
 

  
 

 

 
 

 

 
 

 
 

Abstract—Swarm robotics (SR) is a novel approach to the 
coordination of large numbers of homogeneous robots; SR takes 
inspiration from social insects. Each individual robot in an SR 
system (SRS) is relatively simple and physically embodied. 
Researchers aim to design robust, scalable, and flexible collective 
behaviors through local interactions between robots and their 
environment. In this study, a simulated robot controller evolved 
by a recurrent artificial neural network with the covariance 
matrix adaptation evolution strategy, i.e., CMA-NeuroES, is 
adopted for incremental artificial evolution. Cooperative food 
foraging is conducted by our proposed controller as one of the 
most complex simulation applications. Since a high level of 
robustness is expected in an SRS, several tests are conducted to 
verify that incremental artificial evolution with CMA-NeuroES 
generates the most robust robot controller among the ones tested 
in simulation experiments. 

 

I.  INTRODUCTION  
Swarm robotics (SR) [1] [2] [3] is a novel approach inspired 

by the observation of social insects, such as ants and wasps. 
These examples of social in- sects show that simple individuals 
can successfully accomplish difficult tasks when they 
coordinate as a group. This kind of system-level behavior, 
which appears to be robust, scalable and flexible, is impressive 
to researchers working on robotics. Similarly to these social 
insects, SR systems (SRSs) are expected to accomplish tasks 
beyond the capabilities of a single robot. By definition, an SRS 
comprises a number of relatively simple and typically 
homogeneous robots that a desired collective behavior emerges 
from the local interactions among the agents and between the 
agents and the environment, similar to the social insects.  

The expression swarm intelligence was first conceived by 
Beni to denote a class of cellular robotic systems in 1980s. 
These works used many simple agents occupy one-or two-
dimensional environment to generate patterns and self-organize 
there nearest- neighbor interactions. At that time, the definition 
swarm intelligence only marginally covers works on cellular 

robotic systems, which does not take the inspiration from social 
insect behavior. Recently, the expression ”swarm intelligence” 
moved on to cover a wide range of researches from 
optimization to social insect studies, losing its robotics context 
in the meantime. Nowadays, the term SR has started to be used 
as the application of swarm intelligence to multi-robot systems. 
Sahin first explicitly started this concern in 2005 [2]. 

As previously mentioned before, an SRS must have three 
functional properties at the system level that are observed in 
natural swarms: 

Robustness is the ability to operate despite disturbances 
resulting from the malfunctioning of its individuals. For 
instance, lost individuals can be immediately replaced by others, 
with the operation will continuing smoothly. This is seen as the 
key advantage of the SRS approach 

Flexibility is the ability of an SRS to generate modularized 
solutions to various tasks, meaning that an SRS must be able to 
adapt their behaviors to different environments. 

Scalability is the ability of an SRS to operate with a wide 
range of group sizes and support a large number of individuals. 

The concept of swarm engineering was introduced by 
Kazadi [6] in 2000 and the first formal introduction of swarm 
engineering was released by Winfield et al. in 2004 [7]. 
Researchers indicated that finding a predictable and 
controllable design methodology for swarms is the core 
research direction of swarm engineering [8] [9]. Today, 
although swarm engineering is still in a very early stage, core 
topics of swarm intelligence, the design, and analysis have 
already received attention from SR re- searchers. The notable 
swarm-bots project [10] was begun in 2001 and terminated in 
2005, and was followed by the swarmanoid project in 2006 [11]. 
New approaches to the design and implementation of self-
organizing and the self-assembling problem of autonomous 
robots were studied in the project [12]. 

In this study, a cooperative food foraging problem with 
obstacles in the environment is investigated. We have 
augmented the covariance matrix adaptation evolution strategy 
(CMA-ES) with an artificial neural network to create an 
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efficient approach, CMA-NeuroES, for an SRS to solve simple 
food foraging problems [30]. However, when an evolutionary 
approach meets a complex task, it is typical that a simple ER 
strategy will face a situation that all individuals of the first 
generation are scored with the same null value; moreover, the 
selection process cannot operate as expected. This bootstrap 
problem occurs very often with difficult tasks. To avoid this 
kind of failure, an incremental evolution approach with staged 
evolution and environmental complexification for a cooperative 
food foraging task is adopted. 

