
Review on FI Mining Algorithms

Ms. Bhumika Patel1, Mrs. Hetal Patel2,
1Department of Computer Engineering 2Department of Computer Engineering

GIDC Degree Engineering College GIDC Degree Engineering College

Gujarat-396406 India Gujarat-396406 India

Mrs. Pankti Naik3, Mr. Viral Patel4,
3Department of Computer Engineering 4Department of Computer Engineering

GIDC Degree Engineering College GIDC Degree Engineering College

Gujarat-396406 India Gujarat-396406 India

Abstract— Frequent pattern mining is the extraction of

interested collection of items from dataset. Frequent itemset(FI)

is used for achieving the collection of items according to user’s

requirement. The researchers have proposed various algorithms

like Apriori, Eclat, RElim, SaM etc. In this paper, we are

presenting depth analysis of mining algorithms and discuss some

problems associated with these algorithms in transactional

databases based on vertical, horizontal and hybrid layout.

Keywords— Data Mining, Frequent Item Set Mining, Relim,

Support

I. INTRODUCTION

The use of data mining is increasing day by day rapidly
and becoming popular in the business environment. Data
mining is considered as extracting the knowledge from the
large database. The core idea of data mining is to gain useful
and unknown information or the patterns from the data in the
large dataset. Market basket is a popular method of data
mining which aims at finding regularity in the behavior of
products purchased by the customers. Frequent item set
mining works on the same base i.e. find the item sets that are
found frequently as well as together in the transaction set.

Mining of frequent item set is an essential step in
association rule induction. Many algorithms like Apriori[1,2],
FP-Growth[3], Eclat[4], RElim[5], SaM[6], etc. have been
proposed after Agrawal first introducing the problem of
deriving categorical association rule from transactional
databases[2]. Candidate generate-and-test and pattern growth
are two main approaches. Mining algorithms can be
categorized based on layout of database: vertical layout,
horizontal layout, hybrid layout, etc. Rest of the paper
represents brief descriptions of frequent item set mining
algorithms and the problem associated with them.

II. FREQUENT ITEMSET MINING

The problem of mining frequent item set was introduced
by R. Agrawal, et al[1]. Let I= {i1,i2,i3….,in} be the set of
items. A transaction is T = (Tid,I), Where Tid is the
transaction identifier. A set of transactions over I is the
database D.

A transaction T = (Tid,I) is said to support item set X,
called a pattern, if X T I. The no. of transactions in D that

containX is called the support of X. X is said to be frequent
item set if its support is greater or equal to user defined
minimum support. More number of frequent item sets is
generated if minimum threshold tends to lower and vice-versa.
Thus pruning the infrequent items is the tedious job in mining
frequent pattern. Consequently, the main aim of FI mining
falls on improving execution-time.

III. FREQUENT ITEMSET MINING ALGORITHMS

This section presents different frequent item set mining
algorithms in brief like, Apriori, FP-tree, RElim and SaM.

A. Apriori Algorithm

R.Agrawal was the first who had proposed this Apriori
algorithm and it became very popular algorithm for
association rule mining. The use of support for removing
infrequent candidate item sets is guided by Apriori principles:
If an item set is frequent, then all of its subsets must also be
frequent and if an item set is infrequent, then all of its
supersets must also be infrequent [2].

The database D and user defined minimum support smin is
given. This algorithm initially scans the database and support
of each item is identified. After completion of this step,
the set of all frequent 1-itemsets, will be known and all the
infrequent items whose support is less than smin are removed.
Thenafter the algorithm iteratively generates new
candidate k-itemsets using the frequent (k-1)-itemsets found in
the previous iteration.

Table 1 indicates the notations used in Apriori algorithm

TABLE I. NOTATIONS

k-
itemset

An item set having k items

Lk

Set of large k itemsets (those with minimum support).

Each member of this set has two fields:

i) Itemset and ii) support count

Ck

Set of candidate k itemsets (potentially large itemsets).

Each member of this set has two fields:

 i) Itemset and ii) support count

C k
Set of candidate k itemsets when the TIDs of the generating

transactions are kept associated with the candidates

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110231

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

210

There are basically two steps: join and prune steps.

 Join: Candidate set is generated by self joining Lk-1
with itself and it is denoted as Ck in join step and this
step will generate new candidate k-item sets.

 Prune: Ck is the superset of Lk. Thus it is not
necessary that all the members of Ck can be frequent,
they may be or may not be the frequent but all k-1
frequent items are included in Ck. In this step,
uninterested candidates are removed and all the
candidates having their support greater than or equal to
smin are considered and it would results in Lk. These
two steps are repeated and algorithm terminates when
there are no new frequent item sets can be generated.

Apriori algorithms results in great reduction in the size of
candidate set but it requires many database scan and leads to
performance overhead in case of long patterns and large no. of
frequent patterns.

B. FP-Growth Algorithm

FP-Growth algorithm is one of the most popular
algorithms for finding frequent item sets. It mines frequent
item sets without candidate generation, this approach scans the
database only twice [3]. This algorithm aims at removing the
problem of Apriori algorithm [1,2]. The data structure used for
this algorithm is denoted by FP-tree (Frequent-Pattern tree)[7].
FP-Growth algorithm combines in its FP-tree structure a
vertical representation and horizontal representation. This
algorithm works as follows:

 First scan of the database determines 1-itemsets and
their support from horizontal layout and arranges
them in support decreasing order as L and infrequent
items are removed.

