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Abstract—This paper proposes a feature extraction and 

classification technique for the task of sound event recognition 

(SER) in a severe mismatched noise condition. An SER system 

that can achieve human like sound recognition performance has 

wide range of application which includes acoustic surveillance, 

bio-acoustical monitoring, health care application, environment 

context detection and machine hearing. The approach used here 

takes inspiration from both audio and image processing  field 

and is based on transforming a sound into a two dimensional 

representation  and then extracting image feature for 

classification. Spectrogram image feature is being usually used 

for this purpose. Here a novel method is used to improve the 

sound event classification in a severe noise condition which is 

called a subband power distribution (SPD) Image-a two 

dimensional representation that characterizes the spectral 

power over time in each frequency subband. In SPD, the high 

power reliable elements of spectrogram are transformed to 

localized region and hence can easily be separated from noise. 

An image feature is extracted from the SPD and missing feature 

classification method is developed which selects the signal from 

SPD which is not affected by noise. This is done based on nearest 

neighbor classifier (kNN) .The proposed method is tested on a 

database containing 50 sound classes over a challenging noise 

condition. The results shows that the SPD-IF is discriminative 

over the broad range of classes and robust in non stationary 

noise condition. 

 

Keywords- Sound event recognition; subband power distribution; 

Spectrogram; Missing feature theory; kNN classifier. 

 

I. INTRODUCTION 

 

The environment sound is rich in acoustic information 

beyond the speech signal that is mainly the focus of 

automatic speech recognition system. While speech is the 

most informative sound event, this paper focuses on general 

sound events such as door closing or bell ringing which 

provide information and context for the environment beyond 

that contained in speech.  

Sound event classification is the task where in the audio 

content of short sound clip is assigned into one set of pre-

trained classes. This has a wide range of important 

application such as acoustic surveillance [2], environmental 

sound [3, 4],  bioacoustics monitoring [5] or in field of 

machine hearing. In most of these applications, the sound 

event occurs in the presence of challenging noise condition 

and signal to noise ratio (SNR) may even fall to 0dB. Typical 

systems used are often based on adaptation of common 

speech recognition system like Mel-Frequency Cepstral 

Coeffient (MFCC) and Hidden Markov Model (HMM) 

classifier. The most important difference between sound and 

speech signals is that sounds have more distinctive time 

frequency characteristics and therefore classification depends 

on characterizing the stochastic nature of the signal. To 

capture this variation the conventional frame based MFCCs 

has to be combined with complex recognizers like HMM. 

This requires a large amount of training data to perform well 

and the performance often degrades in the presence of 

mismatched noise conditions. 

One efficient way to capture the time-frequency 

characteristics of sound is to extract features from the 

spectrogram of the sound which is called spectrogram image 

feature (SIF) [6].This is from the fact that humans can easily 

identify the signal in an image even in the severe background 

noise. In SIF, spectrogram is quantized and segmented, 

similar to pseudocolouring and partitioning in image 

processing. The feature is extracted from each time frequency 

block in terms of their central moments. Support Vector 

Machines (SVM) is used to perform the classification. 

Due to the physical nature of most of the sounds, the 

spectrogram is sparse where the sound energy is concentrated 

in few of the localized frequency bands compared to diffuse 

noise which is spread evenly across the frequency spectrum. 

Hence in noisy condition the low power quantization are 

most affected. An improvement to this SIF approach 

therefore includes a missing feature framework to 

marginalize the regions affected by noise. However, due to 

the non stationary nature of the noise across time and 

frequency, developing a reliable missing feature mask is 

challenging [7]. Another drawback of SIF method is the 

sensitivity of the block distribution to time shifting .Due to 

this sound clips need to balanced but in real world situation, 

time shifting may occur due to variation in the performance 

of the detector which causes uncertainty to the onset and 

offset times in the sound clip. 

To address these problems, a novel sound event image 

representation called the subband power distribution (SPD), 

which is invariant to effects of time shifting, is developed. 

The SPD captures the distribution of the log-spectral power 

of sound over time in each frequency subband. This can be 

visualized as a two dimensional image representation of 

frequency against normalized spectral power. As done in SIF, 

feature is extracted from the block wise central moments of 
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the quantized and segmented SPD image. To improve the 

classification system, a missing feature classifier is developed 

which automatically selects the blocks that are unaffected by 

noise in SPD image representation. This is done by utilizing 

kNN with hellinger distance as a distance metric to measure 

the distribution distance between two image features. 

