
Review on Data Stream Partitioning and

Re-optimization using Runtime Dependency

Mining

Mr. Shinde Sumit S.
Department of Computer Engineering,

DPCOE, Wagholi,

Pune, India

Prof. Joshi Shubham
Department of Computer Engineering,

DPCOE, Wagholi,

Pune, India

Abstract— Data stream partitioning is the profitable

approach used for distributed data. Distributed data stream

partitioning plays important role for a wide range of

applications. Applications involved in distributed and web-

based systems can inculcate data stream partitioning and

processing it gain higher throughput. This can be done using

values of specific attributes or by using partitioning keys. Re-

partitioning the intermediary streams of data stream is

required when different partitioning keys are applied to

different queries. This process cause extra communication

overhead and in turn reduce throughput. By finding

dependencies between partitioning keys applicable for each

query, re-partitioning can be reduced. Current system

examines query syntax at compile-time, detects inter-key

dependencies and in turn avoids re-partitioning. Compile-time

methods can be extended by a scalable and elastic stream

engine, which process a large data stream. Elasticity feature

will help to balance dynamic load. Mining of temporal

approximation dependency is applicable for moving time

window and it is approximately valid over it. Run-time re-

optimization solution dynamically adjusts data processing and

re-partitioning used to achieve high throughput without using

unnecessary partitioning.

Keywords— Data stream processing, Auto-parallelization,

Runtime optimization, elasticity, Temporal approximation

dependency.

INTRODUCTION

Existence of large class of newly emerging applications,

data generated due to external environment is forwarded

asynchronously to servers. Server provides services to the

data streams. Some sample examples are share-market,

banking, location-tracking, sensor networks. These

applications need timely processing data stream with great

response. Streaming applications are directed graphs where

vertices points to operators of query and edges of graph

points data streams. Executing expensive continuous queries

over bulk data streams requires partitioning keys enables

such customized streams.

Auto-parallelization technique involves locating of a

region in the applications data flow graph which can be

replicated for applying data partitioning at run-time stated

by Gedik et.al.[2]. An elastic auto-parallelization

dynamically avails nodes at run-time. Without wasting time

in re-partitioning of data streams, it provides higher

throughput to achieve high elasticity and quick response

.Gulisan et.al.[3] presents a computing paradigm based on

stream processing engines(SPEs). SPEs are specially

designed computing systems for presenting continuous data

streams with minimum delay. This work extends present

compile-time optimization methods using the methods of

runtime re-optimization and dependency mining.

To check out dependencies at run-time temporal

approximation dependencies is used. Temporal

approximation dependency (TADs), is an approximate

dependencies between moving entities over a time window

defined by Viel et.al.[1]. TAD discovers new strategies

useful for less-partitioning, benefited for reduced

communication and higher throughput.

I. PROBLEM DEFINITION

To Design and implement an auto-parallelization data-

stream engine facilitated with run-time repartitioning

optimization.Which will scale up the data stream processing

and enhance the throughput of the data stream processing

system.The partitioning strategy of a program strongly

affects its performance. A strategy that allocates different

partitioning keys to two successive queries will require re-

partitioning the intermediate stream between the queries,

causing extra communication.

II. PERSPECTIVE SOLUTION

As the compile-time query analysis and optimization is

static in nature and it fail to achieve dynamic dependencies

valid in a specific time window, Run-time dynamic query

analysis and optimization methods play useful role. To

achieve this result temporal approximation dependency

checking strategy is used. It helps to improve system

throughput and system scalability.

III. RELATED WORK AND LITERATURE SURVEY

The need to gather, process and analyze data stream is

being increased to get some valuable insights. This is

needed to be performed at real-time during processing. Data

stream processing with parallelization techniques come

from earlier research.

The query aware data stream partitioning approach

defined by Theodore Johnson et.al.[8] has specified methods

for analyzing any given query node to determine a partition

strategy and choosing optimal partitioning, which

minimizes overall communication costs. Mitch Chreniack

et.al.[4] has described two stream processing systems

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

304

namely Aurora and Medusa, designed to solve architectural

challenges in large-scale distributed stream processing

systems. Daniel J. Abadi et.al.[6] specified a new stream

processing engine Borealis, which extends both Aurora and

Medusa system with advanced capabilities required by

newly emerging stream processing applications.

Vincenzo Gulisano et.al.[3] presented a scalable and

elastic stream processing engine to process large volume

data streams. It uses parallelization techniques to divide

single query into sub queries and allocate them to

independent nodes. It provides scalability and elasticity to

the distributed system.

BurgaGedik et.al.[2] proposed an elastic auto-parallelization

solution that can dynamically adjust number of processing

channels. Auto-parallelization technique is used to scale up

stream processing applications. EmericViel et.al.[1]

extended existing compile-time methods based on temporal

approximation dependencies between partitioning keys

required to partition data stream.

