases that are to be

generated for the regression testing of P‟.

New-structural: New-structural test cases test the modified

program constructs that provide structural coverage of the

modified parts in P‟.

 New-specification: New-specification test cases test the

modified program specifications. It will test the new code

generated from the modified parts of the specifications of

P‟.

1.3 Concepts Related to Regression Testing

Execution Trace of a Test Case: The execution trace of a

test case t on a program P is defined as the sequence of

statements in P that are executed when P is executed with t.

The execution trace information for P can be generated

automatically with the help of the source code.

Fault-revealing Test Cases: A test case t ∈ T is said to be

fault-revealing for a program P, if and only if by executing

this on program P, there is a failure due to incorrect output.

Modification-revealing Test Cases: A test case t ∈ T is

considered to be modification-revealing for P and P′ if it

produces different outputs for P and P′.

Modification-traversing Test Cases: We said a test case t ∈

T is modification-traversing for P and P′ if and only if the

execution traces of t on P and P′ are different. A test case t is

said to be modification-traversing if it executes the modified

regions of code in P′. The set of modification-traversing

test cases is a super-set of the set of the modification-

revealing test cases.

Inclusive, Precise and Safe Regression Test Cases:

Inclusive: Inclusiveness measure the extent to which we

select modification revealing test cases from the original test

suit T. Suppose the original test suite contains n

modification revealing test cases. If regression test selection

technique selects m modification revealing test cases, the

inclusiveness is expressed as (m/n)*100.

Safe: A safe regression test selection technique selects all

the modification revealing test cases. In other ways, if it is

100% inclusive then we said it a safe technique. Regression

test that are relevant to change but are not selected are

corresponds to the false negative. A safe technique excludes

all the false negatives.

Precision: Precision measure the extent to which regression

test selection ignores the non modification revealing test

cases. The selected test cases that are not relevant to change

are known as false positives. Thus Precision measures the

degree to which an RTS ignores the false positives.

Fig 2: Regression Test Case Selection

2 RTS Techniques for Procedural Programs

There are five major classes of testing techniques:

1. Dataflow analysis-based techniques

2. Slicing-based techniques

3. Firewall-based techniques

4. Differencing-based approaches

5. Control flow analysis-based techniques

2.1 Dataflow Analysis-Based Techniques

Several techniques have been proposed based on dataflow

analysis [2-5].In this technique, we execute test cases for

definition use pairs of variables that are affected by program

modification. The test cases execute the path from definition

of modified variables to their use. We can use variable in

two different ways-computation use(c-uses) and predicate

uses (p-uses). A c-use occurs when it is used in computation

and a p-use occurs when it is used in conditional statement.

A c-use indirectly affects the control flow of the program

while a p- use may affect directly or indirectly.

Harrold and Soffa [3] have proposed a dataflow coverage-

based RTS technique that can be applied to analyze changes

Regression Test

 Set T

Validate P

Collect

execution

information

of each

test case in T

on P

Release P for field

use

field use

Modify P to obtain P‟

Record modified code

Construct T‟‟ using

modification based

selection technique

1030

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051262

Vol. 3 Issue 5, May - 2014

across multiple procedures. It involves the incremental

approach for processing the dataflow information i.e select

test cases to process a single change and update test

coverage information and dataflow information. This

process is then repeated for all the changes one by one. In

this approach, we represent P by CFG in which basic blocks

are represented with nodes. This will reduce the size of flow

graph and we can do analysis of graph efficiently. We

introduce additional nodes to model global variables,

function parameters and return values of function. When we

define variable in node n, we store the node number of all c-

auses of the variable in node n. We also store block number

for all p-uses in n. This information is used to select the test

cases.

Critical Evaluation

1) These techniques are unsafe because these do not

consider control dependency among program elements.

2) These techniques are also imprecise because the presence

of an affected code in a block does not guarantee that every

test case will execute this block.

2.2 Slicing-Based Techniques

Aggrawal et al.[6] have proposed the slicing based

technique. We select those test cases which execute to

produce different outputs with the modified program P‟. A

slice is defined with respect to T as the set of statement

which are executed when P is executed with test case T.

There are four slicing techniques[6]: Execution slice,

dynamic slice, relevant slice, approximate relevant slice.

Two components have equivalent execution patterns if they

are executed the same number of times on any given input.

Code elements possess common execution pattern if they

have the same equivalent execution pattern during some call

to procedures. These patterns are used to find out the

semantic difference.

Critical Evaluation

1) These are not safe technique when there is deletion of

statement involve in a block.

2) These are precise because these do not involve test cases

which do not produce different output.

2.3 Module Level Firewall-Based Techniques

Leung and White [7-9] have proposed the firewall based

techniques. It is based upon data and control dependency

among various modules of a procedural program .A firewall

is defined as the set of modified modules and the modules

which interact with these modified modules. The firewall

limits the amount of retesting and selects the test cases

which execute the modified modules. To represent the

control flow structure of program, it uses call graph

approach. If there is a path from module A to B then module

A is known as ancestor and module B is known as

descendant.