In addition, an SRS can work dynamically as the individual 
robots are deployed respectively. This kind of decentralized 
control ensures that SRS has no common failure point. The 
failure of individual robots will hardly affect SRS performance. 
The resulting high-level robustness contrasts with the high 
engineering cost of fault tolerance in conventional robotics 
systems, and this is free as a basic property of an SRS. 
Consequently, we compare the best controllers evolved by 
CMA-NeuroES with two other evolutionary algorithms, fast 
evolution strategies (FESs) [31] [32] and real-coded genetic 
algorithms (GAs), [33] through random breakdown tests in 
computer simulations. As an intrinsic property of SRS, we want 
to find out whether the loss of some individuals can be 
compensated for by others or not and also whether the 
destruction of a particular part of the swarm is will stop its 
operation or not. 

 This paper is organized as follows: in Section 2, the related 
work to SRS and the benchmarks of SRS are presented. Section 
3 introduces the cooperative food foraging problem we use in 
our experiments. Section 4 explains neuroevolution based on a 
CMA-ES, and a pre-experiment on a CMA-NeuroES controller 
for cooperative food foraging problem is described. In Section 5, 
we explain why and how we apply incremental evolution to a 
cooperative food foraging problem. Section 6 discusses the 
computer simulation setup and the results of our proposed 
method. Section 7 draws conclusions and describes our future 
studies. 

II. RELATED WORKS 
SRS’s design methods can be divided into two categories 

[13]. (i) Behavior-based design, where in the individual 
behaviors of robots are designed by hand, is the most 
commonly used design method. Researchers in this field have 
proposed various behavior-based design approaches for 
controlling an SRS. A typical example can be found in Kube 
and Zhang [14]. They used a design method, i.e., task modeling, 
where in a robot controller with a finite state machine is 
carefully designed by a human programmer without a global 
controller. In this case, individual behaviors were iteratively 
adjusted until the desired collective behavior was obtained. 
They demonstrated its effectiveness in box-pushing problems, 
wherein the collective behavior was obtained after individual 
behaviors were iteratively adjusted and tuned [15]. However, 
this approach might have a limitation in problem complexity 
since no other applications have been published since then. (ii) 
Automatic design methods are famous for applying 
evolutionary robotics (ER) that add artificial evolution to 
robotic systems with a sensory-motor interface to the 
environment, i.e., evolving a robot controller represented as an 
artificial neural network [16] [17] [18]. 

Although the evolutionary robotics approach had been 
successfully applied to the single robot domain, it recently has 
been used for evolving group collective behaviors. And the 
performance of an evolutionary computation approach is 
strongly dependent on the performance of the artificial neural 
network optimization [19]. Reynolds [69] was among the first 
to apply evolutionary robotics techniques to collective behavior 
making in 1993. He improved on his early work on the 
simulation of the flocking behavior of birds, i.e., the boids. 
Visual apparatus and the control system was evolved to avoid 
collisions and to escape from the predator. Based on the 
experiment of the boids, Ward et al. evolved e-boids that groups 
of artificial fish capable of displaying schooling behavior in 
2001. In these studies above, the author reported that the 
creatures were not explicitly rewarded for coordinated motion. 
On the other hand, Quinn explored two ways of evolving 
controllers for a coordinated motion behavior by using two 
simulated Keeper robots. The first approach called clonal 
emphasize the member of the group are homogeneous and share 
the same genotype. The second approach called aclonal 
requires each member of the group with different genotypes, 
which means a heterogeneous group. The results indicate that 
alcohol evolution got better performance than clonal evolution. 
However, the authors report the heterogeneous approach may 
not be suit- able when the group size becomes larger and the 
role allocation in the group may be not clear. Perez Uribe et al. 
successfully evolved small groups of artificial ants for a simple 
foraging task by simulation to prove homogeneous groups 
achieve a better performance in 2003. 