II. SUBBAND POWER DISTRIBUTION IMAGE 

FEATURE (SPD-IF) 

      

  In this section, the proposed subband power distribution 

(SPD) image representation for robust sound event 

classification is presented and the overview of the proposed 

system is as shown in fig. 1 and is compared to previous 

method, SIF alongside. The subband power distribution is 

based on the distribution of the spectral power in each 

frequency subband over time. It is designed such that the 

reliable part of the signal is transformed to a continuous 

region of the SPD representation which makes it easily 

separable from the noise. As shown in fig 1, after contrast 

enhancement step to obtain the SPD image, image feature is 

extracted using the same approach as used for SIF. This 

process involves quantization and mapping which is 

analogous to pseudocolourmapping in image processing. 

After image feature extraction, a robust missing feature 

classification system is developed. This generates a missing 

feature mask based on the SPD and then marginalizes the 

features that are affected by noise. Classification is done 

using kNN with hellinger distance measure as it is found that 

it takes into account the distribution information captured in 

the SPD image feature. Hence it is more efficient way to 

measure the similarity between two SPD-IF compared to 

conventional Euclidean distance. 

 

A. Subband power distribution (SPD) image algorithm 

       The SPD image is designed to represent the distribution 

of spectral power in each frequency subband over time 

starting from a time frequency spectrogram representation of 

the sound hence the algorithm starts from a time-frequency 

spectrogram representation of the sound, S(f,t).An example of 

this process is as shown in fig 2. Here probability distribution 

of log power spectrogram of a whistle sound is calculated for 

each subband, and then stacked together to form a two 

dimensional representation of frequency against normalized 

spectral power as shown in fig 2.b. The SPD then undergoes 

a contrast enhancement that gives the final SPD image as 

shown in fig 2.c. Contrast enhancement is performed to 

ensure that the important signal information is represented 

over the full[0,1] range of the image. This SPD which is 

obtained after contrast enhancement forms the basis for 

image feature extraction and classification. As the SPD 

captures the temporal distribution statistics, it is desirable for 

S(f,t) to have a high time resolution to better capture the 

distribution. 

Fig. 1.Overview of the proposed SPD-IF approach, comparing to previous 
work on the SIF (the shaded boxes indicate the contributions in this paper). 

 

Here, the gammatone filterbank decomposition is chosen for 

time frequency analysis which is derived from the cochlear 

filtering in the inner ear. This has the advantage that there is 

no trade off between time and frequency resolution which is 

common in conventional Short Time Fourier Transform 

(STFT) representation. Here, a bank of 50 filters is used, with 

the centre frequencies equally spaced between 100 and 

8000Hz on an equivalent rectangular bandwidth (ERB) scale 

[8].                                                                                                          

The SPD is based on the normalized log-power spectrogram 

G(f,t), given as: 

))t,f(S(logmax

)t,f(Slog
)t,f(G

t,f

                                  (1)   

Log power is used to compress the dynamic range of the 

spectrogram to enhance the high power elements in the 

SPD.The values in G(f,t) that are less than zero i.e, G(f,t) < 0 

are all set to zero which normalizes G(f,t) into grey scale 

image in the range [0,1]. This ensures that the relative volume 

of different sound clips is equalized and the high power 

elements are transformed to the same region of the SPD 

always.                                     The SPD represents the 

distribution of power in each frequency subband of the 

normalized spectrogram over time as: 

)z(P)z(D
fGf                                                                     (2) 

Where z represents the normalized spectral power, P is the 

probability density function and Gf is a random variable that 

represents the normalized spectrogram, G(f,t) in the 

frequency subband, f. The SPD then forms a two dimensional 

representation, D(f,z) which is obtained by stacking together 

each subband distribution over frequency, f. As the upper and 

lower bounds of the distribution are fixed, the distribution 

D(f,z) is estimated using non parametric approach based on 

the histogram for its speed and simplicity. Therefore SPD is 

given by: 



t

b
max

R ))t,f(G(1
t

1
)b,f(H                                           (3) 

Where tmax is equal to number of time samples in the segment  

and 1b is a indicator function which equals to one for the bth 

bin if the normalized log power spectral power G(f,t) lies 

within the range of the bin and it is zero otherwise. In this, a 
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total of 100 bins are used with the bin edges equally spaced 

over the [0.6, 1] range of the normalized spectral power z. 