IV.PROPOSED WORK

Implementation of scalable and elastic processing system

provides run-time re-optimization using temporal

approximation dependency mining with auto-parallelization

strategy.For distributed data stream processing, a program

made of multiple queries can be parallelized by partitioning

input streams according to the values of specific attributes,

or partitioning keys.

V.PROPOSED ARCHITECTURE/PROTOTYPE

A. Date Stream Partitioning

Fig.1. Basic Block Diagram for Data Stream Partitioning

Input data stream is partitioned using hashing

function or by using partitioned keys. Partitioned stream is

then forwarded to respective system node for processing.

B. Distributed Architecture:

Fig.2. Distributed System Architecture

VI.SCOPE OF WORK

Presented Partitioning optimization method extends

existing compile-time optimization methods by using run-

time re-optimization, based on runtime dependency mining.

It adds scalability and elasticity in the distributed processing

engine. Introducing the concept of auto-parallelization

defined by Gedik et.al.[2] facilitate distributed computing

nodes to locate the regions in the applications data flow

graph, that can be replicated at run-time to apply data

partitioning, in order to achieve scalability.

VII.DISCUSSION

As the work is at very early stage, complete integration

with distributed engine required for query and data stream

execution, involving implementation of the exception

handling and runtime strategy switching modules, as stated

by Viel et.al.[1]. Evaluation of throughput and scalability of

stream processing engine also needs a real-life evaluation of

temporal approximation dependency mining algorithm.

VIII.REFERENCES

1. EmericViel, Haruyasu Ueda, “Data Stream Partitioning Re-

Optimization Based on Runtime Dependency Mining”,

978-1-4799-3481-2/14/ © 2014 IEEE

2. Bug˘ raGedik, Scott Schneider, Martin Hirzel, and Kun-Lung

Wu,“ Elastic Scaling for Data Stream Processing”,Ieee

Transactions On Parallel And Distributed Systems, Vol. 25,

No. 6, June 2014,pp.1447-1463

3. V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C.

Soriente, P. Valduriez, "StreamCloud: An Elastic and

Scalable Data Streaming System”, IEEE Trans. Parallel

Distrib. Syst., vol. 23, pp. 2351-2365,.2012

4. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.

Cetintemel, Y. Xing, and S. B.Zdonik, “Scalable distributed

stream processing”, in Proc. CIDR‟03, 2003, pp. 257-268.

5. S. Schneider, M. Hirzel, B. Gedik, K. L. Wu, “Auto-

parallelizing statefuldistributed streamingApplications”, in

Proc. PACT‟12, 2012, pp. 53-64.

6. D.Abadi, Y.Ahmad,M. Balazinska, U.C¸ etintemel,

M.Cherniack J.- Hwang, W.Lindner,A.Maskey, A.Rasin, E.

Ryvkina,N. Tatbul, Y. Xing, and S. Zdonik, „„The Design of

the Borealis Stream Processing Engine,‟‟ in Proc. CIDR,

2005, pp. 277-289.

7. Patrik G. Clark, Jerzy W. Grzymala-Busse,“A comparison of

Global and Local Probabilistic Approximations in Mining

Data with Many Missing Attribute Value”, IEEE International

Conference on Granular Computing(GrC), 978-1-4799-1282-

7/13

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

305

8. T. Johnson, M. S. Muthukrishnan, V. Shkapenyuk, and O.

Spatscheck, "Query-aware partitioning for monitoring

massive network data streams", in Proc. SIGMOD‟08, 2008,

pp. 1135-1146.

9. H. Kurihara, H. Ueda, S. Sakamoto, and M. Matsubara,

“Development and runtime platform and high-speed

processing technology for data utilization”, FUJITSU Sci.

Tech. J., Vol 50, No. 1, Jan 2014.

10. E. Zeitler and T. Risch. "Massive scale-out of expensive

continuous queries", in Proc.VLDBEndowment, vol. 4, pp.

1181-1188, Aug. 2011.

11. A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,

E. Ryvkina, M. Stonebraker, and R. Tibetts, "Linear road: a

stream data management benchmark", in Proc. VLDB‟04,

2004, pp. 480-491.

VIII.Author Bibliography

Mr. Shinde Sumit Sudhakar

He has completed Bachelor of

Engineering in Information

Technology from Amravati

University. Currently pursuing

Master of Engineering from

Pune University.

Prof. Shubham Joshi

He has completed Bachelor of

Engineering in Computer

Engineering and Master of

Engineering in Information

Security. Currently He is

pursuing Ph.D. He has

published 22 research papers,

01 Book. He is Microsoft

certified professionaland

Chairpersonof Publicity & Web

Hosting, IEEE MP Subsection,

Reviewer of the International

Conferences and

Journals.Woking as a PG Co-

ordinator at DPCOE,Pune.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

306