The collective behaviors of an SRS can be divided into four 
main categories: spatially organizing, navigation, collective 
decision-making, and other collective behaviors. SRS 
researchers could use these basic collective behaviors to work 
on complex problems, for example, cooperative food foraging 
problems [25]. Spatially-organizing behaviors focus on how to 
organize and distribute robots and objects in space, which an 
SRS could organize and distribute in several ways: for instance, 
aggregation is the simplest spatial organization of robots in an 
SRS that are spatially close to each other in an environment. 
Navigation behaviors focus on how to organize and coordinate 
the movements of an SRS. These behaviors include collective 
exploration, coordinated motion, and collective transport, which 
allow an SRS to explore an environment, coordinate similarly 
to a flock of birds, or cooperate to transport an object that is too 
heavy for a single robot. Collective decision-making behaviors 
focus on how a group of robots influence each other when 
making choices. For example, to maximize an SRS’s 
performance, task allocation can be specialized by the robots 
themselves over different tasks. The behaviors that cannot be 
categorized are called other collective behaviors [26] [27]. 

These collective behaviors are basic behaviors that can be 
combined to take over complex real-world applications [28]. In 
cooperative food foraging problems, an SRS requires the most 
basic behaviors among benchmark problem in SRS. Self- 
organization of swarm behavior is needed to cooperate and to 
move heavy food sources, cooperatively. It also requires 
navigation behavior to search for food sources and to find a 
way back to the nest. Last but not least, decision-making 
behaviors allow robots in a cooperative food foraging problem 
to change their roles in seconds [29]. 
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III. METHODOLOGY 

A. Problem Formulation 

The cooperative food foraging problem was inspired by the 
behavior of ants searching for food sources and bringing the 
food to the nest. The task is to find better search strategies that 
maximize the ratio of bringing food to the nest in a specified 
environment [34] [35]. Fig. 1 shows the food foraging problem 
we investigate in this paper. The field is a 5,000×5,000 length 
square unit. The nest, a 1,000×1,000 square unit goal area, is 
located at the center of the field. One hundred autonomous 
mobile robots are randomly placed in the nest as the initial 
condition. Three food sources, F, are randomly placed in the 
field. Every robot is set to be able to move a food source up to a 
five-unit weight. However, all of the food sources are 24- unit 
weight, which means that one food source requires at least five 
robots to move it cooperatively in a specific direction. A new 
food source appears soon after one food source is collected 
during 5,000 time steps. Three obstacles are fixed in the field at 
a given point that we set in the field. The large static friction we 
set for each obstacle are impossible for robots to move it, which 
means the SRS must avoid these obstacles and maximize the 
ratio of bringing food sources to the nest. The goal of 
cooperative food foraging task is that SRS should collect as 
many food sources as possible. 

  

 
 

Fig. 1. The cooperative food foraging problem 

 

B. Robot Setup 
The SRS in this paper is assumed to be homogenous, i.e., all 

the robots in the system are assumed to have the same 
specifications, as shown in Fig. 2. Each robot is 50 length units 
in diameter and has two types of sensors: eight infrared (IR) 
sensors and an omni-Vision camera. The eight IR sensors are 
arranged around a robot. 4 IR sensors equally distributed in the 
front of the robot, and 2 IR sensors are equally distributed in the 
back of robot. The other 2 IR sensors are set at two sides of the 
robot, separately. Each IR sensor provides a value that is 
inversely proportional to the distance to an object, which might 
be a food source, an obstacle, a wall, or other robots within the 
sensor range of 64 length units. The values are normalized 
between zero and one. The omni-Vision camera is located at the 
center of each robot. 

The robot’s sensor abilities are summarized as follows: 

• Distance from an IR sensor to objects: Oi (i = 0, 1, ·∙  ·∙  ·∙  , 
7). 

 

 

Fig. 2. Robot information 

• Distance and direction to the nearest robot: rR1, sin θR1  

and cos  θR1. 

