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Abstract: Speech recognition applications 

are becoming more and more useful 

nowadays. Various interactive speech aware 

applications are available in the market. But 

they are usually meant for and executed on 

the traditional general-purpose computers. 

With growth in the needs for embedded 

computing and the demand for emerging 

embedded platforms, it is required that the 

speech recognition systems are available on 

them too. PDAs and other handheld devices 

are becoming more and more powerful and 

affordable as well. It has become possible to 

run multimedia on these devices. Speech 

recognition systems emerge as efficient 

alternatives for such devices where typing 

becomes difficult attributed to their small 

screen limitations. 

                              Speech technology and 

systems in human computer interaction have 

witnessed a stable and remarkable 

advancement over last two decades. These 

technologies enable machines to respond 

correctly and reliably to human voices, and 

provide useful and valuable services. Recent 

research concentrates on developing system 

that would have been much robust against 

variability in environmental noise, speaker 

and language.  

                                In this paper we mainly 

focus on robust speech recognition, and the 

environmental noise problem is its main 

concern. To accelerate the recognition speed 

we use discrete hidden Markov model to 

lessen the computation burden inherent in 

speech recognition. 

 Furthermore, the empirical mode 

decomposition is used to decompose the 

measured speech signal contaminated by 

several noise into several intrinsic mode 

functions (IMF’s).The IMF’s are weighted 

and summed to reconstruct the original 

speech signal, weights for each IMF’s are 

obtained by the genetic algorithm to get 

optimal solution, by doing so we can 

achieve a better speech recognition rate for 

speech subjected to various environmental 

noise. 

Keywords-Empirical Mode Decomposition 

(EMD), intrinsic mode functions (IMF’s), 

Genetic algorithms (GA), Discrete Hidden 

Markov Model, MFCC, Vector quantization, 

LBG algorithm. 

I. Introduction 

Speech recognition has a long history. Yet, 

the speech recognition of speech subject to 

environmental noise remains an open 

problem. The most important problem in 

robust speech recognition is the mismatch 

problem that arises from the discrepancy 

between the testing and application 

environments concerning noise. Not 

surprisingly, there is a great deal of literature 

on this topic, e.g., [1]–[13]. Current methods 

for handling the mismatch problem can be 

classified into two categories, i.e., the 

feature- and model-based methods [7]. 

Feature-based methods focus on the feature 

parameters rather than on model parameters 

for speech or noise [2]–[7]. Model-based 
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methods exploit prior knowledge about the 

distributions of speech and noise for speech 

feature enhancement [8]–[13]. Since feature-

based methods can work without prior 

knowledge of the distribution of speech and 

noise and are therefore suitable to 

applications in various environments, this 

paper focuses on the feature-based method. 

In this paper, speech signals with high noise 

interference will be processed to eliminate 

the noise components before capturing the 

speech features. In this way, the captured 

speech features become clearer. These 

speech features are then fed into the speech 

recognition system for recognition. A better 

recognition rate for those speech signals 

subject to noise interference can be then 

obtained. 

                 To eliminate unwanted noise in 

speech signals, this paper applies the 

empirical mode decomposition (EMD) to 

decompose high-interference speech signals 

into several components, which will include 

either speech signals or noise. The EMD 

was first proposed by Prof. Huang in 

combination with the Hilbert transform (HT) 

to analyze nonlinear and nonstationary time 

series. The combination of the EMD and the 

HT is therefore referred to as the Hilbert–

Huang transform [14]. The advantage of the 

EMD over other frequency-domain 

transformations is that the components 

decomposed from a mixed signal are related 

to specific physical sources. This allows us 

to examine the physical phenomena of a 

signal through the components obtained by 

the EMD. Initially, the EMD was applied to 

such things as signal analysis in the field of 

geoscience, strength analysis of material 

structures, trend analysis of the stock 

market, etc. More recently, the EMD has 

been applied in the measurement and the 

enhancement of speech signals [15], [16], 

and short circuit detection [17]. In [18], the 

EMD is used to separate audio sources from 

a single mixture. In that paper, an 

experiment is performed by mixing two 

specific audio sources into one and then 

reversing the process by separating the two 

audio sources from the mixed signal using 

the EMD. As discussed in the previous 

paragraph, the noise cancellation or 

suppression problem is critical to speech 

measurement [19]. Unfortunately, robust 

speech recognition for speech subject to 

various environmental noises is not well 

explored in those papers [15], [16], and [18]. 