The values in HR(f,b) are raw probability distribution 

information for each frequency subband over time which are 

constrained to lie in the range  

1)b,f(H0 R                                                                     (4) 

 

Although this implies that the HR(f,b) is a grey scale image 

already, it is found that most of the information is constrained 

only within a small region of dynamic range. This is due to 

the physical nature of many sound events which have an 

attenuating or non stationary spectrogram envelope. This 

means that for a high number of histogram bins, it is unlikely 

for the subband distribution density values in any one of the 

bin to be high.

      
(a) Normalised gammatone spectrogram, 

G(f; t), of a whistle sound.     

            
(b)Raw SPD, HR(f, b), formed                             (c)Enhanced SPD Image ,                                                                     
by stacking the subband distribution                      H(f,b),after contrast  has                                                                                                                                                                                                                                                                       

information across frequency.                                Enhancement performed 

 
Fig.2. Overview of generation of the SPD Image. The probability 

distribution is taken over each subband and is stacked to form the raw SPD 

in (b). This undergoes contrast enhancement, to give the SPD in (c). 
 

Therefore, the contrast of the raw SPD is enhanced to 

produce the enhanced SPD image that enables the better 

extraction of important signal information for classification. 

In image processing this is referred as “contrast stretching” 

which is performed as follows, where h is an appropriate 

constant 

 






























otherwise,1

h

1
)b,f(Hif,h)b,f(H

)b,f(H

RR

                          (5) 

 

 

 

This operation does not affect fully stationary subbands as 

these are still assigned a high value in the enhanced SPD. 

Hence this step improves the classification over a broad range 

of sound classes. Empirically, using h=50 provides a 

sufficient enhancement in contrast. 

 

B. SPD image feature extraction 

       In this step, feature that characterizes the sound 

information in image is extracted from the two dimensional 

SPD image. The process starts  by quantizing the dynamic 

range of the grayscale SPD image into different regions as 

shown in fig 3(a), Each of which maps to a monochrome 

images. The information in each monochrome image is 

represented separately in an image feature. This operation is 

the generalization of the pseudocolourmapping procedure in 

image processing, where grey scale intensities are quantized 

into red, green and blue (RGB) monochrome values. This 

mapping is denoted as, 

)c,...c,c(c))b,f(H(h)b,f(M N21cc          (6) 

Where ch  is the nonlinear mapping function for mapping 

dimension c, considering c=3, represents the red, green and 

blue color dimensions. here a mapping function from image 

processing ,similar to ‘Jet’ color map in MATLAB is utilized, 

as it is found that such existing color maps provide a best 

suitable quantization of the dynamic range [6]. To 

characterize the information in each monochrome separately 

in an image feature, each monochrome image is partitioned 

into two dimensional local sub-blocks, with each block of 

size (P/D, Q/D).this gives a total of 
2D blocks as shown in 

fig 3.c. For clarity, the c notation for each mapping is 

dropped. Therefore each sub block can be written as a subset 

of pixel from the entire monochrome as  

)b,f(ML j,i                                                                        (7) 

 
(a) The quantisation and mapping function, hc. 

 

 

Blue 

Green 
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(b) The three monochrome quantisations, Mc(f; b), for the Enhanced SPD 
image in Fig. 2c. These are labelled blue, green and red, to correspond with 

the colour quantisations in the mapping function. 

     

(c) Partitioning of the SPD image, and extraction of distribution statistics to 
generate the image feature, x. The SPD is shown here in colour, as a 

combination of the monochromes above. 

Fig. 3: Overview of the image feature extraction, continuing from the whistle 

sound SPD in Fig. 2c. 

