
Robustness Study for Longitudinal and Lateral 

Dynamics of RLV with Adaptive Backstepping 

Controller 

 

 

 
Abstract-This paper presents a robustness study of Adaptive 

backstepping method applied to a Reusable Launch vehicle 

longitudinal dynamics. RLV’s are subjected to large 

parameter uncertainities and disturbances in the atmosphere. 

Adaptive controller provides a consistently updating 

algorithm to cope with the parameter uncertainities and small 

disturbances. Longitudinal dynamics of the RLV is controlled 

using adaptive backstepping method and robustness study 

was performed by giving some inputs. The simulation is done 

through MATLAB and results indicate the necessity of a 

Robust controller in the presence of disturbances. 

Index Terms-Backstepping control, Adaptive backstepping 

control, Reusable Launch Vehicles (RLV), Longitudinal 

dynamics, pitch rate, yaw rate, sideslip angle, Lateral 

dynamics, etc.. 

I. INTRODUCTION 

Reusable launch vehicles (RLV’s) are used to deliver 

satellites and other celestial objects into space. After the 

deliver it returns backs. The dynamics of the RLV in the 

decent phase isjust like controlling an unmanned air vehicle 

in the atmosphere. The flight Reusable Launch Vehicle 

during its descent phase is subjected to a huge variation in 

Mach numbers and adverse flight envelopes and the system 

must be stabilized in the midst of these uncertainties.The 

control surfaces used for the orientation in space are 

ailerons and Rudders. The control surfaces are represented 

in Fig.1.The longitudinal dynamics are controlled by pitch 

rate and the latitude control is provided by yaw rate. 

Latitude control and longitudinal control can be seen from 

Fig.2 and Fig.3.  

The RLV considered here is X-38 vehicle which was 

developed by NASA . The equations of dynamics are 

obtained from from Diagroro Ito et al, [1] which involves 

the latitudinal and longitudinal dynamics. The nonlinear 

sets of equations are converted into a strict feedback form 

and pure feedback form by some assumptions [2]. This 

modified sets of equations are considered for the control 

purpose . Adaptive backstepping controller design for strict 

feedback systems are proposed by Kristic et al, [3]. 

Another application to the flight control was proposed by 

Ola Häkegard[4] which  was very helpful in formulating 

this work. Other applications to this adaptive backstepping 

controller was found to be applied on Inverted Pendulum 

[5][6] and Electrohydraulic actuators [7].The theory of 

robust adaptive control was proposed by Ionnau et al,[8] 

which deals with the robustness of adaptive control systems 

was used to verify the robustness stability of the systems 

under disturbances 

 The Paper has been organised as follows. Section 

II deals with the mathematical modelling of RLV, X-38. 

Section III  deals with the Theory of Adaptive 

backstepping controller. Section IV deals with the Design 

of Adaptive controllers for the prototype model. In Section 

V the Simulation results are shown with some discussions 

on it. Section VI is the Conclusion part and Section VII 

deals with Future Works. 

 

Fig.1: Control surfaces of RLV 

II. MATHEMATICAL MODELLING OF RLV 

The basic assumptions considered for the formulation are, 

the atmosphere is considered to be fixed w.r.to the earth 

and the disturbances are considered to be act from control 

surface or atmospheric turbulence. The basic Newton’s 

Second law of motion is considered. 

 𝐹 =
𝑑

𝑑𝑡
 𝑚 𝑉𝑇   and fevgvfgfevv(1) ds  

 𝑀 =
𝑑𝐻

𝑑𝑡
 

Where 𝑚  is the mass of the aircraft and 𝑉𝑇is the terminal 

velocity of the aircraft. M is the moment of inertia. 

The derivative 
𝑑𝑉𝑇

𝑑𝑡
 can be resolved as 

 
𝑑𝑉𝑇

𝑑𝑡
= 1𝑉𝑇

𝑑𝑉𝑇

𝑑𝑡
+ 𝑤𝑉𝑇       (2) 
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The final equations of motions are developed as 

  ∆𝐹 = 𝑖  ∆𝐹𝑥 + 𝑗  ∆𝐹𝑦 + 𝑘  ∆𝐹𝑧    (3) 

 The angular moment equation is also resolved as  

𝑑𝑉𝑇

𝑑𝑡
= 1𝐻

𝑑𝐻

𝑑𝑡
+ 𝑤𝐻     (4) 

The final moment equation is  

  ∆𝑀 = 𝑖  ∆𝐿 + 𝑗  ∆𝑀 + 𝑘  ∆𝑁                (5) 

Where L, M and N are the moment along  X, Y, Z axis 

respectively.  