According to the experiment in this paper, 

noise exists in some IMFs, which is 

neglected in those studies. Ignoring these 

IMFs will result in the loss of a part of the 

speech information and, consequently, an 

inferior recognition rate. In this paper, the 

original speech signals are recovered by 

combining more IMFs with different 

weightings to produce a better result. In 

addition, it is one of the goals of this paper 

to find the weights corresponding to 

different IMFs and combine these weighted 

IMFs to recover the original speech signals.          

              In this paper, the weights for each 

IMF are trained by the genetic algorithm 

(GA) to find an optimal combination of 

IMFs. The reason why the GA is used to 

train the weights to find an optimal 

combination of IMFs is the outstanding 

performance of the GA used in many 

research works (see, for example, [20] and 

the references therein). The experimental 

results in this paper will demonstrate that the 

proposed method based on the EMD 

outperforms the methods outlined in other 

literature. 

The organization of this paper is as follows. 

In Section II, the general overview of the 

model for speech recognition is introduced. 

In Section III, the methods used in the 

model, including the training of codebook 

and the modeling of the DHMM by using 

speech features are investigated. Section IV 

describes the method of noise elimination by 

combining EMD and GA in the model. A 
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number of experiments that explore the 

relationship between the speech signals and 

the IMFs generated from the EMD are 

examined. Furthermore, the parameters used 

in the GA will be discussed in this section. 

Thereafter, the numerical results from the 

experiments carried out in the proposed 

speech recognition strategy are given in 

Section V, and the advantages of this paper 

are discussed and also show the 

experimental results of speech recognition 

for speech subject to various environmental 

noises. Finally, some conclusions are made 

in Section VI. 

 

II Model for speech recognition 

 

The model for speech recognition is shown 

in Fig. 1. In the proposed strategy, all noise-

affected speech is first decomposed into 

several IMFs, using the EMD process. Since 

each IMF contains a greater or lesser speech 

signal, these IMFs are then weighted by 

their corresponding weights and then 

summed to recover the original speech 

signal. It is noted that the weights are 

initially randomized and will be trained by 

the GA thereafter. The MFCC process is 

then performed on the recovered speech to 

extract its features. In the training phase of 

this system, the speech features are used to 

train the codebook for the modeling of the 

DHMM, whereas in the testing phase, the 

speech features are fed into the DHMM for 

recognition. Also, in the testing phase, the 

GA is used to train the weights to get an 

acceptable recognition rate. The stop 

criterion of the GA depends on the 

recognition rate and the number of 

generations evolved in the GA. All the 

details of the procedures in the model will 

be discussed later. 

 

III Modeling DHMM 

 

This section introduces the modeling of the 

DHMM. First we extract feature vectors 

from speech signal to be trained and tested 

using MFCC process, a codebook for feature 

vectors are generated using vector 

quantization by LBG algorithm. Thereafter, 

a DHMM is modeled for speech recognition 

by using training speech features through the 

codebook. 

 

A.MFCC Process 

 

The purpose of this module is to convert the 

speech waveform to some type of parametric 

representation for further analysis and 

processing. This is often referred to as the 

signal-processing front end. 

            The LPC features were very popular 

in the early speech-identification systems. 