Where i,j={1,2,…D} represents the indices of sub blocks and 

j,iL represents the region of monochrome image ,M(f,b) 

,corresponding to the particular sub-block. Next, the image 

feature j,ix  is extracted from each local sub block by utilizing 

the central moments in every block to capture distribution as: 

]])X[EX[(E k
k                                                            (8) 

Where X is the distribution, E is the expectation operator and 

µk is the kth moment about the mean. Particularly, the second 

and third central moments are used in this system. Feature 

j,ix from each local sub block is therefore: 









 )L(),L(x j,i
2

j,ij,i                                                     (9) 

Where µ(.) and (.)2 are mean and variance respectively 

obtained from second and third central moments found from 

(8). Experimentally it is found that, partitioning each 

monochrome image dimension into D=10 blocks give a good 

tradeoff between feature vector size and performance. The 

total number of feature for single sound event is therefore 

becomes 10×10×3×2=600, since there are D2=100 sub 

blocks, three monochrome mapping(c=3) and with two 

central moments. 

 

C. Noise estimation based on Subband Power Distribution 

       Based on the SPD representation, a non stationary noise 

estimation approach is proposed. This is from the fact that 

despite of changes in the non stationary noise intensity, the 

noise distribution characteristics remain the same over time. 

In SPD representation, this change in intensity is 

approximated as a shift in the normalized spectral magnitude 

of the noise distribution. therefore, if a SPD from a segment 

containing only noise, which is denoted as HN (f,b),is 

extracted ,it can be assumed that the noise in the SPD 

containing both noise and signal is represented as 

HN(f,b+a).Therefore, the problem simplifies to estimating ‘a’- 

which is a change in non-stationary noise intensity. This step 

is illustrated in fig 4 where the cross correlation between the 

noise SPD and noisy sound spd is performed. This enables to 

find amax,that corresponds to the highest correlation between 

two signals. In turn this helps to get the upper bound of the 

noise estimate in the clip, based on the initial estimate from 

the noise SPD. 

 

 

 

(a) An example of non-stationary wind noise, where the noise level increases 

and then decreases over time 

 

 

(b) Noisy Whistle sound SPD, H(f,b). The SPD noise estimate, n(f), is 

estimated based on the maximum subband cross-correlation. 

Fig. 4: Overview of the SPD noise estimate approach 

 

The process begins with a noise SPD HN (f, b) found using 

(3), here t is replaced by noise only frames tN. The upper 

bound of the noise in HN (f, b) is then estimated as the 

maximum occupied bin for each frequency subband: 
 

)0)b,f(H(max)f(n N
b

max                                             (10) 

nmax(f) is smoothed to avoid sharp discontinuities across 

frequency using a moving average filter of order M given by 







2

M
fi

2

M
fi

maxmax )i(n
M

1
)f('n  (11)   

Then an SPD, H(f,b) from a noisy sound clip is taken and 

correlation (*) between HN (f,b) and H(f,b) is performed to 

find the intensity difference, amax with highest correlation. 

Since H(f,b) is a mixture of noise and signal ,the cross 

correlation is performed separately on each SPD subband, f, 

such that the highest correlation should occur between the 

two noise dominated subbands:  

Initial noise 

estimate,n’
max(f) 

SPD noise 

estimate, n(f) 

Time 

NOISE 

ONLY 
WHISTLE+NOISE 

 

Red 
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f)]ab,f(H*)b,f(H[maxa N
a

max                             (12) 

The final SPD noise estimate is then given by 

maxmax a)f('n)f(n                                                         (13) 

D. SPD-IF missing feature classification 

       The approach used here is based on masking the 

unreliable SPD-IF dimensions by using the noise estimate 

done in previous section. Missing feature classification is 

performed with kNN using the hellinger distance to measure 

the distribution distance between image features. For the SPD 

of the noisy sound clip, there exists a boundary, H  between 

clean and noisy regions. The region in the SPD above this 

boundary is derived only from the signal: 

)14()b,f(H)b,f(HH)b,f(:H r  

Hr(f,b) represents the unreliable region of the SPD. It can be 

noted that the reliable SPD boundary, H  can be 

approximated by the noise estimate in the clip, n(f), as found 

in the previous section. Therefore the reliable region of the 

SPD Hr(f,b) can be found as: 




























otherwise),b,f(H

)f(nbif),b,f(H

)b,f(H

u

r

 (15)   

Where subscript r and u represents reliable and unreliable 

regions respectively .This mask is applied to SPD-IF feature. 

