

Abstract—Swarm robotics (SR) is a novel approach to the
coordination of large numbers of homogeneous robots; SR takes
inspiration from social insects. Each individual robot in an SR
system (SRS) is relatively simple and physically embodied.
Researchers aim to design robust, scalable, and flexible collective
behaviors through local interactions between robots and their
environment. In this study, a simulated robot controller evolved
by a recurrent artificial neural network with the covariance
matrix adaptation evolution strategy, i.e., CMA-NeuroES, is
adopted for incremental artificial evolution. Cooperative food
foraging is conducted by our proposed controller as one of the
most complex simulation applications. Since a high level of
robustness is expected in an SRS, several tests are conducted to
verify that incremental artificial evolution with CMA-NeuroES
generates the most robust robot controller among the ones tested
in simulation experiments.

I. INTRODUCTION
Swarm robotics (SR) [1] [2] [3] is a novel approach inspired

by the observation of social insects, such as ants and wasps.
These examples of social in- sects show that simple individuals
can successfully accomplish difficult tasks when they
coordinate as a group. This kind of system-level behavior,
which appears to be robust, scalable and flexible, is impressive
to researchers working on robotics. Similarly to these social
insects, SR systems (SRSs) are expected to accomplish tasks
beyond the capabilities of a single robot. By definition, an SRS
comprises a number of relatively simple and typically
homogeneous robots that a desired collective behavior emerges
from the local interactions among the agents and between the
agents and the environment, similar to the social insects.

The expression swarm intelligence was first conceived by
Beni to denote a class of cellular robotic systems in 1980s.
These works used many simple agents occupy one-or two-
dimensional environment to generate patterns and self-organize
there nearest- neighbor interactions. At that time, the definition
swarm intelligence only marginally covers works on cellular

robotic systems, which does not take the inspiration from social
insect behavior. Recently, the expression ”swarm intelligence”
moved on to cover a wide range of researches from
optimization to social insect studies, losing its robotics context
in the meantime. Nowadays, the term SR has started to be used
as the application of swarm intelligence to multi-robot systems.
Sahin first explicitly started this concern in 2005 [2].

As previously mentioned before, an SRS must have three
functional properties at the system level that are observed in
natural swarms:

Robustness is the ability to operate despite disturbances
resulting from the malfunctioning of its individuals. For
instance, lost individuals can be immediately replaced by others,
with the operation will continuing smoothly. This is seen as the
key advantage of the SRS approach

Flexibility is the ability of an SRS to generate modularized
solutions to various tasks, meaning that an SRS must be able to
adapt their behaviors to different environments.

Scalability is the ability of an SRS to operate with a wide
range of group sizes and support a large number of individuals.

The concept of swarm engineering was introduced by
Kazadi [6] in 2000 and the first formal introduction of swarm
engineering was released by Winfield et al. in 2004 [7].
Researchers indicated that finding a predictable and
controllable design methodology for swarms is the core
research direction of swarm engineering [8] [9]. Today,
although swarm engineering is still in a very early stage, core
topics of swarm intelligence, the design, and analysis have
already received attention from SR re- searchers. The notable
swarm-bots project [10] was begun in 2001 and terminated in
2005, and was followed by the swarmanoid project in 2006 [11].
New approaches to the design and implementation of self-
organizing and the self-assembling problem of autonomous
robots were studied in the project [12].

In this study, a cooperative food foraging problem with
obstacles in the environment is investigated. We have
augmented the covariance matrix adaptation evolution strategy
(CMA-ES) with an artificial neural network to create an

Robust Swarm Robotics System using CMA-

Neuroes with Incremental Evolution

Tian Yu, Toshiyuki Yasuda, and Kazuhiro Ohkura

Graduate School of Engineering, Hiroshima University

Higashi-hiroshima, Hiroshima, Japan

Yoshiyuki Matsumura

Graduate School of Science and Technology,

Shinshu University

Tokida, Ueda, Nagano, Japan

Masanori Goka

Graduate School of Engineering,

Fukuyama University

Fukuyama City, Japan

Keywords— Swarm Robotics System, Covariance Matrix

Adaptation, Robust Robotic System, Evolutionary Robotics,

Evolutionary Algorithms, Genetic Algorithm

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

217

efficient approach, CMA-NeuroES, for an SRS to solve simple
food foraging problems [30]. However, when an evolutionary
approach meets a complex task, it is typical that a simple ER
strategy will face a situation that all individuals of the first
generation are scored with the same null value; moreover, the
selection process cannot operate as expected. This bootstrap
problem occurs very often with difficult tasks. To avoid this
kind of failure, an incremental evolution approach with staged
evolution and environmental complexification for a cooperative
food foraging task is adopted.

In addition, an SRS can work dynamically as the individual
robots are deployed respectively. This kind of decentralized
control ensures that SRS has no common failure point. The
failure of individual robots will hardly affect SRS performance.
The resulting high-level robustness contrasts with the high
engineering cost of fault tolerance in conventional robotics
systems, and this is free as a basic property of an SRS.
Consequently, we compare the best controllers evolved by
CMA-NeuroES with two other evolutionary algorithms, fast
evolution strategies (FESs) [31] [32] and real-coded genetic
algorithms (GAs), [33] through random breakdown tests in
computer simulations. As an intrinsic property of SRS, we want
to find out whether the loss of some individuals can be
compensated for by others or not and also whether the
destruction of a particular part of the swarm is will stop its
operation or not.