It includes direct ancestor and direct descendant with

modified module while constructing a firewall for all

possible interactions. Then it use coverage based

information to select the test cases.

Critical Evaluation

1) The firewall techniques are not safe because these do not

select test cases from outside the firewall which can execute

affected statements.

2) The firewall techniques are imprecise because test cases

executed are not necessarily to execute the affected modules

within the firewall.

2.4 Differencing Based Techniques

These techniques are based on differences between original

and modified program [10,11]. These techniques can be

divided into various categories:

2.4.1 Modified Code Entity-Based Technique

Chen et al.[10] have proposed the modified code entity

based technique. In this technique, program code is

decomposed into functional and non-functional code. We

can define code entity as either executable code such as

function or a statement or a non executable code as global

variable or a macro. The test coverage information is

analyzed to determine the set of executable code entities that

are exercised by each test case.

2.4.2 Technique Based on Textual Differencing

Vokolos and Frankl [11,12,13] have proposed technique

based on textual differencing of original and modified

program. It does not use intermediate representation of

program. In this technique program is converted into

canonical form before comparison. The modified program

should follow the same syntactic and formatting guidelines.

The canonical version of P is instrumented to generate test

coverage information. It compare the canonical version of P

and P‟ to find out modifications to the code.

Critical Evaluation

1) It is a safe technique because test cases are selected on

the basis of affected code entities.

2) It is imprecise if code changes are arbitrary because it

selects test cases only on the basis of differentiation of

syntax.

2.5 Control Flow Analysis-Based Techniques

1031

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051262

Vol. 3 Issue 5, May - 2014

 These techniques[14,15,16] analyze control flow models of

the input programs for selecting test cases. There are various

types of control flow analysis based techniques.

2.5.1 Cluster Identification Technique

Laski and Szermer[14] have proposed the cluster

identification technique. Cluster is defined as the

localization of program modification in one or more areas.

Cluster is a single- entry and single- exit block that changes

from one version to another. In this technique program P

and P‟ are represented as CFGs and then nodes G and G‟

which corresponds to the modification are identified that

forms the cluster. It uses control dependence information of

original and modified procedure to find out clusters. We can

modify program in three ways: Inserting a cluster into the

program, deleting a cluster or by modifying a cluster. There

are two types of test cases: local to cluster and global to the

cluster. The former are executed inside the modified cluster

and latter is to find out the affected module due to the

modified module.

2.5.2 Graph Walk Based Technique

Rothermel and Harrold [15] have proposed graph walk

based technique which is based on the traversal of Control

Flow Graphs(CFGs) of original and modified program. It is

better than RTS technique based on dependence graph. In

this, CFGs G and G‟ for program P and P‟ are constructed.

Then by instrumenting P, the execution trace of each test

case t, ET(P(t)) is recorded by performing Depth first

traversal. This technique examines the program statements

along identically labeled edges of G and G‟ are equivalent

or not. The edges corresponds to the non identical nodes are

identified as dangerous edges. Modification revealing test

cases are those which execute the set of identified

dangerous edges.

2.5.3 DFA Model Based Approach

Ball [16] has proposed DFA Model Based Approach. It is

based on modeling of CFG in deterministic finite automata.

It constructs DFA M for CFG G based on following

conditions:

1) Each node v in G is corresponds to two states v1 and v2

of M where v1 and v2 is connected by transition of basic

block associated with v in G.

2) The set of edges in G constitutes the state transition in M.

These two conditions ensure that DFA M will work for

graph G. It uses intersection graph to represent CFG. It is

based on the reach-ability of edges in the intersection graph.

It considers the edge coverage criteria for test case selection.

Critical Evaluation

1) The control flow analysis techniques are safe.

2) Cluster Identification techniques are imprecise because in

this test case selection is done on the basis of whether it

execute cluster or not but not on the basis of program

modification.

3) DFA based approach is more expensive in terms of

computation.