The control surfaces are modelled to obtain the control 

input vectors. The elevon deflections are averaged to give 

the total elevon angle or elevator angle(𝛿𝑒) for pitch 

control and the average of the difference gives aileron 

angles forroll control 

 𝛿𝑒 =  
(𝛿𝑒𝐿+𝛿𝑒𝑅 )

2
  And 𝛿𝑎 =  

(𝛿𝑒𝐿−𝛿𝑒𝑅 )

2
                (6) 

By commanding the deflections either symmetrically or 

asymmetrically, these two pairs of surfaces provide the 

same control effects as that of conventional control 

surfaces.The non-linear set of equations of longitudinal 

motion for the X-38 vehicleis 

𝑞 =  
1

𝐼𝑦
 𝑀𝛼𝑠𝑖𝑛𝛼 + 𝑀𝑞𝑞 + 𝑀𝛿𝑒 𝑠𝑖𝑛𝛿𝑒 + 𝑀𝛿𝑟 𝑠𝑖𝑛𝛿𝑟         (7) 

𝛼  = 
𝑍𝛼

𝑉𝑇
𝑠𝑖𝑛𝛼 −

𝑔  𝑠𝑖𝑛𝛾  𝜃

𝑉𝑇
+  1 +

𝑍𝑞

𝑉𝑇
 𝑞 +

𝑍𝛿𝑒

𝑉𝑇
𝑠𝑖𝑛𝛿𝑟 +

𝑍𝛼

𝑉𝑇
𝑠𝑖𝑛𝛼 

 

Fig.2: longitudinal dynamics for aircraft 

These nonlinear set of equations are converted into strict 

feedback form by some assumptions [2] and the new set of 

equations are in the form of strict feedback form and is 

given by 

𝛼  = 
𝑍𝛼

𝑉𝑇
𝑠𝑖𝑛𝛼 + 𝑞 

𝑞 =  
1

𝐼𝑦
 𝑀𝛼𝑠𝑖𝑛𝛼 + 𝑀𝑞𝑞 + 𝑀𝛿𝑒 𝑠𝑖𝑛𝛿𝑒            (8) 

Where 𝛼 is the angle of attack,𝑞, the roll rate of the aircraft 

and 𝑍𝛼  is the uplift force provided by the control surface. 

The equations are further modified as 

𝛼  = ∅1𝑠𝑖𝑛𝛼 + 𝑞 

𝑞 =  ∅2𝑠𝑖𝑛𝛼 + ∅3𝑞 + ∅4𝑠𝑖𝑛𝛿𝑒  (9) 

The lateral dynamics equations are provided as 

𝛽  =
𝑌𝐵

𝑉𝑇
𝑠𝑖𝑛𝛽 − 𝑟 

𝑟 =
1

𝐼𝑧
 𝑁𝛽𝑠𝑖𝑛𝛽 + 𝑁𝛿𝑟 𝑠𝑖𝑛𝛿𝑟 (10)    gh 

 

Fig.3: Lateral dynamics of RLV 

where 𝑟 is the yaw rate, 𝑉𝑇is the terminal velocity, 𝛽 is the 

side slip angle. The set of equations are further modified as 

𝑥1 = ∅5𝑠𝑖𝑛𝑥1 − 𝑥2 

                                   𝑥2 = ∅6𝑠𝑖𝑛𝑥1 + ∅7𝑠𝑖𝑛𝑢             (11) 

 

These final sets of equations are used for the controller 

designing purpose 

III. THEORY OF ADAPTIVE BACKSTEPPING 

CONTROLLER 

Adaptive backstepping controller is a nonlinear control 

technique which allows the designer to construct 

controllers for a wide range of nonlinear systems in a 

structured, recursive way. The dynamic feedback part 

constantly updates the static feedback control part to 

deal with parametric uncertainities. 

  The tuning functions are introduced in 

adaptive backstepping technique [3] to reduce the over 

parameterization so that only one update law for each 

parameter is required. 

Consider a second order system 

𝑥1 = 𝜑(𝑥1)𝑇𝜃 + 𝑥2 
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𝑥2 = 𝑢                             (12)                         

Where (x1, x2) ∈ ℝ2 are the states and u ∈ℝ is the 

control input, 𝜑 𝑥1 is a smooth non linear function 

vector and 𝜃 is the vector of unknown constant 

parameters. The control objective is to regulate the 

states with any initial conditions. The adaptive 

backstepping starts by introducing regulating errors 

𝑒1 =  𝑥1 − 𝑥𝑟𝑒𝑓   and 𝑒2 =  𝑥2 −  𝛼. The virtual control 

𝛼 is defined in terms of parameter estimate 𝜃  as 

𝛼 𝑥1 , 𝜃, 𝑥𝑟𝑒𝑓  , 𝑥𝑟𝑒𝑓    = -𝐶1𝑒1 – 𝜑 𝑥1 
𝑇𝜃   +𝑥𝑟𝑒𝑓   ,   (13) 