However, comparison of two LPC feature 

vectors requires the use of computationally 

expensive similarity measures such as the 

Itakura-Saito distance and hence LPC 

features are unsuitable for use in real-time 

systems. Furui suggested the use of the 

Cepstrum, defined as the inverse Fourier 

transform of the logarithm of the magnitude 

spectrum, in speech-recognition 

applications. The use of the cepstrum allows 

for the similarity between two cepstral 

feature vectors to be computed as a simple 

Euclidean distance. Furthermore, it has 

demonstrated that the cepstrum derived from 

the MFCC features rather than LPC features 

results in the best performance in terms of 

FAR [False Acceptance Ratio] and FRR 

[False Rejection Ratio] for speech 

recognition.

2058

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90600IJERTV2IS90600



 

Fig.1: Model for speech recognition system. 
 

Fig.2 shows the block diagram of MFCC 

process. The speech samples are first 

preemphasized then   windowed to do 

further short term frame analysis on speech 

samples. The framed speech samples are 

sent through DFT to extract speech features 

further passed through various MEL filter 

banks to separate various frequency 

components, Mel filtered output is passed on 

to DCT to obtain Mel cepstrum coefficients. 

 

A.1.Pre-Emphasis: 

The pre-emphasis unit is used to 

boost the energy of high frequency 

components present in the speech signal. A 

special high pass filter is used for achieving 

this purpose. The spectrum of voiced 

segments of speech signal (speech signal is 

categorized into voiced and unvoiced 

segments) shows high levels of energy at 

lower frequency components and low levels 

of energy at high frequency regions. The 

Pre-Emphasis Filter is a First Order High 

Pass Filter & the Difference Equation is 

given by  

      y[n] = x[n] - .x[n-1] 

Where, is the gain controlling parameter 

for which the range is given by 0.9<<1 and 

the System Function is given by  

                     H[z] = 1- .z
-1 

 

      Fig.2: Block diagram of MFCC process. 
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A.2.Frame Blocking and Windowing: 

The next step to divide the obtained 

signal from pre-emphasis into speech frames 

and apply a window to each frame. The 

speech signal is framed in order to capture 

the time characteristics of the speech signal. 

In order to minimize the signal 

discontinuities at the beginning and end of 

each frame is multiplied by an appropriate 

window function. The concept here is to 

minimize the spectral distortion by using the 

window to taper the signal to zero at the 

beginning and end of each frame. If we 

define the window as, 

                  w(n) ,0<n<N-1  

Where N is the number of samples in each 

frame, then the result of windowing is the 

signal. 

 
Typically the Hamming window is used, 

which has the form 

 
 

A.3.Discrete Fourier transform (DFT): 

In order to derive the spectral information of 

the signal we use Discrete Fourier 

Transform. The DFT converts each frame of 

N samples from the time domain into the 

frequency domain. The FFT is a fast 

algorithm to implement the Discrete Fourier 

Transform (DFT) which is defined on the set 

of N samples {𝑥𝑛}  as follows 

 

Denoting  the 

DFT can be expressed as 

 

 

 

A.4.Mel filter bank: 

 

As from perception experiments, the human 

ear does not show a linear frequency 

resolution but builds several groups of 

frequencies and integrates the spectral 

energies within a given group. Furthermore, 

the mid-frequency and bandwidth of these 

groups are non–linearly distributed. The 

non–linear warping of the frequency axis 

can be modeled by the so–called mel-scale. 

The frequency groups are assumed to be 

linearly distributed along the mel-scale. The 

so–called mel–frequency fmel can be 

computed from the frequency f as follows: 

 
The input-output relation of MEL Filter 

bank is given below. 

 

      i=0, 1 …L-1 

Where, Y[i] =MEL Filter Bank Output 

signal. 

|X[k] |= DFT samples of the signal from the 

DFT block.  

Hi[k] = The frequency response of the Lth 

filter in the MEL filter bank. 

L = The number of MEL in the filter bank. 

N = Number of the DFT samples. 

The human auditory system is less sensitive 

to the signal level variations of the high 

amplitude signal and more sensitive to the 

low amplitude signal variations. This 

characteristic of the human hearing system 

is taken into account in the Mel filter bank 

itself for the better acoustic model of the 

speech signal. The absolute values of the 

spectral components from each of the MEL 

filter bank are squared before their 
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logarithmic (natural logarithm) values are 

found.  The squaring of the spectral values 

indicates that the input to the next block 

contain power/energy spectral values. 