 It constructs the FP-tree containing the root “null”.
For each transaction do the following.

1. Select and sort the frequent items in each
transaction of the order of L. Let the sorted
frequent itemset in transaction be[p|P], where p is
a first item and P is the remaining list.

2. Insert_tree([p|P],T) function is then called. If T
has a child N such that N.item-name = p.item-
name, then increment N’s count by 1; else create
a new node N and N’s count = 1, N’s parent link
be linked to T, and N’s node-link be linked to the
nodes with the same item-name via the node-link
structure. If P is not empty, then insert-tree (P, N)
is called recursively.

FP-Growth algorithm considers only two scans of
database. In first scan it collects set of frequent items and in
the second scan constructing FP-tree.

C. SaM Algorithm

SaM(Split and Merge) algorithm uses purely horizontal
representation[6]. This algorithm uses array or link list as a
data structure i.e. it is easy to implement and very convenient
to execute on external storage if the database to be mined
cannot be loaded into main memory. Figure 1 shows basic
steps that are followed by SaM algorithm. SaM algorithm
works as follows:

 Transaction database is given in origin al form.

 Frequency of each item is identified and infrequent
items are removed. Transaction are sorted in ascending
order

Fig.1. The example database: original form (1), item frequencies (2),
transactions with sorted items (3), lexicographically sorted

transactions (4), and the used data structure (5)

 Items in each transaction are sorted in ascending order

 All the transactions are sorted lexicographically into
descending order.

 The SaM data structure uses two fields: an occurrence
counter and a pointer to the sorted transaction.

Fig.2. The basic operations of the Split and Merge algorithm: split (above) and
merge (below).

The basic operations used by SaM are: split and merge
operation. In the split step, an array is split w.r.t. the prefix of
the first transaction. In the merge step, this newly created
array and rest of original database is merged in the sense that
equal transactions are combined and their occurrence counter
are incremented by one.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110231

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

211

D. RElim Algorithm

RElim(Recursive Elimination) algorithm is inspired by H-
mine algorithm and FP-Growth algorithm[3].

This algorithm uses horizontal layout but it groups the
transactions w.r.t. their prefix, which is partially, a vertical
representation. This algorithm uses array or link list as a data
structure.

Fig.3. RElim algorithm procedure

Let us understand this algorithm using an example of SaM
described above. First three steps are the same as SaM[6]. The
major difference is in the presentation of data structure. In the
recursive procedure, all the transaction starts with prefix e are
considered. As the prefix e contains least support count, thus it
is used as an eliminating item to find frequent item sets. After
removing prefix e, items of this list are transferred to the list to
the right (grey list items) and copies are inserted into the other
list(list on right side). This second list is recursively
processed to mine frequent item sets.

IV. COMPARISING ALGORITHMS

This section provides the comparison of the algorithms
described in the previous section as follows:

 Frequents items are generated using the term minimum
support in all the described algorithms.

 Apriori algorithm greatly reduces the size of candidate
set but it scans database many times and thus
performance is affected. This method is quite
successful in market basket analysis.

 FP-Growth overcomes the limitation of Apriori by
constructing FP-tree and requires scan of database only
twice. As compared to Apriori, the performance of this
algorithm is much more improved. But it suffers from
memory requirement problem.

 SaM algorithm and RElim algorithms use array or link
lisr as a data structure that is easy to implement and
free from candidate generation. SaM comes with the
advantage that it is well suited for external storage
implementation work.

RElim algorithm is the traditional version of SaM, as SaM
uses the concept of RElim, RElim works better for sparse
datasets, while SaM performs extremely well on dense
dataset.

V. CONCLUSION

In this paper, the depth study of the mining algorithms is
done and identified many strength and weakness of each. New
variants of existing algorithms are compared with classical
mining algorithms and results in significant benefits and
limitations. This comparison may also fall into various
optimization issues that will lead to better performance.
Efficiency of the mining algorithms is no longer hindrance but
yet there is a need to develop methods to get excellent results.

REFERENCES

[1] R. Agrawal and R. Srikant. “Fast algorithms for mining association
rules” In VLDBY94, pp. 487-499.

[2] R. Agrawal, T. Imielinski, and A. Swami. “Mining association rules
between sets of items in large databases” In Proc.1993 ACM-
SIGMOD Int. Conf. Management of Data, Washington, D.C., May
1993, pp 207-216

[3] J. Han, H. Pei, And Y. Yin. “Mining Frequent Patterns Without
Candidate Generation”. In: Proc. Conf. On The Management Of Data
(Sigmod’00, Dallas, Tx). Acm Press, New York, Ny, Usa 2000.

[4] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms for
fast discovery of association rules” Proc. 3rd Int. Conf. on Knowledge
Discovery and Data Mining (KDD’97, Newport Beach, CA), 283–296.
AAAI Press, Menlo Park, CA, USA 1997

[5] C. Borgelt, “Keeping things simple: finding frequent item sets by
recursive elimination” Proc. Workshop Open Software for Data Mining
(OSDM’05 at KDD’05, Chicago, IL), 66–70. ACM Press, New York,
NY, USA 2005

[6] C. Borgelt, “Simple algorithms for frequent item set mining”, Springer-
Verlag, Berlin, Germany 2010

[7] J. Han, J. Pei, Y. Yin, And R. Mao. “Mining Frequent Patterns Without
Candidate Generation: A Frequent-Pattern Tree Approach”. Data
Mining And Knowledge Discovery, 2003.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110231

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

212