• Distance and direction to the second nearest robot:  rR2, 
sin θR2  and cos θR2. 

• Distance and direction to the nearest food source: rF 1, 
sin θF 1  and cos θF 1. 

• Distance and direction to the second nearest food 
source: rF 2, sin θF 2  and cos θF 2. 

• Direction to the nest:  sin θN  and cos θN . 

• Global   direction   of   the   robot: sin θD   and cos θD. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Artificial neural networks for robot controller 

Information obtained by the two types of sensor forms an 
input layer of a robot controller comprising 24 inputs connected 
to a motor on the right and another motor on the left that 
controls two differential driven wheels, enabling robot to move 
forward or to turn left or right using the rotational difference 
between wheels. In addition, each input neuron receives 
Gaussian noise, whose mean and standard deviation (SD) are 0 
and 0.03, respectively. Four fully inter-connected hidden layers 
are adopted from our preliminary experiments for computer 
simulation. Because the two motor wheels are controlled by 
EANN output, the output layer consists of two neurons. The 
neurons of recurrent artificial neural networks (RANN) are 
connected as shown in Fig. 3, as in our previous study [35]. 
Therefore, the number of synaptic connections is 162. All 
robots are assumed to have the same RANN controller. 
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C. CMA-NeuroES 
CMA-ES is a stochastic, iterative method for difficult 

nonlinear and no convex optimization problems. It has been 
proven to be a powerful evolutionary optimization algorithm for 
a variety of test functions, and benchmark problems, and it per- 
forms especially well in searching landscapes with 
discontinuities, noise, and local optima [36] [37]. 

CMA-ES was introduced by Hansen Ostermeier in 1996 
[38], and its use of covariance matrix adaptation made this 
evolution strategy a highly elaborate optimization algorithm. 
After weighted recombination was introduced to CMA-ES in 
2001 [39], the so-called rank-μ-update greatly reduced time 
complexity [40] in 2003. The performance of CMA- ES was 
improved after researchers found that increasing the population 
size can enhance global search characteristics [41]. In 2008, 
Raymond and Hansen presented a new approach that reduces 
evaluation time and space complexity for CMA-ES [42]. 

 
In CMA-ES, the offspring for the next generation (g + 1) 

are generated by sampling a multivariate normal distribution 
with mean m ∈  Rn and covariance C ∈  Rn×n   [43]. Each 

solution point x(g+1) at generation (g + 1) in this algorithm 
presents an n-dimensional real-valued decision variable vector. 
These variables are altered by recombination and mutation, 
which correspond to the calculation of the mean value of µ 
solution points selected from offspring λ. In this algorithm, 
mutation is used to add a normally distributed random vector 
with zero mean, and the covariance matrix is updated during 
evolution to improve searching. Formally, solution points x(g+1) 

of offspring k = 1,..., λ created in generation g are calculated 
as Algorithm 1. 

This is realized by adding a zero-mean random vector 
drawn from a multivariate normal distribution specified with 
step size σ(g) and covariance matrix C (g). m (g) is the mean 
value of the population in generation g, and  N (g)(0, σ(g)  

C(g)) is  a multivariate normal distribution with zero mean and 
covariance matrix C in the g-th generation. 

CMA-ES efficiency is provided by self-adaptation of C and σ. 
This allows CMA-ES to search efficiently in a highly correlated 
search space. For details, see reference [44] [38] [45]. 

CMA-NeuroES is a weight-evolving artificial neural network 
that applies CMA-ES to weight optimization. Since the 

adaptation of C allows efficient searching in the existence of 
correlation between parameters, we expect that CMA-NeuroES 
will show good performance on the optimization of the synaptic 
weights for our robot controller [36] [46] [47]. Every robot in 
our SRS has the same type of CMA-NeuroES controller. 
Each robot receives 16-input information from the environment. 
Swarm behavior fitness is calculated from a fitness table to 
evaluate a robotic swarm and update the mean value m, 
covariance matrix C and global step-size σ. CMA-NeuroES 
operates in five steps: 

Step 1: Set all synaptic neural network weights randomly at the 
initial generation. If it is not the first generation, create offspring 
from (1). 