A.5.Discrete Cosine Transform-DCT 

In this final step, we convert the log mel 

spectrum back to in to cepstral domain. The 

result is called the mel frequency cepstrum 

coefficients (MFCC). The cepstral 

representation of the speech spectrum 

provides a good representation of the local 

spectral properties of the signal for the given 

frame analysis.  

Therefore if we denote those mel power 

spectrum coefficients that are the result of 

the last step are 

 
We can calculate the MFCC's, as 

 

 
Note that we exclude the first component 

c[0] from the DCT since it represents the 

mean value of the input signal which carried 

little speaker specific information. 

By applying the procedure described above, 

for each speech frame of around 30msec 

with overlap, a set of mel-frequency 

cepstrum coefficients is computed. These 

are result of a cosine transform of the 

logarithm of the short-term power spectrum 

expressed on a mel-frequency scale. This set 

of coefficients is called an acoustic vector. 

Therefore each input utterance is 

transformed into a sequence of acoustic 

vectors. In the next section we will see how 

those acoustic vectors can be used to 

represent and recognize the voice 

characteristic of the speech. 

B.Vector Quantization and Codebook: 

 

Through preprocessing and feature 

extraction, the feature vectors for each 

speech signal frame are obtained. Because 

the feature vectors are real number vectors, 

the vector quantization for these feature 

vectors is necessary to reduce the 

computation burden, and hence, a codebook 

is trained and used for feature vector 

quantization. The results of vector 

quantization are then a set of observation 

codes for DHMM modeling and speech 

recognition. 

 

B.1.Code book design 

 

Vector quantization of speech signals 

requires the generation of codebooks. The 

codebooks are designed using an iterative 

algorithm called Linde, Buzo and Gray 

(LBG) algorithm. The input to the LBG 

algorithm is a training sequence. The 

training sequence is the concatenation of a 

set MFCC vectors obtained from people of 

different groups and of different ages. In this 

paper the speech signals are obtained from 

TIMIT database (Digit0 to Digit9) is 

available for use in speech recognition.  

              The codebook generation using 

LBG algorithm requires the generation of an 

initial codebook, which is the centroid or 

mean obtained from the training sequence. 

The centroid obtained is then split into two 

centroids or codeword’s using the splitting 

method. The iterative LBG algorithm splits 

these two codeword’s into four, four into 

eight and the process continues till the 

required numbers of codeword’s in the 

codebook are obtained. 

 

C.Train DHMM:  

Fig.3. illustrates the training process for the 

DHMM. First, matrices A, B, and π, which 

describe the DHMM and will be explained 

in the following text, are randomized at the 

initial setup. Next, the speech features are 

quantized through the trained codebook. The 

quantized features are then the observation 

of the DHMM. The corresponding 

probability of the observation can be found 

from the present values in A, B, and π. Using 
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these probabilities, we can run the Viterbi 

algorithm [25] to update matrices A, B, and 

π until the values in these matrix converge. 

Matrices A, B, and π are now explained as 

follows. In a DHMM, the hidden states are 

always unobservable, whereas the outputs in 

each state are observable. Each hidden state 

has a probability distribution over the 

possible output tokens (i.e., the observation). 

Therefore, the sequence of output tokens 

generated by the DHMM gives some 

information about the sequence of states. 

For the purpose of clarification, the relation 

among the features of speech, the 

observation, and the hidden states of 

DHMM is depicted in Fig.6. 
 

 

 
 

Fig.3.DHMM Training process 

 

In the following, the definition and the detail 

training method of the parameters in the 

DHMM are introduced [25]. First, the 

definition of parameters in the DHMM is 

introduced. 

λ     DHMM. λ = (A, B, π). 

A   A= [aij ]. aij is the probability of state xi 

transferring to state xj , and  aij = P(qt = xj 

|qt−1 = xi). 