 This paper is organized as follows: in Section 2, the related
work to SRS and the benchmarks of SRS are presented. Section
3 introduces the cooperative food foraging problem we use in
our experiments. Section 4 explains neuroevolution based on a
CMA-ES, and a pre-experiment on a CMA-NeuroES controller
for cooperative food foraging problem is described. In Section 5,
we explain why and how we apply incremental evolution to a
cooperative food foraging problem. Section 6 discusses the
computer simulation setup and the results of our proposed
method. Section 7 draws conclusions and describes our future
studies.

II. RELATED WORKS
SRS’s design methods can be divided into two categories

[13]. (i) Behavior-based design, where in the individual
behaviors of robots are designed by hand, is the most
commonly used design method. Researchers in this field have
proposed various behavior-based design approaches for
controlling an SRS. A typical example can be found in Kube
and Zhang [14]. They used a design method, i.e., task modeling,
where in a robot controller with a finite state machine is
carefully designed by a human programmer without a global
controller. In this case, individual behaviors were iteratively
adjusted until the desired collective behavior was obtained.
They demonstrated its effectiveness in box-pushing problems,
wherein the collective behavior was obtained after individual
behaviors were iteratively adjusted and tuned [15]. However,
this approach might have a limitation in problem complexity
since no other applications have been published since then. (ii)
Automatic design methods are famous for applying
evolutionary robotics (ER) that add artificial evolution to
robotic systems with a sensory-motor interface to the
environment, i.e., evolving a robot controller represented as an
artificial neural network [16] [17] [18].

Although the evolutionary robotics approach had been
successfully applied to the single robot domain, it recently has
been used for evolving group collective behaviors. And the
performance of an evolutionary computation approach is
strongly dependent on the performance of the artificial neural
network optimization [19]. Reynolds [69] was among the first
to apply evolutionary robotics techniques to collective behavior
making in 1993. He improved on his early work on the
simulation of the flocking behavior of birds, i.e., the boids.
Visual apparatus and the control system was evolved to avoid
collisions and to escape from the predator. Based on the
experiment of the boids, Ward et al. evolved e-boids that groups
of artificial fish capable of displaying schooling behavior in
2001. In these studies above, the author reported that the
creatures were not explicitly rewarded for coordinated motion.
On the other hand, Quinn explored two ways of evolving
controllers for a coordinated motion behavior by using two
simulated Keeper robots. The first approach called clonal
emphasize the member of the group are homogeneous and share
the same genotype. The second approach called aclonal
requires each member of the group with different genotypes,
which means a heterogeneous group. The results indicate that
alcohol evolution got better performance than clonal evolution.
However, the authors report the heterogeneous approach may
not be suit- able when the group size becomes larger and the
role allocation in the group may be not clear. Perez Uribe et al.
successfully evolved small groups of artificial ants for a simple
foraging task by simulation to prove homogeneous groups
achieve a better performance in 2003.

The collective behaviors of an SRS can be divided into four
main categories: spatially organizing, navigation, collective
decision-making, and other collective behaviors. SRS
researchers could use these basic collective behaviors to work
on complex problems, for example, cooperative food foraging
problems [25]. Spatially-organizing behaviors focus on how to
organize and distribute robots and objects in space, which an
SRS could organize and distribute in several ways: for instance,
aggregation is the simplest spatial organization of robots in an
SRS that are spatially close to each other in an environment.
Navigation behaviors focus on how to organize and coordinate
the movements of an SRS. These behaviors include collective
exploration, coordinated motion, and collective transport, which
allow an SRS to explore an environment, coordinate similarly
to a flock of birds, or cooperate to transport an object that is too
heavy for a single robot. Collective decision-making behaviors
focus on how a group of robots influence each other when
making choices. For example, to maximize an SRS’s
performance, task allocation can be specialized by the robots
themselves over different tasks. The behaviors that cannot be
categorized are called other collective behaviors [26] [27].

These collective behaviors are basic behaviors that can be
combined to take over complex real-world applications [28]. In
cooperative food foraging problems, an SRS requires the most
basic behaviors among benchmark problem in SRS. Self-
organization of swarm behavior is needed to cooperate and to
move heavy food sources, cooperatively. It also requires
navigation behavior to search for food sources and to find a
way back to the nest. Last but not least, decision-making
behaviors allow robots in a cooperative food foraging problem
to change their roles in seconds [29].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

218

III. METHODOLOGY

A. Problem Formulation

The cooperative food foraging problem was inspired by the
behavior of ants searching for food sources and bringing the
food to the nest. The task is to find better search strategies that
maximize the ratio of bringing food to the nest in a specified
environment [34] [35]. Fig. 1 shows the food foraging problem
we investigate in this paper. The field is a 5,000×5,000 length
square unit. The nest, a 1,000×1,000 square unit goal area, is
located at the center of the field. One hundred autonomous
mobile robots are randomly placed in the nest as the initial
condition. Three food sources, F, are randomly placed in the
field. Every robot is set to be able to move a food source up to a
five-unit weight. However, all of the food sources are 24- unit
weight, which means that one food source requires at least five
robots to move it cooperatively in a specific direction. A new
food source appears soon after one food source is collected
during 5,000 time steps. Three obstacles are fixed in the field at
a given point that we set in the field. The large static friction we
set for each obstacle are impossible for robots to move it, which
means the SRS must avoid these obstacles and maximize the
ratio of bringing food sources to the nest. The goal of
cooperative food foraging task is that SRS should collect as
many food sources as possible.

