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Abstract --In Robotics, inversion is encountered at two levels: 

Inverse Kinematics level and Inverse Jacobian level. We 

present a new and  intuitive approach to simplify the existing 

analytical complex approaches for inversion:  Kinematics and 

Jacobian. Inverse Kinematics also employs geometric 

approach. We present a different style to efficient geometric 

approach. We show that specification of end-effector position 

is not necessary. Robotic Jacobian is an m×n matrix with n 

degrees of freedom (DOF). The computation of inverse 

velocities is an issue when m ≠ n, for which we provide an 

intuitive and common sense approach to the Generalized 

Inverse. Thus, this paper provides intuitive exciting  

approaches for efficient computing of inverse kinematics and 

inverse Jacobian in robotics.  

 

Keywords: Link parameters; inverse kinematics; inverse 

jacobian; generalized inverse; degrees of freedom (DOF)  

 
I.  INTRODUCTION 

A robot is a rigid body compose of links and joints on links 

for motion, see Fig. 1; Fig. 2. Kinematics is the study of 

motion without regard to the forces that create it. The 

representation of the position of the robot end effecter 

through the Robotics Engineering (common parameters and 

link) forward kinematics [1], [2], [3]. Forward kinematics 

yields a unique orientation and position of end-effector, but 

the end-effector may be reached in multiple ways.  There can 

be several paths for a robot to reach a destination. If the link 

parameters for joints are specified, forward kinematics uses 

these joint parameter values to reach a unique destination. 

Inverse kinematics of robotic manipulator involves 

obtaining the required values manipulator joint position 

given the desired end point and direction. There is no unique 

solution and close the form of direct expression of inverse 

kinematics mapping [2], [3], [4]. However, if the orientation 

and position of end-effector  is specified, then Inverse 

Kinematics determines possible link  parameter values  that 

may result in multiple solutions, some of which may be 

extraneous and inconsistent. Inverse kinematics employs a 

bag of heuristics  using one trigonometric equation and 

avoiding division by zero singularities. This analysis 

explores the multiple solutions and exploits the valid 

solutions. We will devise common sense approach.  

 For inverse kinematics in Geometric approach, to reach 

intermediate frames, it is computationally efficient to start 

from base origin  [see Fig. 5, Fig. 6] instead of instead 

starting from end-effector. It is also intuitive to grasp. Here 

we provide a heuristic approach to solve the required 

equations. Also, Inverse kinematics employs geometric 

approach to break down the 6 DOF into 3 + 3 [see Fig. 5] or 

4 + 2 [see Fig. 6] etc. Motion occurs about or along the axes 

at the joints where  frames are specified or computed. 

Multiple solution issue with Jacobians is resolved by 

using minimum norm criteria. In practice, a robot has six 

DOF, articulate robot may have all revolute links. For a robot 

with 6 DOF, normally arm has three links and wrist has three 

links. Some robots may have two to any number of links. In 

any case,  in general, the number of links may not be equal 

to six [5]. As in forward kinematics, application of forward 

velocity is also straight forward. In fact, this becomes an 

issue only when the Jacobian is not a square matrix. It 

happens when the system of equations is underdetermined or 

overdetermined. For this Inverse Jacobian problem, there are 

algebraic approaches to resolve this [2],[3].  We provide 

more efficient ways to grasp the concepts of inverse 

kinematics and inverse Jacobian. 

The paper is organized as follows: Section II is 

overview of background, Section III describes innovative 

techniques for computing Inverse Kinematics, Section IV is 

on Geometric Inverse Kinematics, efficiency, section V is 

intuitive  Inverse Jacobian, Section VI is Conclusion 

followed by References. 

 

II.  OVERVIEW OF BACKGROUND 

A robot is a rigid body composed of links moving around the 

joint axes. The linkk parameters are (θk, dk, ak, αk) relative to 

linkk-1, are used to determine a coordinate system, the link 

frame. The link framek is computed by starting at the origin 

of framek-1 in four transformations (1): rotate about zk-1 -axis 

by angle θk , translate along zk-1-axis by amount  dk , translate 

along xk-axis  by amount  𝑎k, and rotate about xk-axis by 

angle 𝛼k .  The composition of these four transformations 

called an A-matrix or coordinate frame. The A matrix is akin 

to transformation from one frame to next frame. The frame 

for transformation from frame k-1 to frame k becomes A-

attribute matrix, synonymous with transformation matrix, T 

or the frame matrix, F. For notation: k-1Ak   represents 

transformation from frame k-1 to frame k. Equivalently, it is 

frame k relative to frame k-1.  
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Figure 1. Description of joint coordinates and link 

parameters (θk, dk, ak, αk) [2].  