B  B= [bj(k)]. bj(k) is the probability of kth 

observation, which is observed from state xj 

, i.e., bj(k) = P(ot = vk|qt = xj). 

π  π= [πi]. πi is the probability of the case 

where the initial state is xi, and  πi = P(q1 = 

xi). 

X  State vectors of DHMM. X = (x1, x2, . 

.xN). 

V  Observation event vector of DHMM. V = 

(v1, v2, . . . , vM). 

O  Observation results of DHMM. O = o1, 

o2, . . . , oT . 

Q   Resulting states of DHMM. Q = q1, q2, . 

. . , qT . 

To train the DHMM parameters λ = (A,B, π) 

based on existing data, some notations are 

defined for convenience. 

Eij Event of the transition from state xi to 

state xj . 

Ei• Event of the transition from state xi to 

other states. 

E•j Event of the transition from other states 

to state xj . 

Ehi Event of state xi that appears at the 

initial state. 

n(Eij) Number of the transition from state xi 

to state xj . 

n(Ei•) Number of the transition from state xi 

to other states. 

n(E•j) Number of the transition from other 

states to state xj . 

n(E•j, o = vk) Number of enter to state xj 

and observation code is vk. 

n(Ehi) Number of the event of state xi 

appears at the initial state. 

 

In the process of training matrices A, B, and 

π of the DHMM, the hidden states for each 

observation are first estimated through the 

initial A, B, and π values by using the 

Viterbi algorithm. Then, values n(Eij), 

n(Ei•), n(E•j), n(E•j, o = vk), and n(Ehi) are 

computed according to the estimated hidden 

states for the whole training data. 

Subsequently, the elements in matrices A, B, 

and π are updated as follows: 
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Where nTD is the number of training data. 

Using these updated A, B, and π values, we 

run the Viterbi algorithm again. The 

aforementioned steps are repeated until 

matrices A, B, and π converge. The training 

process for the DHMM is then completed. 

Subsequently, the procedure for recognizing 

speech is depicted in Fig. 4. In the training 

phase, the DHMMs corresponding to each 

speech are first trained by using the training 

speech features through a trained codebook. 

In the test phase, the feature of the tested 

speech will be derived first. Through the 

trained codebook, this feature is then 

quantized and becomes an observation of the 

DHMM. For each observation, the 

probabilities for all DHMMs are calculated. 

The speech corresponding to the DHMM 

with the greatest probability is then the 

recognized speech. During the speech 

recognition process, the probability of the 

observations according to model λ = (A, B, 

π) is calculated by  

 

 
This equation enables us to evaluate the 

probability of observations O based on 

DHMM λ = (A,B, π). However, the time 

taken to evaluate P(O|λ) directly would be 

an exponential function of the observation 

number T. For this reason, the forward 

algorithm is applied to reduce the 

computation time and is described below.   

 

C.1.The Forward Algorithm 

 

The forward algorithm can be described in 

three steps, i.e., initialization, recursion, and 

termination. The details are listed below 

based on the aforementioned parameters 

defined for the DHMM and are depicted in 

Fig. 5. 

 

Initialization: The initial intermediate 

probabilities α1(i) for the first observation 

o1 are calculated at the beginning as 

follows: 

 
 

Recursion: For each observation ot, t = 2, . . 

. , T , the partial probabilities αt(j) are 

calculated for each state, i.e., 

 

 
 

in which j is the index number for hidden 

states. In this step, we calculate the product 

of the observation probability of ot+1 and 

the sum over all possible routes to that state 

from the states in previous observation ot. 

Then, the recursion is performed by using 

these values from the previous time step. 

 

Termination: Finally, we sum all the partial 

probabilities at the final time step T to obtain 

the final result as follows: 
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Fig.4. Procedure for speech recognition via 

the DHMM. 

 
 

  

 Fig.5. Illustration of the forward algorithm. 