Fig. 1. The cooperative food foraging problem

B. Robot Setup
The SRS in this paper is assumed to be homogenous, i.e., all

the robots in the system are assumed to have the same
specifications, as shown in Fig. 2. Each robot is 50 length units
in diameter and has two types of sensors: eight infrared (IR)
sensors and an omni-Vision camera. The eight IR sensors are
arranged around a robot. 4 IR sensors equally distributed in the
front of the robot, and 2 IR sensors are equally distributed in the
back of robot. The other 2 IR sensors are set at two sides of the
robot, separately. Each IR sensor provides a value that is
inversely proportional to the distance to an object, which might
be a food source, an obstacle, a wall, or other robots within the
sensor range of 64 length units. The values are normalized
between zero and one. The omni-Vision camera is located at the
center of each robot.

The robot’s sensor abilities are summarized as follows:

• Distance from an IR sensor to objects: Oi (i = 0, 1, ·∙ ·∙ ·∙ ,
7).

Fig. 2. Robot information

• Distance and direction to the nearest robot: rR1, sin θR1

and cos θR1.

• Distance and direction to the second nearest robot: rR2,
sin θR2 and cos θR2.

• Distance and direction to the nearest food source: rF 1,
sin θF 1 and cos θF 1.

• Distance and direction to the second nearest food
source: rF 2, sin θF 2 and cos θF 2.

• Direction to the nest: sin θN and cos θN .

• Global direction of the robot: sin θD and cos θD.

Fig. 3. Artificial neural networks for robot controller

Information obtained by the two types of sensor forms an
input layer of a robot controller comprising 24 inputs connected
to a motor on the right and another motor on the left that
controls two differential driven wheels, enabling robot to move
forward or to turn left or right using the rotational difference
between wheels. In addition, each input neuron receives
Gaussian noise, whose mean and standard deviation (SD) are 0
and 0.03, respectively. Four fully inter-connected hidden layers
are adopted from our preliminary experiments for computer
simulation. Because the two motor wheels are controlled by
EANN output, the output layer consists of two neurons. The
neurons of recurrent artificial neural networks (RANN) are
connected as shown in Fig. 3, as in our previous study [35].
Therefore, the number of synaptic connections is 162. All
robots are assumed to have the same RANN controller.

– IR sensor
Nest – OmniVision camera

The second nearest
robot

qD
x

qF
Direction

qR rP

qN

rR

The nearest
food

The nearest
The second nearest food y robot

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

219

k

C. CMA-NeuroES
CMA-ES is a stochastic, iterative method for difficult

nonlinear and no convex optimization problems. It has been
proven to be a powerful evolutionary optimization algorithm for
a variety of test functions, and benchmark problems, and it per-
forms especially well in searching landscapes with
discontinuities, noise, and local optima [36] [37].

CMA-ES was introduced by Hansen Ostermeier in 1996
[38], and its use of covariance matrix adaptation made this
evolution strategy a highly elaborate optimization algorithm.
After weighted recombination was introduced to CMA-ES in
2001 [39], the so-called rank-μ-update greatly reduced time
complexity [40] in 2003. The performance of CMA- ES was
improved after researchers found that increasing the population
size can enhance global search characteristics [41]. In 2008,
Raymond and Hansen presented a new approach that reduces
evaluation time and space complexity for CMA-ES [42].

In CMA-ES, the offspring for the next generation (g + 1)

are generated by sampling a multivariate normal distribution
with mean m ∈ Rn and covariance C ∈ Rn×n [43]. Each

solution point x(g+1) at generation (g + 1) in this algorithm
presents an n-dimensional real-valued decision variable vector.
These variables are altered by recombination and mutation,
which correspond to the calculation of the mean value of µ
solution points selected from offspring λ. In this algorithm,
mutation is used to add a normally distributed random vector
with zero mean, and the covariance matrix is updated during
evolution to improve searching. Formally, solution points x(g+1)

of offspring k = 1,..., λ created in generation g are calculated
as Algorithm 1.

This is realized by adding a zero-mean random vector
drawn from a multivariate normal distribution specified with
step size σ(g) and covariance matrix C (g). m (g) is the mean
value of the population in generation g, and N (g)(0, σ(g)

C(g)) is a multivariate normal distribution with zero mean and
covariance matrix C in the g-th generation.

CMA-ES efficiency is provided by self-adaptation of C and σ.
This allows CMA-ES to search efficiently in a highly correlated
search space. For details, see reference [44] [38] [45].

