

Review on GPIO Device Driver Development on Embedded Linux

Platform

Vidhi Z. Patel
1,

 Bharat V. Tank
2

1M.E. Student, Parul Institute of Technology, E&C Dept
2 Assistant Professor, Parul Institute of Technology, E&C Dept.

Abstract

Embedded Linux is operating system, like other OS

it contain kernel inside. so in this case we have to

use microprocessor. Now days Arm cortex is very

popular for Embedded Linux. In Linux, kernel

provides resource for hardware and software. If we

would like to use hardware resources than first we

have to make device driver and built and resister

with kernel or kernel subsystem with different type

of interface like procfs, sysfs and device node itself

with major number and minor number. With the

help of module programming we can add or

remove device driver dynamically, So with the help

of GPIO device driver we can use GPIO as input or

output as per our requirement, that way we will

know that it's general device driver and also we

will make Application code for reading and writing

this device driver.

Keywords: Raspberry Pi Board, Ubantu 12.04,

GPIO Driver

1. Introduction

Linux for embedded systems is about the use

of Linux kernel-based operating systems on

embedded systems such as customer-premises

equipment, in-vehicle infotainment (IVI),

networking equipment, machine control, industrial

automation, navigation equipment and medical

instruments in general.

Linux has been ported to a variety of CPUs

which are not only primarily used as the processor

of a desktop or server computer, but also ARM,

AVR32, ETRAX CRIS, FR-V, H8300, IP7000,

m68k,MIPS, mn10300, SuperH, and Xtensa

processors, It is also used as an alternative to using

a proprietary operating system and tool chain.

With the availability of consumer embedded

devices, communities of users and developers were

formed around these devices: Replacement or

enhancements of the Linux distribution shipped on

the device has often been made possible thanks to

availability of the source code and to the

communities surrounding the devices. Due to the

high number of devices, standardized build systems

have appeared like Open Embedded, Build root.

Embedded operating system is important to the

operation of an embedded system, environment and

development platform, whether it is efficient,

stable, secure and so will have a direct bearing on

the success or failure of embedded systems has

become an embedded system design and

development priorities. But Linux developed for

desktop machines, which is used in embedded

systems have some differences, such as memory

capacity and limited compared to desktop

computers, so how to transform Linux into a small

capacity, high stability and easy the development of

embedded operating system becomes a critical

issue. This also means that the embedded Linux

operating system, used in digital products and

industrial control fields of a lot of work needs to be

done.

2. Previous Approach

Device driver is very important in embedded

system to operate or control a particular device that

is attached to the computer. All peripheral devices

have different device driver. The work presented

in[1] introduced the Linux 2.6.11.6 built on Panda

Board which is ARM based development board in

which porting of Kernel on processor done

successfully. Work presented in [2] making one

device driver to control an LED according to our

application program. On LED Matrix hardware Led

character device driver is implemented using Linux

operating System on ARM 9. With the support of

device driver Led Matrix device work properly.

Device driver actually controls the I/O devices. In

[3], Embedded Linux operating system is

implemented on ARM-11 for measuring the real

time parameters like temperature, humidity and

light. In this they generate the Sensor driver for

Light, Humidity and Temperature. The work

presented in [4] For Video acquisition technology,

CMOS Camera driver is implemented on ARM 9

processor on platform of Linux 2.6.32.For data

2659

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10874

acquisition applications, USB device driver is also

successfully implemented on ARM 9 processor on

platform Linux 2.6.32.

3. Objectives

The main objective of this review paper is

firstly to built the Linux on Raspberry Pi board and

secondly to develop a GPIO Device Driver for

character devices which are attached to the

Raspberry Pi board on GPIO pin port.

4. Proposed approach

In Modern technology, people like to use

multitasking and real time processes in their

applications. So, with the help of Embedded system

and Linux operating system we can get the real

time operating system and multitask also improve

speed of the system which is very important in this

fast life style.