 

The link parameters (θk, dk, ak, αk). Last two (ak, αk) are 

constant all the time, the first two (θk, dk) are variable one of 

which is constant at the times while other is variable for 

motion. The equation for composition is as follows 

 
k-1Ak  ≡ k-1Fk≡ k-1Tk = 

 R(zk-1, k) T(zk-1, [0, 0, dk]), T(xk, [ak, 0, 0]) R(xk, k) (1) 

 

= [

𝑐𝑜𝑠𝜃𝑘

𝑠𝑖𝑛𝜃𝑘

0
0

  

−𝑠𝑖𝑛𝜃𝑘𝑐𝑜𝑠𝛼𝑘

𝑐𝑜𝑠𝜃𝑘𝑐𝑜𝑠𝛼𝑘

𝑠𝑖𝑛𝛼𝑘

0

 

𝑠𝑖𝑛𝜃𝑘𝑠𝑖𝑛𝛼𝑘

−𝑐𝑜𝑠𝜃𝑘𝑠𝑖𝑛𝛼𝑘

𝑐𝑜𝑠𝛼𝑘

0

  

𝑎𝑘𝑐𝑜𝑠𝜃𝑘

𝑎𝑘𝑠𝑖𝑛𝜃𝑘

𝑑𝑘

1

] (2) 

 

This is the matrix representing frame k with respect to 

frame k-1. All measurements are with repect to frame k-1.  

For frame k-1 with respect to frame k, just invert the matrix 

(2)  [2],[3][6].  This matrix inverse is easy as inverse of 

rotation is transpose of rotation matrix.  The end-effector 

with respect to base frame becomes  

 
oAn   =  0A1  

1A2  
2A3 

…
  

n-1An    (3) 

 

The  Linkk frame matrix with respect to universal base 

frame can be written as 

 

 0Ak = [
𝑜𝑅𝑘

𝑜𝑝𝑘

0 1
] or [

𝑜𝑛𝑘
𝑜𝑜𝑘

𝑜𝑎𝑘
𝑜𝑝𝑘

0 0 0 1
] (4) 

 

For notation, the symbol 0Rk   is the rotational part of 

the matrix, onk , ook , oak , are unit vectors  forming a right 

handed system of orthogonal vectors. This represents the 

orientation of framek with respect to base, and  0Pk  is the 

position of the end-effector with respect to the base frame. 

 Inverse Kinematics and velocity are described briefly 

as: 

Forward kinematics is a chain of frames or A-matrices k-1Ak  

for k = 1,n, resulting in oAn  . 
In order to have complete and simple solution to inverse 

kinematics for robot manipulators, it is solved analytically to 

determine closed form solution. Inverse kinematics 

determines the chain of frames or A-matrices k-1Ak  for k = 

1,n  from the  end-effector,  oAn . Inverse kinematics is based 

on a standard trigonometric equation  a cos(θ) + b sin(θ) = c  

with c2 ≤ (a2 + b2) .  Its solution is  devoid of singularities of 

division by zero. 

For velocity,the velocity equation uses the Jacobian, J, 

  [𝑋̇
Θ̇

] = J [𝑞̇]       (5) 

Forward Jacobian: Velocities [𝑞̇] at the joints are 

specified, the problem is to find end-effector velocity [𝑋̇
Θ̇

] . 

Inverse Jacobian: The end-effector velocity [𝑋̇
Θ̇

] is given, 

the problem is to find link velocities [𝑞̇] at the joints.  

 

III.  TECHNIQUES FOR COMPUTING INVERSE 

KINEMATICS, 

The inverse kinematics involves solving trigonometric 

equations. If such equation is not solved properly, it may 

lead to divide by zero singularities in the solution [3]. 

    For example, in the case of a six link robot with first 

three links create the arm, we will first solve the arm before 

we go into full scale 6 links. For the sake of completeness, 

we include the robot Fig. 2, link parameter table Table 1, and 

the A matrices, etc. For example, Jumbo drilling robot is 

displayed here in Fig. 2. The Fig.  2 has clearly marked joint 

axes and link parameters. One may flatten the robot, see Fig. 