CMA-NeuroES is a weight-evolving artificial neural network
that applies CMA-ES to weight optimization. Since the

adaptation of C allows efficient searching in the existence of
correlation between parameters, we expect that CMA-NeuroES
will show good performance on the optimization of the synaptic
weights for our robot controller [36] [46] [47]. Every robot in
our SRS has the same type of CMA-NeuroES controller.
Each robot receives 16-input information from the environment.
Swarm behavior fitness is calculated from a fitness table to
evaluate a robotic swarm and update the mean value m,
covariance matrix C and global step-size σ. CMA-NeuroES
operates in five steps:

Step 1: Set all synaptic neural network weights randomly at the
initial generation. If it is not the first generation, create offspring
from (1).

Step 2: Start the simulation, and then evaluate the fitness of λ
offspring by using the fitness table.

Step 3: Send fitness and μ parents to CMA- NeuroES to create
new offspring, and update all synaptic weights.

Step 4: Choose synaptic weights with higher fitness as parents
for the next generation.

Step 5: Repeat Step 1 to start a new generation until the
terminal condition is met.

D. Incremental Evolution
 In evolutionary robotics approaches, the situation where

no initial search pressures exist can occur when solving highly
complex tasks. The result of our experiment on CMA-NeuroES
with conventional evolution for the cooperative food foraging
problem shows that there are three runs wherein the SRS
collected nothing. This situation, the bootstrap problem in ER,
occurs when all of the individuals in the initial generation are
scored with null fitness prohibiting the progress of evolution.
Over-coming the bootstrap problem is one of the difficulties in
the ER approach. Incremental evolution is an approach for
solving bootstrap problems in highly complex tasks with
evolutionary approaches. Mouret and Doncieux [48]
categorized incremental evolution into four main approaches:
staged evolution, environmental complexification, behavioral
decomposition, and fitness shaping. Staged evolution is an
approach in which an objective task is divided into ordered sub-
tasks, with every sub-task having a corresponding fitness
function. A navigation task performed with staged evolution
was presented by Bajaj and Ang Jr. [49]. A mobile robot was
placed in a simple environment wherein only one obstacle
existed. The fitness value was calculated using a straight
navigation component and an avoiding obstacles component. At
a later stage, the robot was placed in a more complex
environment, in which closer walls and sharp turns had been
added to the environment. The fitness value was calculated in
the same manner as that in the first stage. In the third and final
stages, the fitness value was calculated as the product of the
value calculated in the previous stage and the wall-following
factor. The final result was that the robot acquired the wall-
following behavior.

Environmental complexification works on a fitness value
calculation in which the task complexity can be continuously
modified by operating on certain parameters. A typical example
was presented by Gomez and Miikkulainen [50] in 1997. The
task was for a predator whose behavior was controlled by an

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

220

TABLE I. EVALUATION OF SRS BEHAVIOR

evolving artificial neural network to capture a prey within a
fixed number of time steps.

Behavioral decomposition is an approach in which the robot
controller is divided into sub- controllers. Every robot controller
is evolved separately to solve a sub-task. Nardi et al. [51]
evolved a position controller for an autonomous helicopter with
three phases of incremental evolution. In the first phase, a

(a) Sub-Task 1

(b) Sub-Task 2

(c) Goal Task 3

Fig. 4. Three-stage incremental evolution for CFFT

simple yaw controller was evolved. In the next phase, the rest
of the controller, comprising three modules, specifically,
guidance, pitch, and role modules, were evolved independently.
In the final phase, these modular controllers were
simultaneously evolved to enable them to adapt to each other.

Fitness shaping uses a weighted sum of multiple evaluation
criteria to create a fitness gradient for artificial evolution to
follow. Nolfi and Parisi [52] evolved an autonomous robot that
picks up objects. They used a fitness formula with five
components, which correspond to the following scenarios: the
robot is approaching the target object, the target object is in
front of the robot, the robot tries to pick up the object, the robot
has the object in its grasp, and the robot releases the object
outside the area.

To improve the performance of the SRS in solving a
complex cooperative food foraging problem, we proposed
staged evolution with environmental complexification using the
CMA-NeuroES approach. In our cooperative food foraging task,
we assume that three basic behaviors, (1) food-exploration, (2)
food-transportation, and (3) obstacle avoidance, are required to
solve our problem. Therefore, three-stage incremental evolution
was provided, as shown in Fig. 4.

Sub-Task 1 is a very simple problem, in which all three
food sources are placed in the field without any obstacles in the
environment. Every food source in Sub-task 1 requires at least
three robots to move it (The dynamical friction for every food
sources is 14 power units). The expectation is that SRS will
acquire the basic behavior of food-exploration and food-
transportation to the nest, i.e., collect three food sources. When
the SRS solved Sub-Task 1, Sub-Task 2, in which two obstacles
are added to the field and the positions of food are changed is
given to the SRS. The third basic behavior of obstacle
avoidance will be acquired after Sub-Task 2. At that time, every
food sources needs at least four robots to move it (We increased
the dynamical friction to 19 power units). Our simulation will
then randomly add a source after the first food source is
collected. When the SRS has solved Sub-Task 2, a final task,
Goal Task, in which two new obstacles are placed into the field
with a narrow path between them, is posed. In that case, food
sources are too large to be moved through the narrow path. This
trap makes our cooperative food foraging task much more
difficult. The SRS learns more advanced food-transportation
through obstacle avoidance behavior. In Goal Task, new food
sources are randomly created after each food source has been
collected. Every food source in Goal Task requires at least five
robots to move it. In our cooperative food foraging task, task-
transitions to the next sub-task occur only when the SRS has
solved the current sub-task continuously for ten generations.
The number of generations for task-transition has been
optimized in our preliminary experiment.