𝐶1 > 0; 

 The virtual control reduces the (𝑒1 , 𝑒2) dynamics 

to 

𝑒 1 = 𝜑(𝑥1)𝑇𝜃 +  𝑒2 − 𝐶1𝑒1 

𝑒 2 = 𝑢 −
𝑑𝛼

𝑑𝑥1 
𝑥1 −

𝑑𝛼

𝑑𝑥𝑟𝑒𝑓  
𝑥𝑟𝑒𝑓 −

𝑑𝛼

𝑑𝑥𝑟𝑒𝑓 
𝑥𝑟𝑒𝑓   −

𝑑𝛼

𝑑𝜃 
𝜃           (14) 

Where 𝜃  = 𝜃 − 𝜃  is the parameter estimation error. A 

closed loop function is defined that not only penalizes the 

tracking errors, but also the estimation errors as 

𝑉 𝑒1,𝑒2,𝜃  =
1

2
 𝑒1

2 + 𝑒2 
2 +

1

𝛾
𝜃 2                  (15) 

Which is the lyapunov function that should a pdf and its 

negative should be ndf. For that the control law should be  

𝑢 = −𝐶2𝑒2 − 𝑒1 –
𝑑𝛼

𝑑𝑥𝑟𝑒𝑓  
𝑥𝑟𝑒𝑓 −

𝑑𝛼

𝑑𝑥𝑟𝑒𝑓 
𝑥𝑟𝑒𝑓   –

𝑑𝛼

𝑑𝜃 
𝜃   −

           
𝑑𝛼

𝑑𝑥1 
𝑥2 −

𝑑𝛼

𝑑𝑥1 
𝜑 𝑥1 

𝑇𝜃    Where 𝐶2 > 0                     

(16) 

And the update law for 𝜃   is given by 

𝜃  = 𝛾𝜑(𝑒1 −
𝑑𝛼

𝑑𝑥1 
𝑥2)                          (17) 

For the practical applications the plant will be subjected to 

low frequency unmodelled dynamics, measurement noises, 

computational round-off errors and sampling delays etc.. 

The uncertainities will hardly affect the robustness of the 

adaptive backstepping design. The lack of robustness is 

primarily due to the control laws which are nonlinear in 

general and therefore subjected to modelling error effects.  

IV. ADAPTIVE CONTROLLER DESIGN FOR THE 

LONGITUDINAL DYNAMICS OF RLV WITH 

DISTURBANCES 

IV.A.   LONGITUDINAL DYNAMICS 

Reusable launch vehicles are very much subjected 

to the disturbances and the responses may drift from the 

global boundness. This paper proposes a controller which 

can bring the system back inside the variation limits. An 

adaptive backstepping controller is designed for equation 

(9) and the system is made robust by incorporating leakage 

terms in it. 

Let 𝑒1 =  𝛼 − 𝛼𝑟𝑒𝑓                              (18) for 

regulation reference must be zero. We define the first 

lyapunov function as 

𝑉1 =
1

2
𝑒1

2 +
1

2𝛾
∅ 1

2
 , so as to make  𝑒1 zero as time tends to 

infinity. The control vector is selected as q and q should 

possess the value 

𝑞𝑑𝑒𝑠 =  𝛼𝑟𝑒𝑓 −  ∅ 1𝑠𝑖𝑛𝛼 − 𝐶1𝑒1   ,and           (19) 

∅  1 = 𝛾1𝑠𝑖𝑛𝛼𝑒1                             (20) 

The second error variable is defined as   𝑒2 =  𝑞 − 𝑞𝑑𝑒𝑠  

and the aim is to make  𝑒2 zero. So that the second 

lyapunov function is described as 

𝑉2 =
1

2
𝑒1

2 +
1

2
𝑒2

2 + 
1

2𝛾
∅ 2

2
+

1

2𝛾
∅ 3

2
+𝑉1(21) 

Select the control vector 𝛿𝑒 to make 𝑉2negative definite. 