3  to set it in the rest position for ease in creation the link 

parameter Table 1. 

 

 
 

Figure 2.  Jumbo Drilling Robot [7],  

Joint Constraint and Home position 

 

 
Figure 3. Rest position the Jumbo Drilling Robot.  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS120136
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 12, December-2021

433

www.ijert.org
www.ijert.org
www.ijert.org


 

Table 1. Link parameter table for first three links 

Jumbo Drilling Robot – Spherical Arm 

 
 

Using the succint notation for cosines and sines, sk = 

sin(k),  ck = cos(k), the A matrices are 

0A1 = 

   

c1 0 s1 a1c1

s1 0 -c1 a1s1

0 1 0 0

0 0 0 1

é 

ë 

ê 
ê 
ê 
ê 

ù 

û 

ú 
ú 
ú 
ú 

  1A2 = 

c2 0 -s2 0

s2 0 c2 0

0 -1 0 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

 2A3 = 

1 0 0 0

0 0 -1 0

0 1 0 d3

0 0 0 1

é 

ë 

ê 
ê 
ê 
ê 
ê 

ù 

û 

ú 
ú 
ú 
ú 
ú 

 

 

A.  Forward Kinematics  

In forward kinematics, we multiply these three a- matrices,  

use trigonometry to combine complex expressions into 

simpler ones. There is a  unique solution  for the  end-effector 

orientation R and position P, see equation (6).  

The end-effector presentation uses the simple notation 

for cosines and sines, sk = sin(k), ck = cos(k), and we have  

 

0A3 = [

𝑐1𝑐2 −𝑐1𝑠2 −𝑠1 −𝑐1(𝑠2𝑑3 − 𝑎1)
𝑠1𝑐2 −𝑠1𝑠2 −𝑐1 −𝑠1(𝑠2𝑑3 − 𝑎1)

𝑠2 𝑐2 0 𝑐2𝑑3

0 0 0 1

] (6) 

 

The first three columns form a right handed system of 

mutually orthogonal unit vectors of the rotation matrix and 

the 4th column is the position vector. 

 

B.  Detour to Trigonometry 

Inverse Kinematics depends on the ability to solve 

trigonometric equations. Basically, five trigonometric 

equations were required to solve the inverse kinematics 

problems [8]. It is not necessary to solve 5 different 

equations. Only one trigonometric equation is sufficient to 

resolve all cases.  Any special case follows from the same 

equation. Consequently, in robotics, inverse kinematics 

amounts to solving the trigonometric equation  

a Cos + b Sin = c.     (7) 

All other cases involving trigonometric functions are 

special case of this equation  

a Cos + b Sin = c,  c2  a2 + b2    (8) 

 The Joint mobility is constrained by mechanical 

limitations or physical stops. Each joint limits are tied to 

prismatic and revolute joint that are valid irrespective of the 

configuration of the remaining links. 

There are three trigonometric functions: sin , cos, tan. 

The inverse  functions sin-1(value), tan-1( value) determine 

angle between - 
𝜋

2
  and   

𝜋

2
  whereas cos-1(value) angle is 

between 0 to 𝜋. For robots, the rotation angle for the arm 

joints is 270 degrees and the wrist joints is 180 degrees [Fig. 

4], 360 degree for drilling hole [2].  The  sin-1(value) , cos-

1(value) , tan-1(value)  are insufficient to cover all quadrants 

for accuracy. Some authors use the inverse functions 

erroneously [9], [10].  For example, we explore solving the 

following equations for 1, 2, d3, from the position (6) of 

robot arm 

Px = -c1(s2d3-a1)      (9) 

Py = -s1(s2d3-a1)        (10) 

Pz = c2d3      (11) 

 

Their [10] method would solve them as follows, their 

approach runs into undefined values for 1, 2  on using 

standard inverse atan functions 

From (4,1),(4,2),(4,3)  

Px = -c1(s2d3-a1)      (12) 

Py = -s1(s2d3-a1)        (13) 

Pz = c2d3      (14) 

The authors from [9], [10]  simplify  
𝑝𝑦

𝑝𝑥
 = 

−𝑠1(𝑠2𝑑3−𝑎1)