The performance of SRS was also evaluated using the four
components shown in Table 1. In the case of Sub-Task 1, the
fitness value f of the SRS is calculated as f1 +f2 +f3 +f4.

f1	
f2	

Touching a food source
A food source reaches the nest

+0.0015 × [time steps]
+3000

f3	 A food source is moved toward the nest +1500 × (1 -‐‑ drem/dinit)
f4	 All foods reach the nest +1.0 × [remaining time steps]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

221

In the case of Sub-Task 2, the fitness value f is calculated as
f2+f3 +f4. The f1 is omitted, because the SRS has already
learned the aggregation behavior for food sources through Sub-
Task 1. In the case of Goal Task, the simulation will run 5,000
time steps to see how many food sources the SRS can collected.
The fitness value of Goal Task f is calculated as f2+f3, because
the SRS has already learned to touch food sources, and food
sources will be added to the field continually during the 5,000
time step simulation.

IV. EXPERIMENTS

A. CMA-NeuroES controller for cooperative food foraging
problem

The performance of SRS is depicted by four components
shown in Table 1. The SRS collects 0.0015 at each robot and
each time step when a robot touches one of the food sources.
The sum of the points is set at the f1 component. The SRS
collects a bonus point each time the swarm successfully returns
to the nest with a food source. The sum of the points is set at the
f2 component. However, since there can be cases wherein they
cannot finish bringing the food source to the nest within the time
limit, partial evaluation for moving a food source is considered.
For each food source, the points awarded are calculated as
1,500 × (1 - drem/dinit) at the end of the run, where drem

and dinit, the remaining distance to the nest and the initial
distance from the nest, respectively, are produced as points. The
sum of these points is set as the f3 component. When all the
food sources have been moved to the nest, the f4 component is
calculated as 1.0 × [remaining time steps] when the task is
achieved. Otherwise, f4 is evaluated as zero. The CMA-
NeuroES parameter setting is as follows. The offspring λ are set
at 100, and the initial SD is set at 0.2, with the initial co-
variance matrix C= I. The computer simulations’ last
generation is set at 500, and 10 independent experimental runs
are conducted.

B. Applying incremental evolution to CMA-NeuroES for the
cooperative food foraging problem

In our compearation computer simulation, (µ, λ)-FastES
(FES) [53] [54] and a real-coded GA [55]

Fig. 5.

Food sources that SRS collected

 [56] [57] [58] were also used to evolve the synaptic
connection weights of the artificial neural network that
generated the robots’ actions. To make the experiment
comparable, four approaches are proposed to solve the
cooperative food foraging problem: CMA-NeuroES with
conventional evolution, CMA-NeuroES, FES, and real-coded
GA with incremental evolution. The parameter settings of the
other evolutionary algorithms are as follows. The real-coded
GA’s population size is also set at 100. Tournament selection
with sizes two and elite preservation with size one are adopted.
The mutation rate is set at 1.0. This means that all the synaptic
connections are mutated for each generation by adding
Gaussian noise, who’s mean and SDs are 0 and 0.05,
respectively. No crossover was used. These parameter tunings
had been performed in our preliminary experiments. All the last
generations of the artificial evolution are set at 500, and ten
independent experimental runs were conducted.

TABLE II. AVERAGE NUMBER OF GENERATIONS IN WHICH THE SWARM
SUCCEEDED IN SOLVING SUB-TASKS FOR INCREMENTAL EVOLUTION

C. Robustness test
The robustness of the best robot controllers with each

approach was measured by conducting a breakdown test with
the Goal Task (Fig. 4 (c)). In this test, the robots with the best
controllers of each approach were selected. The fact that an
SRS can work dynamically as individual robots are deployed
has the advantage that the failure of individual robots will
hardly affect the performance of an evolved SRS. In our test,
the SRS continued its collective behavior for searching food
sources and returning food sources to the nest, even after a few
robots had stopped working.

Every robot is tested to determine whether it is broken at
every time step. The breakdown coefficient (Bc) is calculated as
follows:

 (1)

In this equation, Sr is the stop rate, the Rs are the random
steps from 0 to 5,000, and N is the number of robots. The test
system will decide if any robot is broken by comparing Bc with
a uniformly distributed double value between 0.0 and 1.0 from
a random number generator’s through at every time step. If Bc
is larger than the random number, then the robot will stop. All
the broken robots remain in the field and can be detected by robot
sensors. Stop counter Sc will count one after a robot is stopped
to control the number of broken robots.

Our breakdown simulation runs 5,000 time steps for ten
iterations. Moreover, we consider the limitation of the stop
counter by 10, 20, 30, 50, meaning that 10, 20, 30, 50 robots in
the SRS, respectively, will be stopped randomly during the
simulation.

 Average SD
 FES 31.8 31.41

Sub-‐‑Task 1 Real Coded GA 41.7 15.2
 CMA-‐‑NeuroES 23.9 11.5
 FES 149.4 66.3

Sub-‐‑Task 2 Real Coded GA 136.6 46.8
 CMA-‐‑NeuroES 115.4 38.8

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

222

Fig. 6. Fitness transitions of the best(solid line) and the average (dotted line) for each controller’s best performed run

V. RESULTS
Fig. 5 shows the result of the CMA-NeuroES controller for

the cooperative food foraging problem. Our SRS successfully
collected food sources in seven of ten runs and the maximum
number of collected food sources was five.