If any sub block of the SPD image, denoted by Li,j is 

intersected by the noise estimated, n(f),it must be assumed 

that whole block is unreliable. Because the feature xi,j is 

based on the distribution statistics of image pixels in Li,j and 

hence will be affected by noise .therefore, the sub blocks 

where all pixels belong to Hr(f,b) are reliable as given below 

)16(

otherwise,x

)b,f(HL,x

x

u

rj,ir

j,i




























 

xu are unreliable feature dimensions and can be marginalized 

as they do not contain useful signal information .for 

classification, kNN is used even though it is uncommon in 

acoustic field and is relatively common in image processing. 

kNN can achieve comparable performance with SVM [9].the 

advantage of using kNN in this system is that, it can be easily 

combined with a missing feature framework and this is not 

straightforward for the SVM classification. kNN also offers 

flexibility in the choice of distance measure. Here Hellinger 

distance is used over the conventional Euclidean distance. 

Hellinger distance used here is a measure of the similarity 

between two distribution derived from the data, which fits 

naturally with the image feature as this models the 

distribution of pixels in sub block of each monochrome 

image. Characterizing the distribution by the mean m, and 

variance of the image pixel distribution which is obtained by 

second and third central moments of the blocks, the Hellinger 

distance between two SPD-IF vectors can be written as: 

)17(e
2

1)x,x(d

2

1

N
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











Where Nr signifies the number of reliable dimension, xT is 

sample from training data. 

III. EXPERIMENT 

A. Sound event database 

       50 sound event classes are selected from the Real Word 

Computing Partnership (RWCP) Sound Scene Database in 

Real Acoustical Environment [10], which gives a selection of 

action, collision and characteristic sounds. The sound files in 

this database have high SNR and each sound file contains an 

isolates sound event. There is some silence before and after 

the sound. The database has wide range of sound event types, 

including metal, wooden and china impacts, friction sounds 

and other sounds such as whistle, bell and clock. Many of 

these sound events have sparse time frequency spectrogram 

representation meaning that the most of the power contained 

in a particular frequency band, while some others sounds 

such as sandpaper or buzzer have diffuse spectrogram 

representation. From each sound event, 80 sound clips are 

collected. In that 50 files are selected randomly for training 

and 30 for testing. Therefore, overall with 50 sound events, 

this gives 2500 and 1500 samples for training and testing 

respectively. 

B. Experiment setup 

      Here the proposed SPD-IF is compared with previously 

used method i.e., Spectrogram Image Feature (SIF), which is 

based on a raw power STFT spectrogram and Support vector 

machine (SVM) classifier [6] 

C. Noise condition 

      For each experiment, the classification accuracy is 

investigated in mismatched noise condition, using only clean 

samples for training. The average performance for each 

method is noted in clean and at 20, 10 and 0dB SNR for the 

“speech babble” noise environment. 
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IV. RESULT 
 

The result of the experiments is shown in Table1. It can be 

seen that the SPD-IF using log power spectrogram gives a 

comparable result in clean condition with raw power SIF. The 

main advantage of SPD-IF are demonstrated in mismatched 

noise condition, where even at 0dB it achieves the accuracy 

of 90.14% compared to 80.95% for raw power SIF. 

TABLE I 
RESULTS SHOWING THE CLASSIFICATION ACCURACY FOR THE 
PROPOSED SPD-IF AVERAGED AGAINST SIF ACROSS “SPEECH 

BABBLE” NOISE CONDITION 

 

Methods 

 

Clean 

 

20dB 

 

10dB 

 

0dB 

 

Averag

e 

 

Proposed 

SPD-IF 

 

98.46% 

 

97.60

% 

 

95.80

% 

 

90.14

% 

 

95.5% 

 

SIF 

 

91.13% 

 

91.10

% 

 

90.71

% 

 

80.95

% 

 

88.55% 

 

 

V. CONCLUSION 

       This paper proposes a novel feature extraction and 

classification method for robust sound event classification, 

motivated by visual perception of sound through images. The 

proposed subband power distribution (SPD) image improves 

over the previous SIF, as SPD transforms the reliable signal 

components to a localized region of the image this makes it 

simple to combine the extracted feature with the missing 

feature classification. Results shows that proposed SPD-IF is 

robust to noise with classification accuracy of over 90.14% at 

0dB noise and overall average of almost over 95.5%  
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