−𝑐1(𝑠2𝑑3−𝑎1)
  = 

𝑠1

𝑐1
      (15) 

and calculate 1 

1 = atan(
𝑝𝑦

𝑝𝑥
 )      (16) 

There are several issues with this calculation 1. Cancelling 

negative sign creates discrepancy of 180 degrees in the 

angle, 2. Cancelling  (s2d3-a1)  is not practical if it is zero. In 

that case division by zero is undefined. That is,  if 𝑝𝑥  =  0, 

then 1 is undefined. In fact it may be well defined. We 

propose to use atan2, tan inverse with two parameters,  if px 

= 0, py ≠0, then  

1 = atan2(py,px)  = atan2(py,0)  =  ± 
𝜋

2
   (17) 

Secondly [9]  calculates  

 

 2 = atan (
𝑝𝑧

−(𝑎1−𝑐1𝑝𝑥−𝑠1𝑝𝑦)
 )      (18) 

 

which  is again undefined if the expression (a1-c1Px-s1Py) = 

0. It leads to both 1 and 2 as undefined as well as 

erroneous. 

In fact, the solution can be well defined if we avert any 

such discrepancies involving divisions by zero that create 

undefined expressions.  First, we use atan2 function that 

prevents such discrepancies of undefined terms in the 

calculation of angles, Second we avoid divisions by zero as 

follows.   

In general, using atan2, the solution of   

 
 a Cos + b Sin = c, c2  a2 + b2   (19) 

is     

  = atan2(b,a)   atan2(√𝑎2 + 𝑏2 − 𝑐2, c)   (20) 

 




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There is no division by zeros, or undefined expression.  

Very frequently we come across the equation 

 a Cos + b Sin = 0    (21) 

with a2 + b2 ≠ 0. Here too, the solution becomes 

     = atan2(b,a)   atan2(√𝑎2 + 𝑏2, 0) or 

     = atan2(b,a)   atan2(1, 0)  or 

     = atan2(b,a)   
𝜋

2
   (22) 

 

 
Fig. 4 Illustration of axis range and position MA2000 [9] 

 

C. Inverse Kinematics  analytical 

With trigonometry at hand, we are in a position to solve the 

three link inverse kinematics for the end-effector 

0A3 = [

𝑐1𝑐2 −𝑐1𝑠2 −𝑠1 −𝑐1(𝑠2𝑑3 − 𝑎1)
𝑠1𝑐2 −𝑠1𝑠2 −𝑐1 −𝑠1(𝑠2𝑑3 − 𝑎1)

𝑠2 𝑐2 0 𝑐2𝑑3

0 0 0 1

] (23) 

 

Depending on the robot, the inverse kinematics problem 

may be specified with just (a) Orientation of end-effector, 

(2) Position of end-effector or (c)  both the Position and 

Orientation of the end-effector. 

 

C.1. Inverse Kinematics when only end-effector position is 

specified 

If the position alone is specified, there can be multiple 

solutions. Let the postion P be provided for this example. 

From (4,1),(4,2)  

Px = -c1(s2d3-a1)     (24) 

Py = -s1(s2d3-a1)       (25) 

Eliminate the terms that may be cause of concern. 

Multiply (24) by s1 and (25) by c1 and subtract 

s1Px-c1Py = 0     (26) 

There are two solutions  

1 = atan2(-Px, Py) ±  
𝜋

2
   (27) 

But [9], [10]  calculate  1 = atan (
𝑝𝑦

𝑝𝑥
 ) which will be 

undefined when 𝑝𝑥  =  0 

Reusing  (4,1),(4,2) , multiply(24) by -c1 and (25) by -s1 

and add, we get 

 -c1Px-s1Py = s2d3-a1   (28) 

 a1-c1Px-s1Py = s2d3   (29) 

and from (4,3) 

 Pz = c2d3     (30) 

Multiply (25) Pz = c2d3 with s2 and (29) a1-c1Px-s1Py = 

s2d3 with c2 and subtract, we get  
 s2Pz – (a1-c1Px-s1Py) c2 = 0   (31) 

 s2Pz + (c1Px+s1Py- a1) c2 = 0  (32) 

There are two solutions  

 2 = atan2(Pz, c1Px+s1Py- a1) ±  
𝜋

2
  (33) 

Recall [9], [10]  calculate  2 as atan(
𝑝𝑧

−(𝑎1−𝑐1𝑝𝑥−𝑠1𝑝𝑦)
 )  

which is undefined when a1-c1Px-s1Py = 0. 