However, three runs performed very poorly; in them the
SRS collected nothing at all.

Fig. 6 shows the fitness transitions of the best individuals
and the averages of each individual in the best run. Fig. 7
shows that the incremental evolution approaches with
evolutionary algorithms collected at least two food sources,
indicating that they were successful in solving the Sub- Tasks
for all the runs. The best run of CMA-NeuroES collected eight
food sources in Goal Task, whereas conventional evolution had
three runs that collected nothing. It is clear that not only the
maximum fitness but also the average fitness of CMA-
NeuroES with incremental learning is higher than those of
others. Table. 2 shows the average number of generations and
corresponding SDs required by the swarm to succeed in
solving the sub-tasks. The incremental evolution approach
with CMA-NeuroES required approximately 23 generations to
solve Sub-Task 1 and approximately 115 additional
generations to solve Sub-Task 2. Conversely, the FES and real-
coded GA required approximately 31 generations and 41

Fig. 7. Food sources that SRS collected

generations to solve Sub-Task 1, respectively, and
approximately 149 generations and 136 generations to solve
Sub-Task 2,respectively. Therefore, incremental evolution
with CMA-NeuroES exhibits better search ability to find better
solutions. Table 3 shows the results of the average
returned food source numbers, and the SD of four
approaches for ten iterations. As a result, we see that
conventional evolution performs poorly. When 50 robots
stopped during our simulation, only one food source
could be returned to the nest. In the incremental approach,
the number of returned food sources of FES decreased to two,
when the stopped robots number increased from 10 to 50.
Real-coded GA shows its robustness, because the returned
food source numbers decreased from four to three and the SD

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

223

shows its stability. However, CMA-NeuroES with incremental
evolution performed best overall. When ten robots in the SRS
stopped, the SRS could still return at least five food sources to
the nest. The robust of CMA-NeuroES enables it to return
four food sources even when half of the robots in the SRS are
stopped. Typical behavior observed in robustness tests for an

SRS with a CMA-NeuroES controller is shown in Fig. 8,
wherein 50 robots are stopped during the simulation. Some
robots immediately find a food source (Marked 2) after
leaving the nest (Fig. 8(a)-8(b)). At the same time, some robots
are stopped at the beginning of our robustness tests and
become obstacles in the field. In Fig. 8(c), another food

TABLE III. NUMBER OF BROUGHT BACK FOOD SOURCES WHILE THE ROBOTS BREAKDOWN

source (Marked 1) is found by another group of robots, when
the first group of robots is trying to return the food sources to
the nest. The food source (Marked 1) is collected after our SRS
successfully bypassed the narrow pass in the field (Fig. 8(c)-
8(e)) while two food sources (Marked 2, 3) are already near the
nest. An additional food source (Marked 4) is added to the field
as soon as the first food source is collected (Fig. 8(f)). Nearly
half of the robots are stopped at this moment, after the food
sources (Marked 4 and 5) are collected ((Fig. 8(h)-8(i))). At the
end of the simulation, 50 robots in our SRS have been stopped.
Two groups of robots are still trying to collect the food sources
(Marked 7 and 8) as the simulation ends (Fig. 8(j)).

VI. CONCLUSIONS
In this paper, we point out that the definition of swarm

intelligence was extended in 2004 and there is almost no
relationship between the cellular robotic systems with SRS.
After that we success- fully applied the ER approach to a
specific complex cooperative food foraging problem with a
large SRS including one hundred homogenous robots. Swarm
behavior emerged as a result of CMA-NeuroES with
incremental evolution. The incremental evolution approach of
staged evolution and environmental complexification helps ER
avoid the bootstrap problem. The result of incremental
evolution out- performs the conventional evolution approach
for cooperative food foraging. In addition, a robustness test
confirmed that the incremental evolution approach with CMA-
NeuroES is robust, because it can solve the same cooperative
food foraging problem, even when half of the robots are
stopped. We expect that our proposed method and robustness
test will also hold for other SRS benchmarks.

In the future, we will focus primarily on the analysis of
SRSs [59] [60] [61] [62]. As an SRS can be considered as a
large network with interactions among robots, we investigated
finding subgroups in a robotic swarm [63] using the technology
of complex networks. The next step will be to describe how
subgroups in an SRS develop and change in a large robotic
swarm using a duration table. That will enable researchers to
understand the detail of task allocation in an SRS from a
macroscopic viewpoint.

REFERENCES
[1] Murphy R. Introduction to AI robotics. MIT press; 2000.
[2] Şahin E. Swarm robotics: From sources of inspiration to domains of

application. In: Swarm robotics. Springer; 2005:10–20.