Step 2: Start the simulation, and then evaluate the fitness of λ 
offspring by using the fitness table. 

Step 3: Send fitness and μ parents to CMA- NeuroES to create 
new offspring, and update all synaptic weights. 

Step 4: Choose synaptic weights with higher fitness as parents 
for the next generation. 

Step 5: Repeat Step 1 to start a new generation until the 
terminal condition is met. 

D. Incremental Evolution 
     In evolutionary robotics approaches, the situation where 

no initial search pressures exist can occur when solving highly 
complex tasks. The result of our experiment on CMA-NeuroES 
with conventional evolution for the cooperative food foraging 
problem shows that there are three runs wherein the SRS 
collected nothing. This situation, the bootstrap problem in ER, 
occurs when all of the individuals in the initial generation are 
scored with null fitness prohibiting the progress of evolution. 
Over-coming the bootstrap problem is one of the difficulties in 
the ER approach. Incremental evolution is an approach for 
solving bootstrap problems in highly complex tasks with 
evolutionary approaches. Mouret and Doncieux [48] 
categorized incremental evolution into four main approaches: 
staged evolution, environmental complexification, behavioral 
decomposition, and fitness shaping. Staged evolution is an 
approach in which an objective task is divided into ordered sub-
tasks, with every sub-task having a corresponding fitness 
function. A navigation task performed with staged evolution 
was presented by Bajaj and Ang Jr. [49]. A mobile robot was 
placed in a simple environment wherein only one obstacle 
existed. The fitness value was calculated using a straight 
navigation component and an avoiding obstacles component. At 
a later stage, the robot was placed in a more complex 
environment, in which closer walls and sharp turns had been 
added to the environment. The fitness value was calculated in 
the same manner as that in the first stage. In the third and final 
stages, the fitness value was calculated as the product of the 
value calculated in the previous stage and the wall-following 
factor. The final result was that the robot acquired the wall-
following behavior. 

Environmental complexification works on a fitness value 
calculation in which the task complexity can be continuously 
modified by operating on certain parameters. A typical example 
was presented by Gomez and Miikkulainen [50] in 1997. The 
task was for a predator whose behavior was controlled by an  
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TABLE I.  EVALUATION OF SRS BEHAVIOR 

 

 

 

 

evolving artificial neural network to capture a prey within a 
fixed number of time steps. 

Behavioral decomposition is an approach in which the robot 
controller is divided into sub- controllers. Every robot controller 
is evolved separately to solve a sub-task. Nardi et al. [51] 
evolved a position controller for an autonomous helicopter with 
three phases of incremental evolution. In the first phase, a  

(a) Sub-Task 1 

(b) Sub-Task 2 

(c) Goal Task 3 

Fig. 4. Three-stage incremental evolution for CFFT 

 

 

 

 

 

simple yaw controller was evolved. In the next phase, the rest 
of the controller, comprising three modules, specifically, 
guidance, pitch, and role modules, were evolved independently. 
In the final phase, these modular controllers were 
simultaneously evolved to enable them to adapt to each other. 

Fitness shaping uses a weighted sum of multiple evaluation 
criteria to create a fitness gradient for artificial evolution to 
follow. Nolfi and Parisi [52] evolved an autonomous robot that 
picks up objects. They used a fitness formula with five 
components, which correspond to the following scenarios: the 
robot is approaching the target object, the target object is in 
front of the robot, the robot tries to pick up the object, the robot 
has the object in its grasp, and the robot releases the object 
outside the area. 

To improve the performance of the SRS in solving a 
complex cooperative food foraging problem, we proposed 
staged evolution with environmental complexification using the 
CMA-NeuroES approach. In our cooperative food foraging task, 
we assume that three basic behaviors, (1) food-exploration, (2) 
food-transportation, and (3) obstacle avoidance, are required to 
solve our problem. Therefore, three-stage incremental evolution 
was provided, as shown in Fig. 4. 