 

 

 

IV.EMD 

 

This paper applies the EMD to decompose 

environmental noise and a clean speech 

signal from a contaminated speech signal. In 

this section, the procedure for performing 

the EMD is introduced. In addition, a 

strategy based on the GA and the EMD for 

robust speech recognition is proposed. 

 

A. Procedure for EMD Operation 

 

The purpose of the EMD is to decompose 

any multicomponent signal into a set of 

nearly monocomponent signals, referred to 

as intrinsic mode functions (IMFs). 

 

The EMD is developed on the assumption 

that any signal consists of many different 

IMFs. Consequently, this project performs 

EMD operations to divide a speech signal 

into several IMFs. 

 

Once the IMFs are obtained from a signal, 

the instantaneous frequency of each IMF can 

be then determined. Physically, the 

necessary conditions to define a meaningful 

instantaneous frequency are such that the 

inspected signal must be symmetric with 

respect to the local zero mean and have the 

same number of zero crossings and extrema. 

Hence, the condition for the data series to be 

an IMF can be described below 

 

1) In the whole data series, the number of 

local extremes and the number of zero 

crossings must either be equal or differ at 

most by one. 

 

2) At any point, the mean value of the 

envelope defined by the local maxima and 

the envelope defined by the local minima is 

zero. 

According to the aforementioned definition, 

an overview of the EMD can be now 

described in the following steps. First, 

identify all the local extrema from the given 

signal, and then, connect all the local 
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extrema with some cubic-spline lines to 

produce the upper and lower envelopes. The 

upper and lower envelopes should cover the 

entire signal between them. Then, compute 

their mean and the difference between the 

signal and the mean as the first component 

h(t). Consider h(t) as a temporary signal, and 

repeat the aforementioned steps until the 

difference between the temporary signal and 

the mean satisfy the two conditions of the 

IMF. Thus, the first IMF is obtained. Find 

the residue of the signal by subtracting the 

first IMF from the original signal. Define the 

residue as a new signal, and repeat the same 

aforementioned steps. We can then find the 

remaining IMFs for the original signal. 

 

           However, it is hard to satisfy the 

second condition of the IMF in a practical 

application, since a zero mean value of the 

envelopes for all time t is almost impossible. 

Hence, a looser condition is utilized to 

replace the second condition of the IMF. An 

index for the mean value of the envelopes 

and a threshold are used to construct this 

looser condition. The index can be 

calculated through the following equation 

 

 
 

in which hi(k)(t) is the kth iteration for the 

ith IMF. It is noted that function 

 hi(k−1)(t) − hi(k)(t) in the numerator of 

above equation is equal to mean mi(k)(t),                                     

i.e., hi(k)(t) = hi(k−1)(t) − mi(k)(t). 

 

         This means that SDik is the ratio of the 

energy of mi(k)(t) to that of hi(k−1)(t). In 

practical applications, the second condition 

of the IMF is then replaced by the looser 

condition that SDik should be smaller than 

the assigned threshold. In general, the 

threshold is assigned in the range of 0.2–0.3. 

That is, if SDik < 0.3, for example, and the 

first condition of the IMF is satisfied, then 

the iterations for the ith IMF stops, and we 

get a new IMF. 

        The detailed procedure of the EMD for 

a data series or a signal is introduced as 

follows. It is noted that the cubic spline is 

used to generate the upper and lower 

envelopes of the signals during the process 

of the EMD.  

 

      Let the original signal be X(t) and a 

temporary signal Temp(t) = X(t)  

 

Step 1: Find the upper envelope U(t) and the 

lower envelope L(t) of signal Temp(t). 

Calculate the mean of the two envelopes 

m(t) = [U(t) + L(t)]/2. Component h(t) of 

Temp(t) is obtained by  h(t) = Temp(t) − 

m(t).  

 

Step 2: Check whether signal h(t) satisfies 

the conditions of the IMF or not. If it does, 

then the first IMF is obtained as imf1(t) = 

h(t) and proceed to the next step, or else, 

assign signal h(t) as Temp(t) and go back to 

step 1.  