[3] Dorigo M, Roosevelt AF. Swarm robotics. In: Special Issue, Autonomous

Robots. Citeseer; 2004.
[4] Winfield A. Special issue on swarm robotics. Swarm Intelligence

2008;2(2):69–72.
[5] Sahin E, Girgin S, Bayindir L, Turgut AE. Swarm robotics. Swarm

Intelligence 2008;1:87–100.
[6] Kazadi ST. Swarm engineering. Ph.D. thesis; California Institute of

Technology; 2000.
[7] Winfield AF, Harper CJ, Nembrini J. Towards dependable swarms and a

new discipline of swarm engineering. In: Swarm robotics. Springer;
2005:126–42.

[8] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural
to artificial systems. 1; Oxford university press; 1999.

[9] Beni G. From swarm intelligence to swarm robotics. In: Swarm Robotics.
Springer; 2005:1–9.

[10] Dorigo M, Tuci E, Groß R, Trianni V, Labella TH, Nouyan S, Ampatzis
C, Deneubourg JL, Baldassarre G, Nolfi S, et al. The swarm-bots project.
In: Swarm Robotics. Springer; 2005:31–44.

[11] Dorigo M, Tuci E, Groß R, Trianni V, Labella TH, Nouyan S, Ampatzis
C, Deneubourg JL, Baldassarre G, Nolfi S, et al. The swarm-bots project.
In: Swarm Robotics. Springer; 2005:31–44.

[12] SoysalO,S ̧ahinE. A macroscopic model for self-organized aggregation in
swarm robotic systems. In: Swarm robotics. Springer; 2007:27–42.

[13] Crespi V, Galstyan A, Lerman K. Top-down vs bottom-up
methodologies in multi-agent system design. Autonomous Robots
2008;24(3):303–13.

[14] Kube CR, Zhang H. Task modelling in collective robotics. In: Robot
colonies. Springer; 1997:53–72.

[15] Yim M, Zhang Y, Lamping J, Mao E. Distributed control for 3d
metamorphosis. Autonomous Robots 2001;10(1):41–56.

[16] Floreano D, Urzelai J. Evolutionary robotics: The next generation. Tech.
Rep.; AAI Books; 2000.

[17] Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A
survey. Journal of artificial intelligence research 1996;:237–85.

[18] Fogel DB, Fogel LJ. An introduction to evolutionary programming. In:
Artificial Evolution. Springer; 1996:21–33.

[19] Ferber J. Multi-agent systems: an introduction to distributed artificial
intelligence; vol. 1. Addison-Wesley Reading; 1999.

[20] Harvey I, Husbands P, Cliff D, et al. Issues in evolutionary robotics.
School of Cognitive and Computing Sciences, University of Sussex;
1992.

[21] Meyer JA, Husbands P, Harvey I. Evolutionary robotics: A survey of
applications and problems. In: Evolutionary Robotics. Springer; 1998:1–
21.

[22] Storn R, Price K. Differential evolution–a simple and ef- ficient heuristic
for global optimization over continuous spaces. Journal of global
optimization 1997;11(4):341– 359.

[23] Ohkura K, Yasuda T, Kawamatsu Y, Matsumura Y, Ueda K. Mbeann:
mutation-based evolving artifi- cial neural networks. In: Advances in
Artificial Life. Springer; 2007:936–45.

[24] Ohkura K, Yasuda T, Kotani Y, Matsumura Y. A swarm robotics
approach to cooperative package- pushing problems with evolving

Conventional Evolution FES Real Coded GA CMA-‐‑NeuroES

Breakdown 10 20 30 50 10 20 30 50 10 20 30 50 10 20 30 50
Average 2.3 1.0 1.3 1 3.5 2.8 3.3 2.8 4.4 4.2 3.9 3.7 5.1 4.5 4.9 4.3

SD 1.1 0.9 0.6 0.7 1.3 1.0 1.4 0.9 1.8 1.2 0.9 0.8 1.0 0.5 0.5 0.8

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

224

recurrent neural net- works. In: SICE Annual Conference 2010,
Proceedings of. IEEE; 2010:706–11.

[25] Camazine S, Deneubourg JL, Franks NR, Sneyd J, Bonabeau E,
Theraulaz G. Self-organization in biolog- ical systems (2001).

[26] Cliff D, Husbands P, Harvey I. Explorations in evolu- tionary robotics.
Adaptive behavior 1993;2(1):73–110.

[27] Ohkura K, Yasuda T, Matsumura Y. Coordinating the adaptive behavior
for swarm robotic systems by using topology and weight evolving
artificial neural net- works. In: Evolutionary Computation (CEC), 2010
IEEE Congress on. IEEE; 2010:1–8.

[28] Brambilla M, Ferrante E, Birattari M, Dorigo M. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence
2013;7(1):1–41.

[29] Ohkura K, Yasuda T, Sakamoto T, Matsumura Y. Evolving robot
controllers for a homogeneous robotic swarm. In: System Integration
(SII), 2011 IEEE/SICE International Symposium on. IEEE; 2011:708–13.

[30] Martinoli A, Easton K, Agassounon W. Modeling swarm robotic
systems: A case study in collaborative distributed manipulation. The
International Journal of Robotics Research 2004;23(4-5):415–36.

[31] BDack T, Hoffmeister F, Schwefel H. A survey of evolution strategies.
In: Proceedings of the 4th international conference on genetic algorithms.
1991:2–9.

[32] Ba ̈ck T, Schwefel HP. An overview of evolutionary algorithms for
parameter optimization. Evolutionary com- putation 1993;1(1):1–23.