Sub-Task 1 is a very simple problem, in which all three 
food sources are placed in the field without any obstacles in the 
environment. Every food source in Sub-task 1 requires at least 
three robots to move it (The dynamical friction for every food 
sources is 14 power units). The expectation is that SRS will 
acquire the basic behavior of food-exploration and food-
transportation to the nest, i.e., collect three food sources. When 
the SRS solved Sub-Task 1, Sub-Task 2, in which two obstacles 
are added to the field and the positions of food are changed is 
given to the SRS. The third basic behavior of obstacle 
avoidance will be acquired after Sub-Task 2. At that time, every 
food sources needs at least four robots to move it (We increased 
the dynamical friction to 19 power units). Our simulation will 
then randomly add a source after the first food source is 
collected. When the SRS has solved Sub-Task 2, a final task, 
Goal Task, in which two new obstacles are placed into the field 
with a narrow path between them, is posed. In that case, food 
sources are too large to be moved through the narrow path. This 
trap makes our cooperative food foraging task much more 
difficult. The SRS learns more advanced food-transportation 
through obstacle avoidance behavior. In Goal Task, new food 
sources are randomly created after each food source has been 
collected. Every food source in Goal Task requires at least five 
robots to move it. In our cooperative food foraging task, task- 
transitions to the next sub-task occur only when the SRS has 
solved the current sub-task continuously for ten generations. 
The number of generations for task-transition has been 
optimized in our preliminary experiment. 

The performance of SRS was also evaluated using the four 
components shown in Table 1. In the case of Sub-Task 1, the 
fitness value f of the SRS is calculated as f1 +f2 +f3 +f4. 

f1	  
f2	  

Touching    a    food  source  
A  food  source  reaches  the       nest  

+0.0015  × [time  steps]  
+3000  

f3	   A  food  source  is  moved  toward  the       nest   +1500  × (1  -‐‑    drem/dinit)  
f4	   All  foods  reach  the  nest   +1.0  × [remaining  time     steps]  
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In the case of Sub-Task 2, the fitness value f is calculated as 
f2+f3 +f4. The f1 is omitted, because the SRS has already 
learned the aggregation behavior for food sources through Sub-
Task 1. In the case of Goal Task, the simulation will run 5,000 
time steps to see how many food sources the SRS can collected. 
The fitness value of Goal Task f is calculated as f2+f3, because 
the SRS has already learned to touch food sources, and food 
sources will be added to the field continually during the 5,000 
time step simulation. 

IV. EXPERIMENTS 

A. CMA-NeuroES controller for cooperative food foraging 
problem 

The performance of SRS is depicted by four components 
shown in Table 1. The SRS collects 0.0015 at each robot and 
each time step when a robot touches one of the food sources. 
The sum of the points is set at the f1 component. The SRS 
collects a bonus point each time the swarm successfully returns 
to the nest with a food source. The sum of the points is set at the 
f2 component. However, since there can be cases wherein they 
cannot finish bringing the food source to the nest within the time 
limit, partial evaluation for moving a food source is considered.  
For each food source, the points awarded are calculated as 
1,500 ×  (1 - drem/dinit) at the end of the run, where drem  

and dinit, the remaining distance to the nest and the initial 
distance from the nest, respectively, are produced as points. The 
sum of these points is set as the f3  component.    When all the 
food sources have been moved to the nest, the f4 component is 
calculated as 1.0 ×  [remaining time steps] when the task is 
achieved. Otherwise, f4 is evaluated as zero. The CMA-
NeuroES parameter setting is as follows. The offspring λ are set 
at 100, and the initial SD is set at 0.2, with the initial co- 
variance matrix C= I. The computer simulations’ last 
generation is set at 500, and 10 independent experimental runs 
are conducted. 

B. Applying incremental evolution to CMA-NeuroES for the 
cooperative food foraging problem 

In our compearation computer simulation, (µ, λ)-FastES 
(FES) [53] [54] and a real-coded GA [55] 

 
 

 

 

 

 

 

 

 

 
Fig. 5.