For the adaptive controller the parameters are replaced by 

parameter updates so that the equation will be 

𝛿𝑒 =  𝑠𝑖𝑛−1  
1

∅4
 𝑞𝑑𝑒𝑠 −  ∅ 3𝑞 − ∅ 2𝑠𝑖𝑛𝛼 − 𝐶2𝑒2 −

                                                                               𝐶1𝑒1  (22) 

The other parameter update laws or tuning functions are 

given by  

∅  2 = 𝛾2𝑠𝑖𝑛𝛼𝑒2                           (23) 

∅  3 = 𝛾3𝑞𝑒2 

IV.B.   LATERAL DYNAMICS 

Let the error between 𝑥1 and 𝑥1𝑑𝑒𝑠  is 𝑒1. For the regulation 

𝑒1 should be zero. For that we introduce the lyapunov 

function 

𝑉1 =
1

2
𝑒1

2 +
1

2𝛾
∅ 5

2
(24) 

We get  𝑥2𝑑𝑒𝑠 =  ∅1𝑠𝑖𝑛𝑥5 − 𝑥 5𝑑𝑒𝑠 + 𝐶1𝑒1 to make 𝑉 1 

negative definite so the second error term arises which is  

 𝑒2 =  𝑥2 − 𝑥2𝑑𝑒𝑠 (25) 

Then  

𝑉2 =
1

2
𝑒1

2 +
1

2
𝑒2

2 + 
1

2𝛾
∅ 6

2
+𝑉1          (27) 

From (27) the control law is given as  

𝑢 =  𝑠𝑖𝑛−1  
1

∅7
 𝑥2𝑑𝑒𝑠 −  ∅ 6𝑠𝑖𝑛𝑥1 − 𝐶2𝑒2  (28) 
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The other update laws are given by 

∅  5 = 𝛾5𝑠𝑖𝑛𝑥1𝑒2(29) 

∅  6 = 𝛾6𝑠𝑖𝑛𝑥1𝑒2 

The controllers with adaptive gains and tuning functions  

are designed and the system along with the controller is 

subjected to test for the regulation and robustness. 

 

V. SIMULATION RESULTS AND DISCUSSIONS 

The RLV X-38 is modelled in this paper was used with the 

adaptive backstepping control. The variations of the angle 

of attack with different values of gains are shown in Fig.4. 

The variations of roll rate with different values of gains are 

plotted in Fig.5 

 

Fig.4:Regulation curve for angle of attack 

 

Fig.5: Regulation curve for roll rate 

From the responses it is found out that as gain value 

increases adaption will be very fast and regulation can be 

achieved early. Gain values used are 1, 10, 50 and 

corresponding results are shown above.  

 A bounded disturbance which is the combination 

of Gaussian noise and Band limited white noise (Fig.6) is 

added with the input of the system and the response is 

found to be exponentially growing after some time. This 

could be due to the variations of tuning functions  

∅  1 , ∅  2&∅  3. So the corresponding variations are plotted in 

Fig.7 and the variations are found to be approaching higher 

values, due to this the robust stability gets reduced. The 

problem with robust stability can be seen from the response 

curves which was given as Fig.8. The roll rate is 

approaching about 250 and angle of attack is found to be 

approaching about 60 in 10 seconds. Here the need for a 

robust controller arises to bring back the system to robust 

stability. 

 

Fig.6: Disturbance signal applied to the system 

Fig.7: Tuning Function variations 

 

Fig.8: Responses under Disturbance conditions 

Similarly tests are conducted for the lateral dynamics of the 

system. The yaw rate and side slip angle variations with 

time are plotted in Fig.9 and Fig.10 respectively 

 

Fig.9: yaw rate regulation for different ∅2 
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Fig.10: Side slipregulation for different ∅1 

The variation of the tuning functions when disturbance 

doesn’t acts is given in Fig.11. 

 

Fig.11: Tuning functions without disturbance 

The combination of bound noises Fig(6) are also applied to 

the system and the variation of tuning functions and 

corresponding responses are plotted in Fig.12 and Fig.13 

respectively 

 

 

Fig.12: Tuning function variation with disturbance 

 

Fig .13: Responses under disturbance 

 

 

 

 

 

 

VI. CONCLUSION 

In this paper, a nonlinear adaptive backstepping controller 

is designed for lateral and longitudinal dynamics of RLV 

based on the adaptive state feedback and parameter 

dependant Lyapunov function are proposed for parameter 

uncertainities with unknown input disturbances. We listed 

out the longitudinal dynamics equation for the RLV, X-38. 

The error between angle of attack with its desired value is 

regulated subjected to adaptive feedback controller and 

final control laws are derived. After giving a disturbance in 

the input of both dynamics, the longitudinal dynamics are 

found to be much worse than lateral dynamics. The tuning 

functions in the longitudinal dynamics are found to be 

responsible for the instability. The robustness against 

unknown disturbance has to be achieved. The simulation 

results show the performance of proposed control system. 

VII. FUTURE SCOPE 

The Lateral dynamics are much affected to the 

disturbances. So a controller which also gives robust 

stability must be added to the system. One of such 

controller was proposed by Petros Iannou[8]. The different 

methods suggested can be used to ensure parametric 

boundness to the tuning functions and thereby keeping the 

responses within limits. 
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