First to build an embedded Linux Kernel in

Microprocessor ARM CORTAX Series which is

already SoC in Raspberry Pi Board support

package for building the Linux Kernel on

Raspberry Pi board we need source code which is

obtained from Official Website of Kernel.

Embedded Linux development broadly involves

three tiers: the boot loader, the Linux kernel, and

the graphical user interface (or GUI).

For building the Linux kernel, cross-compiler

should be accessible on your execution path. Up to

this step, Device has a limited functionality, as it

just enables the kernel to boot and send debug

messages through the configured serial port[1].

For a full fledged embedded module it is quit

elementary without the support for various

peripherals through device drivers which are

paramount to the module. Linux kernel though

monolithic has an excellent modular approach

which enables the driver modules to be attached

and detached at run time itself. For this we have to

do module programming for device driver using C,

C++ or Java Script.

Basic block diagram of Linux system is shown

in Fig 1 which Linux is basically divided in two

region of memory.

 User Space

 Kernel Space

The kernel provides certain services which are

strictly reserved for running privileged kernel,

kernel extensions, and most device drivers, and

user space that is, everything outside the kernel,

both libraries and application programs, uses these.

Programs in user space contain system calls that

ask the kernel to do something, and the kernel does

so, or returns an error code. Application programs

do not usually contain direct system calls. Instead,

they use library calls and the library uses system

calls. But an application program can construct a

system call "by hand".

Fig 1: Basic Block Diagram of Linux Architecture and

Embedded System

A device driver is a computer program that

operates or controls a particular type of device that

is attached to a computer. Drivers are hardware-

dependent and operating-system-specific. They

usually provide the interrupt handling request for

any necessary time-dependent hardware interface.

When a calling program invokes a routine in the

driver, the driver issues commands to the

device.Once the device sends data back to the

driver, the driver may invoke routines in the

original calling program. Instead of putting code to

manage the HW controller into every application,

the code is kept in the Linux kernel. It abstracts all

Hardware device regular files in the kernel for

handling of devices. Device node allow software to

interact with a device driver using standard

input/output system calls, which simplifies many

tasks and unifies user-space I/O mechanisms.

Device node often provides simple interfaces to

peripheral devices, such as printers and serial ports.

But they can also be used to access specific

resources on those devices, such as disk partitions.

Finally, device files are useful for accessing system

resources that have no connection with any actual

device such as data sinks and random number

generators.

2660

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10874

5. Applications

 Monitoring MMC/SD card insertion/removal

 Detecting card write protect status

 Configuring a transceiver

 Bit banging a serial bus

 Poking a hardware watchdog

 Sensing a switch, and many more

6. Conclusion

The purpose of this review paper is to

investigate the general purpose driver in Linux

operating system. For different devices different

device driver will used. After reviewing research

paper it is possible to develop a general device

driver for GPIO Controller to Plug and Play

devices that can be dynamically connected to and

disconnected from a hardware platform, a GPIO

controller device is permanently attached. In

addition, connections between GPIO pins and a

peripheral device are assumed to be permanent.

7. References

[1] Pratyusha.Gandham and Ramesh N.V.K “Porting The

Linux Kernel To An Arm Based Development

Board”International Journal of Engineering Research and

Applications (IJERA May- June 2012)

[2] G.Sravani, B. Karunaiah and Prof K V Murali Mohan

“Implementation Of Led Driver For Commercial

Applications Based On Arm9” International Journal of

Engineering Research and Applications (IJERA Nov-Dec

2012)

[3] Hong Shao, Chen Yang, Na Zong, Ke-feng Jin

“Design of a Hospital Environment Data Acquisition

System Based on ARM11 and Embedded Linux”

International Conference on Computer Science and

Electronics Engineering (ICCSEE 2013)

[4] CH. P. N. S. Sujitha, DVSR Sesidhar “Developing

CMOS Camera and USB Device Drivers in Linux

2.6.32” International Journal of Electronics

Communication and Computer Technology (IJECCT-

2013)

2661

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10874