 

Finally again from (4,1),(4,2),(4,3), for each value of 1 , 2 

we get unique value  for d3. Multiply Pz = c2d3 with c2 and  

a1-c1Px-s1Py = s2d3 with s2 and add, we get  a unique  

 d3 = (a1-c1Px-s1Py)s2 + Pz c2   (34) 

Thus, if only arm position is specified, then there are four 

possible solutions (1, 2, d3) 

 

C.2 Inverse kinematics when end-effector is completely 

specified. 

If orientation and position are both specified, then there is a 

unique solution. That amounts to solving the following 

equations.  Let the rotation matrix be R = [N, O,A] and 

position be P. 

We use  the same example and only atan2(y,x) function. 

From (1,3),(2,3)  

 s1 = - Ax, c1 = - Ay   (35) 

We find unique  

 1 = atan2(-Ax, -Ay)    (36) 

From (3,1),(3,2)  

 s2 = Nz, c2 = Oz       (37) 

We find unique   

 2
 = atan2(Nz, Oz)    (38) 

From (4,1),(4,2)  

 Px = -c1(s2d3-a1)  

 Py = -s1(s2d3-a1)    
Now that 1 and 2 are known, we  multiply the equation (24) 

by -c1 and (25) by -s1, and add. We get 

 -c1Px-s1Py = s2d3-a1   (39) 

 a1-c1Px-s1Py = s2d3   (40) 

From (4,3) 

 Pz = c2d3     (41) 

Assembling these two equations (40),(41) we get 

 d3 = (a1-c1Px-s1Py) s2 + Pz c2  (42) 

We find d3 is unique. Overall, by specifying both 

position and orientation, complete specification leads to a 

unique solution 1, 2, d3. 
 

IV. GEOMETRIC APPROACH TO INVERSE 

KINEMATICS 

Here we provided an efficient way to to solve invers 

kinematics and inverse Jacobian proble. We determine the 

intermediate frame at the end of arm , link 3 or link 4 

between the base frame ad  end-effector of a 6 link robot. It 

makes it easy to solve 3 link or 4 link inverse kinemeic 

problem. For larger number of links, it becomes more 

challenging. To overcome this complexity,  sometimes 

geometric approach is used. Six link robot inverse 
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Kinematics problem can be easilty solved by partitioning it 

into 3 + 3 [Fig. 5] or 4 + 2[Fig. 6] link inverse kinematics 

problems.   The traditional geometric approaches require the 

specification, with respeect to base, of both Position and 

Orientation of the end-effector [
𝑛 𝑜 𝑎 𝑝
0 0 0 1

].  Now with 

n,o,a,p geomery is used to calculate, with respect to base,  

[
𝑁 𝑂 𝐴 𝑃
0 0 0 1

] for the end of link3 or link4. Using 

[
𝑁 𝑂 𝐴 𝑃
0 0 0 1

] , we calculate the parameters of first 3 or 4 

links.  Once it is done, we solve for parameters of the 

remaing links  by equating  frame  3 or frame 4 (product of 

remaing A matrices) respectively   to 

[
𝑁 𝑂 𝐴 𝑃
0 0 0 1

]
−1

[
𝑛 𝑜 𝑎 𝑝
0 0 0 1

].  

We propose to require only orientation [𝑛 𝑜 𝑎]  of 

the end-effector, that is sufficient, specification of the 

position of end-effector is not necessary[see Fig. 5, 6] for 3 

+ 3 and 4 + 2 partitioning. In either case, we need these 

parameters  at the end of 3 or 4 links [Fig. 5, 6]. Once, the 

frame at the end of arm [𝑁 𝑂 𝐴]   is determined,  it can 

be used to solve the rest of the problem, as we saw in 

anaylcal solutions above. The orientation and position of 

link three or four can be determined without the position 

specification of the end-effector.  All other steps are similar 

to previous paragraph. More details on comparison of two 

approaches follow.   

 

A.  Traditional approach 

 In Fig. 5 ( 3 + 3 case), visually the orientation of frame 3 is 

the same as frame 6, so the frame 3 orientation is the same 

as specified for the end-effector. Standard approach to get 

the postion of frame 3 with respect to base is as follows.  