[33] Goldberg DE. Genetic algorithm in search. Optimization and Machine
Learning 1989;.

[34] Sugawara K, Sano M. Cooperative acceleration of task performance:
Foraging behavior of interacting multi-robots system. Physica D:
Nonlinear Phenomena 1997;100(3):343–54.

[35] Yu T, Yasuda T, Ohkura K, Matsumura Y, Goka M. Cooperative
transport by a swarm robotic system based on cma-neuroes approach.
JACIII 2013;17(6):932–42.

[36] Hansen N. The cma evolution strategy: A tutorial. Vu le 2005;29.
[37] Igel C. Neuroevolution for reinforcement learning using evolution

strategies. In: Evolutionary Computation, 2003. CEC’03. The 2003
Congress on; vol. 4. IEEE; 2003:2588–95.

[38] Hansen N, Ostermeier A. Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation.
In: Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on. IEEE; 1996:312–7.

[39] Hansen N, Ostermeier A. Completely derandomized self-adaptation in
evolution strategies. Evolutionary computation 2001;9(2):159–95.

[40] Hansen N, Mu ̈ller S, Koumoutsakos P. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation
(cma-es). Evolutionary Computation 2003;11(1):1–18.

[41] Hansen N, Kern S. Evaluating the cma evolution strategy on multimodal
test functions. In: Parallel problem solving from nature-PPSN VIII.
Springer; 2004:282–91.

[42] Ros R, Hansen N. A simple modification in cma-es achieving linear time
and space complexity. In: Parallel Problem Solving from Nature–PPSN
X. Springer; 2008:296–305.

[43] Hansen N, Auger A, Ros R, Finck S, Poˇs ́ık P. Comparing results of 31
algorithms from the black-box optimization benchmarking bbob-2009.
In: Proceedings of the 12th annual conference companion on Genetic and
evolutionary computation. ACM; 2010:1689–96.

[44] Hansen N, Ostermeier A, Gawelczyk A. On the adaptation of arbitrary
normal mutation distributions in evolution strategies: The generating set
adaptation. In: ICGA. Citeseer; 1995:57–64.

[45] Moriguchi H, Honiden S. cma-tweann: efficient optimization of neural
networks via self-adaptation and seamless augmentation. In: Proceedings
of the 14th annual conference on Genetic and evolutionary computation.
ACM; 2012:903–10.

[46] Hansen N, Ostermeier A. Convergence properties of evolution strategies
with the derandomized covariance matrix adaptation: The Eufit
1997;97:650–4.

[47] FloreanoD,DürrP,MattiussiC. Neuroevolution: from architectures to
learning. Evolutionary Intelligence 2008;1(1):47–62.

[48] Mouret JB, Doncieux S. Incremental evolution of animats behaviors as a
multi-objective optimization. In: From Animals to Animats 10. Springer;
2008:210–9.

[49] Bajaj.D, Ang Jr MH. An incremental approach in evolving robot
behavior. In: Proceedings of the Sixth International Conference on
Control, Automation, Robotics and Vision. 2000:.

[50] Gomez F, Miikkulainen R. Incremental evolution of complex general
behavior. Adaptive Behavior 1997;5(3- 4):317–42.

[51] De Nardi R, Togelius J, Holland OE, Lucas SM. Evolution of neural
networks for helicopter control: Why modularity matters. In:
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. IEEE;
2006:1799– 806.

[52] Nolfi S, Parisi D. Evolving non-trivial behaviors on real robots: an
autonomous robot that picks up objects. In: Topics in artificial
intelligence. Springer; 1995:243–54.

[53] Rechenberg I. Evolution strategie: Optimerung technischer systeme nach
prinzipien des biologischen evolution. Friedrich Fromann? erlag,
Stuttgart; 1(9):7.

[54] Yao X, Liu Y. Fast evolution strategies. In: Evolutionary Programming
VI. Springer; 1997:149–61.

[55] Eshelman LJ, Schaffer JD. Real–coded genetic algorithms and interval-
schemata 1992;.

[56] Holland JH. Genetic algorithms and the optimal allocation of trials.
SIAM Journal on Computing 1973;2(2):88–105.

[57] Koza JR. Genetic programming: on the programming of computers by
means of natural selection; vol. 1. MIT press; 1992.

[58] Koza JR. Hierarchical genetic algorithms operating on populations of
computer programs. In: IJCAI. Citeseer; 1989:768–74.

[59] Everitt B. Cluster analysis. 1993. Edward Arnold and Halsted Press,
1993;.

[60] Girvan M, Newman ME. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences
2002;99(12):7821–6.

[61] Newman ME. Detecting community structure in networks. The European
Physical Journal B-Condensed Matter and Complex Systems
2004;38(2):321–30.

[62] Newman ME. Fast algorithm for detecting community structure in
networks. Physical review E 2004;69(6):066133.

[63] Ohkura K, Yasuda T, Matsumura Y. Analyzing macroscopic behavior in
a swarm robotic system based on clustering. In: SICE Annual
Conference (SICE), 2011 Proceedings of. IEEE; 2011:356–61.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

225

Fig. 8. Snapshots of the best cooperative collective behavior found by CMA-NeuroES with incremental evolution approach of breakdown rate 50%

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110303

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

226