 
Food sources that SRS collected

 

 [56] [57] [58] were also used to evolve the synaptic 
connection weights of the artificial neural network that 
generated the robots’ actions. To make the experiment 
comparable, four approaches are proposed to solve the 
cooperative food foraging problem: CMA-NeuroES with 
conventional evolution, CMA-NeuroES, FES, and real-coded 
GA with incremental evolution. The parameter settings of the 
other evolutionary algorithms are as follows. The real-coded 
GA’s population size is also set at 100. Tournament selection 
with sizes two and elite preservation with size one are adopted. 
The mutation rate is set at 1.0. This means that all the synaptic 
connections are mutated for each generation by adding 
Gaussian noise, who’s mean and SDs are 0 and 0.05, 
respectively. No crossover was used. These parameter tunings 
had been performed in our preliminary experiments. All the last 
generations of the artificial evolution are set at 500, and ten 
independent experimental runs were conducted. 

TABLE II.  AVERAGE NUMBER OF GENERATIONS IN WHICH THE SWARM 
SUCCEEDED IN SOLVING SUB-TASKS FOR INCREMENTAL EVOLUTION 

 

 

 

 

 

C. Robustness test 
The robustness of the best robot controllers with each 

approach was measured by conducting a breakdown test with 
the Goal Task (Fig. 4 (c)). In this test, the robots with the best 
controllers of each approach were selected. The fact that an 
SRS can work dynamically as individual robots are deployed 
has the advantage that the failure of individual robots will 
hardly affect the performance of an evolved SRS. In our test, 
the SRS continued its collective behavior for searching food 
sources and returning food sources to the nest, even after a few 
robots had stopped working.  

Every robot is tested to determine whether it is broken at 
every time step. The breakdown coefficient (Bc) is calculated as 
follows: 

    
     (1) 
 

In this equation, Sr is the stop rate, the Rs are the random 
steps from 0 to 5,000, and N is the number of robots. The test 
system will decide if any robot is broken by comparing Bc with 
a uniformly distributed double value between 0.0 and 1.0 from 
a random number generator’s through at every time step. If Bc 
is larger than the random number, then the robot will stop. All 
the broken robots remain in the field and can be detected by robot 
sensors. Stop counter Sc will count one after a robot is stopped 
to control the number of broken robots. 

Our breakdown simulation runs 5,000 time steps for ten 
iterations. Moreover, we consider the limitation of the stop 
counter by 10, 20, 30, 50, meaning that 10, 20, 30, 50 robots in 
the SRS, respectively, will be stopped randomly during the 
simulation. 

 Average   SD  
  FES   31.8   31.41  

Sub-‐‑Task  1   Real  Coded  GA   41.7   15.2  
  CMA-‐‑NeuroES   23.9   11.5  
  FES   149.4   66.3  

Sub-‐‑Task  2   Real  Coded  GA   136.6   46.8  
  CMA-‐‑NeuroES   115.4   38.8  
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Fig. 6. Fitness transitions of the best(solid line) and the average (dotted line) for each controller’s best performed run 

V. RESULTS 
Fig. 5 shows the result of the CMA-NeuroES controller for 

the cooperative food foraging problem. Our SRS successfully 
collected food sources in seven of ten runs and the maximum 
number of collected food sources was five.  

However, three runs performed very poorly; in them the 
SRS collected nothing at all.  

Fig. 6 shows the fitness transitions of the best individuals 
and the averages of each individual in the best run. Fig. 7 
shows that the incremental evolution approaches with 
evolutionary algorithms collected at least two food sources, 
indicating that they were successful in solving the Sub- Tasks 
for all the runs. The best run of CMA-NeuroES collected eight 
food sources in Goal Task, whereas conventional evolution had 
three runs that collected nothing. It is clear that not only the 
maximum fitness but also the average fitness of CMA- 
NeuroES with incremental learning is higher than those of 
others. Table. 2 shows the average number of generations and 
corresponding SDs required by the swarm to succeed in 
solving the sub-tasks. The incremental evolution approach 
with CMA-NeuroES required approximately 23 generations to 
solve Sub-Task 1 and approximately 115 additional 
generations to solve Sub-Task 2. Conversely, the FES and real-
coded GA required approximately 31 generations and 41  