Starting from P, we can go a4  units in direction n;  a6 units 

along n, it gives the (a4 + a6) along n and d6 along a. This 

means P + (a4 + a6) n + d6 a = p, which is given. Therfore the 

postion of frame 3 origin is P = p - (a4 + a6) n- d6 a , 

completely known in terms of base coordinate system.  

In figure 6 (4 + 2 case), visually the orientation of frame 

4 is such that N is the same as n, A is o, O is -a. Standard 

approach get the postion of frame 4 with respect to base 

frame is as follows:  starting from P, we can go a6  units along 

the  direction n;  and d6 along a. This means P + a6 n + d6 a = 

p, which is given. Therfore the postion of frame 4 origin is P 

= p - a6 n- d6 a. 

 

 
Figure 5. Partition of 6 links into 3 + 3 for inverse kinematics. Base frame 

expressed in terms of n, o, a. 

 
Figure 6. Partition of 6 links into 4 + 2 for inverse kinematics. Base frame 

expressed in terms of n, o, a. 

 

B. More Explantion  on New Approach 

We propose that specification of p is not necessary. P can be 

directly determined without the knowledge of p. It is 

observed that [N,O,A] is known, base frame orientation 

becomes [n,-a, o], Fig. 5, Fig. 6.  

In Fig. 5, we can step a1 units along n, d3 along o 

resulting in P = a1 n + d3 o. In Fig. 6, we can step a1 along n, 

d3 along o, a4 along n resulting P = (a1 + a4) n + d3 o. In both 

the cases see Figure 5 and 6,  we have determined that the 

position is P = a1 n + d3 o;  orientation is [N, O, A] = [n, o, 

a] in Fig. 5 and the position is P = (a1 + a4) n + d3 o; orientation 

is   [N, O, A] = [n, -a, o] in Fig. 6. This shows that arm 

position P can be constructed without specifying p. 

 

 

V. HEURISTIC APPROACH AND 

JUSTIFICATION FOR INVERSE JACOBIAN, 

The paper presents a heuristic method to solve inverse 

Jacobian for arbitrary number of degrees of freedom (DOF) 

robot. The Jacobian inverse computation takes long time, 

whereas first matrices must be multiplied, then inverse of the 

product is computed and then inverse is multiplied with the 

transpose of the original to derive the generalized inverse. 

We will show how this is simpler and will apply this 

approach to both under- and over-determined systems of 

velocity equations. We also provide a better method for 

solving inverse Jacobian problems that avoid singularity in 

the solutions. 

The Jacobian equation  

  [𝑋̇
Θ̇

] = J [𝑞̇]        (43) 

can be mapped into simple equation 

 B = AX     (44)

     

With minimum computation effort and easily 

comprehensible approach, we proceed as follow. Since A is 

m×n, there are three possibilities  

 1. m < n,     2. m = n,     3. m > n.   (45) 
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For m = n, we can directly resort to inverse of  A to arrive 

at  

 X = A-1 B. 

For m<n or m>n we compute product of A with its transpose 

in such way that the product is a square matrix of smaller 

order. For example, if m>n , then ATA is order n×n, and if 

m<n, then AAT is smaller order m×m. Then we use the 

inverse of these matrices to arrive at the solution. Without 

going through the exercise of minimization, we can 

determine the solution.  Vector differentiation is not trivial 

used for computing  generalized inverses when m<n and 

m>n. Moreover, for m×n matrix A with m>n ,  since ATA is 

a smaller square n×n matrix, inverse is also square n×n 

matrix.  To derive the solution, we simply multiply n×n 

matrix (ATA)-1 and n×m matrix AT, then n×m matrix (ATA)-

1 AT and  m×1 vector B in that order resulting in solution to 

the equation,  

 X = (ATA)-1AT   B.    (46) 

For efficiently , we can multiply  n×m matrix AT and  m×1 

vector B first, then resulting m×1 vector ATB, and n×n 

matrix (ATA)-1 yielding   

 X = (ATA)-1  ATB.     (47) 

Now we compare the computing effort  in solving the 

equations if AT  is multiplied with (ATA)-1  first or when AT 

is multiplied to B  first in the case of m>n. Inversion is the 

same in both the cases, the number of multiplications is:  

 first case (46):  m(n2 + (m + 1)n)> m(n2 + (n + 

1)n) 

 second case(47):  m(n2 + 2n) 

Clearly second approach is more efficient. Since we are 

interested in minimum error or minimum norm solution, we 

will create the solution directly, heuristically minimal error 

is achieved by using a matrix of smaller dimension for 

inversion.  Smaller the matrix, smaller the error in 

computation and representation. It also leads to conceptually 

comprehensible and easy to grasp the solution. 