 

Step 3: Calculate residue r1(t) as r1(t) = 

Temp(t) − imf1(t). Assign signal r1(t) as 

X(t), and repeat steps 1 and 2 to find imf2(t). 

 

Step 4: Repeat step 3 to find the subsequent 

IMFs as follows 

rn(t) = rn−1(t) − imfn(t)      n = 2, 3, 4, . . 

This step is completed when signal rn(t) is 

constant or is a monotone function. 

After the EMD procedure steps 1–4 are 

finished, the following decomposition of 

X(t) is obtained 

 

 
 

Thus, a decomposition of the data into n-

empirical modes is achieved, and a residue 

rn(t) obtained which can be either the mean 

trend or a constant. 
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V. Numerical Results 

 

During training phase, fifty speech 

utterances for each representing English 

digit zero to nine spoken by men and women 

are used for training purpose. This means 

there are total of 1000 speech utterances for 

this experiment. DHMM generates 10 

probability models for 1000 speech 

utterances through codebook generated by 

preprocessing to represent each digit. 

                  During testing phase one speech 

utterance from each digit is used. Prior to 

the experiment, white noise was added to the 

clean speech utterance to be tested. The 

noisy speech utterance is then submitted to 

the designed speech recognition system for 

robust speech recognition. The strength of 

the added noise is indicated by the SNR in 

decibels. Noisy speeches with five different 

SNRs are first decomposed into IMFs, these 

IMFs are then trained by the GA to find the 

best weighting. Based on these weights, the 

speech is recovered by summing the 

weighted IMFs. The DHMM produces 

probability model for test speech utterance 

recovered and then compared with the 10 

probability model obtained during training 

phase to distinguish the model with 

maximum probability to recognize speech 

utterance under test. Experimental results of 

speech recognition rates for speech, with 

different SNRs are illustrated in TABLE 1. 

Tabulated result is obtained by testing 10 

speech utterances representing English digit 

 0-9 spoken by men and women for different 

SNR level with EMD & GA and also 

without EMD&GA manually. 

 

VI. Conclusion 

 

A strategy for robust speech recognition has 

been proposed in this project. In the 

proposed strategy, the EMD has been 

applied to noisy test speech utterance 

(representing one of the English digit 0-9 

spoken by men or women) for decomposing 

into several IMFs. The GA has been used to 

train the weights for the IMFs obtained from 

the EMD to obtain the best recognition rates. 

The test speech recovered by summing the 

weighted IMFs is then used to train the 

codebook. Thereafter, the features of the 

recovered test speech signal have been used 

to model the DHMM through the codebook. 

The probability model obtained by DHMM 

for test speech utterance is then compared 

with the 10 probability model each 

representing a digit obtained during training 

phase to distinguish the model with 

maximum probability to recognize speech 

utterance under test.    

                      According to the numerical 

result tabulated in TABLE1, the proposed 

strategy performs well on improving the 

speech recognition rates for any speech that 

is subject to white noise of various strengths. 
SNR ∞dB 40dB 30dB 20dB 10dB 

 

 

COMMENT 

RECOGNITION RATE % 

 

Without 

EMD 

GA 

 

With 

EMD 

GA 

 

Without 

EMD 

GA 

 

With 

EMD 

GA 

 

Without 

EMD 

GA 

 

With 

EMD 

GA 

 

Without 

EMD 

GA 

 

With 

EMD 

GA 

 

Without 

EMD 

GA 

 

With 

EMD 

GA 

 

TESTED WITH 

MEN 

UTTERENCES 

 

60 

 

90 

 

30 

 

100 

 

10 

 

90 

 

10 

 

70 

 

10 

 

40 

 

TESTED WITH 

WOMEN 

UTTERENCES 

 

90 

 

100 

 

30 

 

90 

 

10 

 

90 

 

10 

 

70 

 

10 

 

30 

 

TABLE1: RECOGNITION RATES FOR DIFFERENT NOISE LEVELS 
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