 

Fig. 7. Food sources that SRS  collected 

generations to solve Sub-Task 1, respectively, and 
approximately 149 generations and 136 generations to solve 
Sub-Task 2,respectively. Therefore, incremental evolution 
with CMA-NeuroES exhibits better search ability to find better 
solutions. Table 3 shows the results of the average 
returned food source numbers, and the SD of four 
approaches for ten iterations. As a result, we see that 
conventional evolution performs poorly. When 50 robots 
stopped during our simulation, only one food source 
could be returned to the nest. In the incremental approach, 
the number of returned food sources of FES decreased to two, 
when the stopped robots number increased from 10 to 50. 
Real-coded GA shows its robustness, because the returned 
food source numbers decreased from four to three and the SD 
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shows its stability. However, CMA-NeuroES with incremental 
evolution performed best overall. When ten robots in the SRS 
stopped, the SRS could still return at least five food sources to 
the nest. The robust of CMA-NeuroES enables it to return 
four food sources even when half of the robots in the SRS are 
stopped. Typical behavior observed in robustness tests for an 

SRS with a CMA-NeuroES controller is shown in Fig. 8, 
wherein 50 robots are stopped during the simulation. Some 
robots immediately find a food source (Marked 2) after 
leaving the nest (Fig. 8(a)-8(b)). At the same time, some robots 
are stopped at the beginning of our robustness tests and 
become obstacles in the field. In Fig. 8(c), another food 

TABLE III.  NUMBER OF BROUGHT BACK FOOD SOURCES WHILE THE ROBOTS BREAKDOWN 

 

source (Marked 1) is found by another group of robots, when 
the first group of robots is trying to return the food sources to 
the nest. The food source (Marked 1) is collected after our SRS 
successfully bypassed the narrow pass in the field (Fig. 8(c)-
8(e)) while two food sources (Marked 2, 3) are already near the 
nest. An additional food source (Marked 4) is added to the field 
as soon as the first food source is collected (Fig. 8(f)). Nearly 
half of the robots are stopped at this moment, after the food 
sources (Marked 4 and 5) are collected ((Fig. 8(h)-8(i))). At the 
end of the simulation, 50 robots in our SRS have been stopped. 
Two groups of robots are still trying to collect the food sources 
(Marked 7 and 8) as the simulation ends (Fig. 8(j)). 

VI. CONCLUSIONS 
In this paper, we point out that the definition of swarm 

intelligence was extended in 2004 and there is almost no 
relationship between the cellular robotic systems with SRS. 
After that we success- fully applied the ER approach to a 
specific complex cooperative food foraging problem with a 
large SRS including one hundred homogenous robots. Swarm 
behavior emerged as a result of CMA-NeuroES with 
incremental evolution. The incremental evolution approach of 
staged evolution and environmental complexification helps ER 
avoid the bootstrap problem. The result of incremental 
evolution out- performs the conventional evolution approach 
for cooperative food foraging. In addition, a robustness test 
confirmed that the incremental evolution approach with CMA-
NeuroES is robust, because it can solve the same cooperative 
food foraging problem, even when half of the robots are 
stopped. We expect that our proposed method and robustness 
test will also hold for other SRS benchmarks. 

In the future, we will focus primarily on the analysis of 
SRSs [59] [60] [61] [62]. As an SRS can be considered as a 
large network with interactions among robots, we investigated 
finding subgroups in a robotic swarm [63] using the technology 
of complex networks. The next step will be to describe how 
subgroups in an SRS develop and change in a large robotic 
swarm using a duration table. That will enable researchers to 
understand the detail of task allocation in an SRS from a 
macroscopic viewpoint. 
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Fig. 8. Snapshots of the best cooperative collective behavior found by CMA-NeuroES with incremental evolution approach of breakdown rate 50%
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