
Scalable Data Integration using Similar Joins to
Merge Large Key Value Pairs

Mohan Kumar A V Dr. Nanda Kumar A N

Department of Computer Science & Engineering Department of Information Science & Engineering
Don Bosco Institute of Technology New Horizon College of Engineering,

Visveswarya Technological University, Belgaum Visveswarya Technological University, Belgaum
Bengaluru, India Bengaluru, India

Abstract — The Huge amount of text data available should
be integrated thereby avoiding the squander of storage space,
which can be achieved by similar join technique. In this paper,
we propose, similar join technique, which is a based on Map
Reduce framework used is uses strings for similar join and
supports set based and character based functionalities. Key
value pairs are generated using signatures. Merge based
algorithm can be used implement, which merge large number of
value-key pairs which intern reduces the transmission cost. Here
we are using “light-weight” filter units to increase the
performance, which mainly trims large number of dissimilar
value-key pairs with less transmission cost.

Keywords — Data Integration; Map Reduce; similar Join;
Hadoop.

I. INTRODUCTION

Data Integration has become an important process as it
combines heterogeneous data and results in meaningful and
valuable data. It mainly includes virtual integration and
materialized warehousing in multiple dimensions [1], such as
volume, velocity, variety and veracity. Similar string joins is
a core operation in data integration field, which finds similar
pairs of strings from a given collection of strings. Many
algorithms have been proposed under string similar join.
Some of the algorithms have been used only for specified
datasets. Many algorithms could not be decided on which
kind of data it can be used. This leads to the development for
new scalable string Similar join algorithms.

On a large scale based, Map Reduce is a one of the
programming model which is used here to process the large
datasets, which are based on string similar join. The Map
Reduce function processes data in the distributed servers,
parallel, provides great redundancy and most fault-tolerant. A
Map Reduce function comprises of map () and reduce ()
functions, map () function performs the filter and sort
operation, whereas reduce () performs collective summary
operation. The main disadvantage of this method is it is too
costly for large datasets. This issues is addressed in Veronica
et al [2], they proposed a prefix filtering method which used
filter and verification framework steps.

In the first step, i.e. filter stage some tokens were selected
from the strings and set of candidate pairs were generated for
common tokens. In the second step, i.e. verification step,
candidate pairs were verified to generate the final results. But
this method had a biggest limitation with low trimming
power. Since single token is of small and short and has a low
selective and many dissimilar pairs will have a common

token and will not be trimmed. To overcome this limitation, a
new framework based on Map Reduce called similar Join
method is implemented for scalable string similarity joins. It
usually incorporates filter frame work and verification
framework. In the filter stage, signatures for each string were
generated and if two strings are similar, only then they share
common signatures. This property is used for the generation
of candidate pairs. In the verification stage, candidate pairs
will be verified to generate the final result [4, 9].

The Map Reduce function considers strings as value to
generate key – value pairs, and signatures as keys. These key
value pairs will be used to compute the candidate pairs which
share same key. This approach will generate a large number
of key value pairs which leads to increase in the transmission
cost. To avoid this, merging value-key pairs will reduce the
number of value-key pairs without decreasing the trimming
power. At last, to increase the performance, “light-weight”
filter units are used in key value to trim a large number of
dissimilar pairs without increasing the transmission cost.

II. PRELIMINARY

A. Problem Definition
Similar or similarity function is used to find the similar

strings pairs from the given set collection of strings. The
Similar between the two strings are evaluated by using
Similar functions, whereas character based similarity
functions and set based functions are the other two types of
Similar functions, many algorithms have been proposed to
manage Similar joins such as which generates signatures for
each string if two or more strings are similar and the
signature must be of same [12]. Many filtering techniques
were also proposed such as, count filtering [13, 18, 19],
length filtering [13, 16], position filtering [7, 20], and prefix
filtering [17], content filtering [20]. PartEnum [15], Pass Join
[16], FastSS [22] and Triejoin [23].