3.1 Comparison of Test Case Selection Techniques

Class of RTS

Techniques

Key Features

Merits

Demerits

Dataflow

Analysis

Based

Techniques

It is based

upon dataflow

and structure

of program

It can analyze

both intra and

inter-

procedural

modification if

there is

alteration of

def-use pair

Low safety

and

imprecise

Slicing based

Techniques

It is based on

slicing of

program and

use

dependence

graph

Used for both

intra and inter-

procedural

modification

Low safety,

imprecise and

computationall

y complex

 than dataflow

techniques

Module level

Firewall based

Techniques

It is based on

dependencies

among

modules

It is more

efficient as

only modules

are analyzed

for

modification

Low safety

and highly

imprecise

Modified code

entity based

Techniques

Based on level

of granularity

It is safe and

most efficient

procedural

RTS

Technique

Highly

imprecise

1032

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051262

Vol. 3 Issue 5, May - 2014

Textual

differencing

based

technique

Based on

syntactical

difference

It is safe and

easy to

implement as

prototype

Imprecise and

 inefficient for

 large

programs

Graph walk

based

Technique

It is based on

control flow

models

It is safe and

most precise

RTS

Technique

Less efficient

for large

programs

3.2 Techniques for Regression Test Selection

Technique Origin Description

T1 Harrold and

Soffa (1988)

Dataflow-

coverage-based

T2 Leung and

White

(1990)

Procedural-

design firewall

T3 Gupta et al.

(1992)

Coverage-

focused, slicing

T4 Vokolos and

Frankl

(1997)

Textual Differing

– Pythia

T5 Wong et al.

(1997)

Hybrid:

modification,

minimization and

prioritization-

based selection

T6 Willmor and

Embury

(2005)

Test selection for

DB-driven

applications

T7 White et al.

(2005)

Extended firewall

additional data-

paths

T8 Leung and

White

(2005)

Retest-all

4. CONCLUSION

In this paper, we have represented the systematic review of

test case selection techniques. We have identified the

following points :

1) There are five different techniques of test case selection

which can be classified on the basis of what input is

required and on which level of granularity change is

considered.

2) The differences between the techniques is not very strong

and sometimes contradictory

3) There is no base for selecting superior technique. Instead

the techniques are tailored to some specific situation.

5. REFERENCES
[1] Leung HKN, White L. “Insight into regression testing”,Proceedings

of International Conference on Software Maintenance(ICSM 1989),
IEEE Computer Society Press, 1989.

[2] Gupta R, Harrold MJ, Soffa ML “ An approach to regression testing

using slicing”, Proceedings of the International Conference on
Software Maintenance (ICSM 1992), IEEE Computer Society Press,

1992.

[3] Harrold MJ, Soffa ML “ An incremental approach to unit testing
during maintenance” , Proceedings of the International Conference on

Software Maintenance (ICSM 1998), IEEE Computer Society Press,

1988.
[4] Harrold MJ, Soffa ML “Interprocedual data flow testing” ,

Proceedings of the 3rd ACM SIGSOFT Symposium on Software

 Testing, Analysis, and Verification (TAV3), ACM Press, 1989.
[5] Taha AB, Thebaut SM, Liu SS “ An approach to software fault

localization and revalidation based on incremental data

 flow analysis” ,Proceedings of the International Computer Software
and Applications Conference (COMPSAC 1989), IEEE Computer

Society Press, 1989.

[6] H. Agrawal, J. Horgan, E. Krauser, and S. London “Incremental

regression testing”, In IEEE International Conference on Software

Maintenance, 1993.

[7] H. Leung and L. White. A study of integration testing and software
regression at the integration level. In Proceedings of the Conference

on Software Maintenanc, November 1990.
[8] H. Leung and L. White. “A cost model to compare regressiontest

strategies”, In Proceedings of the Conference on Software

Maintenance,1991.
[9] H. Leung and L. White “ A firewall concept for both c ontrol-flow

and data-flow in regression integration testing”, In Proceedings of the

Conference on Software Maintenance, 1992.
 [10] Y. Chen, D. Rosenblum, and K. Vo. TestTube: “A system for

selective regression testing” , In Proceedings of the 16th International

Conference on Software Engineering, May 1994.
[11] F. Vokolos and P. Frankl. Pythia: “A regression test selection tool

based on textual differencing”, In Proceedings of the 3rd International

Conference on Reliability, Quality & Safety of Software-Intensive

Systems (ENCRESS‟ 97), May 1997.

[12] F. Vokolos and P. Frankl “ Empirical evaluation of the textual

differencing regression testing technique”, In ICSM ‟98: Proceedings
of the International Conference on Software Maintenance, 1998.

[13] P. Frankl, G. Rothermel, K. Sayre, and F. Vokolos “An empirical

comparison of two safe regression test selection techniques”, In
ISESE ‟03 Proceedings of the 2003 International Symposium on

Empirical Software Engineering, IEEE Computer Society, 2003.

[14] J. Laski and W. Szermer “Identification of program modifications
and its applications in software maintenance”, In Proceedings of the

Conference on Software Maintenance, November 1992.

[15] G. Rothermel and M. Harrold “ A safe, efficient regression test
selection technique”, ACM Transactions on Software Engineering

and Methodology, April 1997.

[16] A. Ali, A. Nadeem, Z. Iqbal, and M. Usman. “Regression testing
based on UML design models”, In Proceedings of the 13th Pacific

Rim International Symposium on Dependable Computing, 2007.

1033

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051262

Vol. 3 Issue 5, May - 2014