 

A.  Underdetermined system, m<n  

For underdetermined systems there can be infinitely many 

solutions with no error of computation. However,  we are 

interested in solution with smallest norm, in other words, a 

solution that is closest to the origin or a shortest distance 

from the origin. 

We show that for m<n,  

 X = AT(AAT)-1 B     (48) 

is a least norm solution for equation 

 AX = B     (49) 

This X is closest to the origin. Traditionally, we minimize  

 f(X) = |X|2 subject to AX = B  (50) 

By method of Lagrange multipliers  

 f(X) = XT X + 𝜆T (B-AX)    (51) 

Differentiate with respect to 𝜆    and X,  and equate them to 

zero 

 

 
𝜕𝑓(𝑋)

𝜕𝜆
 = 0 yields  B - AX = 0  or   B = AX (52) 

 
𝜕𝑓(𝑋)

𝜕𝑋
 = 0  yields 2X-AT𝜆 = 0  (53) 

Which is  

 2AX-AAT𝜆 = 0 or  

 2B-AAT𝜆 = 0  or   2B = AAT𝜆   (54) 

Solve for 𝜆  

  (AAT)-12B = 𝜆     (55) 

and substitute  

 2X-AT(AAT)-12B = 0   (56) 

We get 

 X = AT(AAT)-1B     (57) 

which is the solution to the equation AX = B. 

This solution can be directly and quickly determined from 

the equation, AX = B. 

For the purpose of creating a smaller size matrix for 

inversion, let us write  

 X = ATU for some U,     (58) 

For this U, the equation becomes  

 AX = AATU  or  B = AATU  (59) 

Now A AT is m×m square matrix, the inverse can be used 

to compute U. 

 U = (A AT)-1 B     (60) 

From X = ATU, and  U = (A AT)-1 B we get  (61) 

X = AT(A AT)-1 B      (62) 

which proves the correctness of our intuitive solution 

shown above.  

 

B. Overdetermined system, m>n  

For overdetermined systems there may not be any solution. 

Any approximate solution may have an error of 

approximation. We can settle for an approximate solution 

that has minimum approximation error. 

We show that for m>n,  

 X = (ATA)-1ATB     (63) 

is a least square error solution for equation 

 AX = B     (64) 

We proceed to minimize f(X) = |AX-B|2 subject to AX = B. 

The function is written as 

 f(X) = (AX-B)T(AX-B)  

            = (XTAT-BT) (AX-B)    (65) 

 f(X) = XTAT AX -BT AX - XTATB + BT B (66)  

 f(X) = XTATAX –2 XTA TB + BT B  (67) 

Differentiate with respect to X and set it equal to zero 

 
𝜕𝑓(𝑋)

𝜕𝑋
 = 0  yields 2 ATAX - 2 ATB = 0  (68) 

 ATAX - ATB = 0   ATAX = ATB   or  (69) 

  X = (ATA)-1ATB      (70) 

 Which is a solution to the equation AX = B. This can be 

directly and quickly determined from  

 AX = B     (71) 

Multiply by AT 

 ATAX = ATB    (72) 

Now ATA is n×n square matrix of smaller size, the inverse 

can be used to compute X by multiplying both sides with 

(ATA)-1. 

 X = (ATA)-1 ATB  or    (73) 

 X = (ATA)-1AT B     (74) 

which proves the correctness of  our simplified intuitive 

solution computed above.  

 

The matrix  (ATA)-1AT   or AT(A AT)-1 is the pseudo inverse 

or generalized inverse of A.  It is synonymously denoted 

with ay of several symbols  such as:  A +, A-, A #, A I  etc. 
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VI.  CONCLUSION 

Inverse Kinematics and Inverse Jacobian are two of the 

problems in robot motion consideration. We have shown 

how to resolve these two issues with an intuitive, persuasive 

and provable approach.  We gave closed form, efficient 

solution for both Inverse Kinematics and Inverse Jacobians.  

In fact, we have proved that our approach is accurate and 

efficient.  We hope that the designers will find it useful in 

understanding, and retaining the description for reference  in 

their future implementations. 
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