B. Related work
Character Based Similarity functions checks the number of

character operations required to transform one string to another.
Distance edit is a type of character similarity function. The Edit
operations which can be performed on the string are insertion of
a new characters, deletion of a characters and replacing a
character by another string. For example, if a=”John” and
b=”John”, the ED (a, b) =2, because the string can be
obtained by interchanging the 2 characters.

Set-Based similarity functions consider each word as a
string and similarity is found between each strings. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

1

different types of set-based similarity functions are Jacquard
Similarity, Dice Similarity and Cosine Similarity. They are
defined as below.

JAC (a, b) = |a∩b|/|a⋃b|

COS (a, b) = |a∩b|/√ (|a|.|b|)

DICE (a, b) = 2|a∩b|/|a|+|b|

Map Reduce is the heart of Hadoop. It is a simple
Programming Model which is designed to process and
generate huge data sets [5]. It is reliable scalable and does the
parallel processing of large data in a distributed environment
[8]. The Map Reduce algorithm consists of two main tasks.
Map and Reduce tasks to suitable servers in the cluster. After
the task is finished, the cluster collets and reduces the data
into proper results and sends it back to Hadoop server.

Fig 1: Map Reduce Architecture.

Fig 1, explain the Map Reduce architecture, the input data
is split into proper number of sizes and are assigned to map a
function. Map function generates intermediate <value-key>
pairs of the input data. The intermediate values will be sent to
the desired reduce node and the values will be sorted
according to keys, then the values will be merged to obtain
the final result. V-SMART [6] joins is another scalable Map
Reduce based framework which is applicable to sets, vectors
and multi sets. It also include two stage algorithm process,
where in first step it computes and joins the intermediate
results and in second step, it finds the similarity for all the
candidate key pairs. Another important issue while generating
the candidate pairs is duplicate records.

To address this issue, i.e., to find the duplicate records
efficiently, many algorithms were proposed such as, prefix
filtering method, positional filtering based method, suffix
filtering as mentioned in [7, 11]. Fuzzy Joins the fuzzy joins
used two main approaches such as approximate matching and
exact matching earlier. Recently fuzzy joins uses Map
Reduce [2, 13] to locate the similar sets like by using prefix-
based method [12]. Positional and suffix filtering techniques
[7] and then parallelizes the techniques. In [3], the methods
used for returning the correct output are exact matching
techniques.

III. SIMILAR JOIN FRAMEWORK

Similar Join is a Map Reduce framework for string
similar joins supports character similar functions and set

similar functions. The work flow of similar join algorithm
can be explained in three steps: Signature generation stage,
filter stage and verification stage.

A. Signature generation
The set-based similarity function generates the signature

for each string based on the string length and character-based
similarity function generates the signature based on edit
distance threshold. Since both the functions use different
methods to generate signature, a new method which can
generate signatures for both set-similar function and character
base similar function are used. The signature generation in
similar join algorithm can be done using two methods.
Position known method and multi match conscious method.
Both the can be used together as hybrid method to generate
the signatures. These methods will reduce the number of
signature generation significantly and avoids false negatives.

B. Filter stage
Filter stage consists of Map phase first and Reduce phase

second. The candidate pairs are generated using the methods
explained in signature generation stage. In Map phase,
signatures are considered as keys and strings as values. Since
two same similar strings have same key, they are scuffled to
same reduce task. As well, strings are replaced by string ids
which reduce transmission cost. In reduce phase, value key
pairs are considered as input which consists of signature and
strings list containing the signature. Then it divides the list
into two groups for <aid> and <bid>.

C. Verification stage

The Verification stage consists of two stages as seen in
Fig. 2. Both the stages again performs Map and Reduce
functions in which it eliminates the duplicates candidate pairs
which were generated due to two strings sharing multiple
signature. The string ids will be replaced by original strings
to verify the candidate pairs.

IV. MERGE-BASED ALGORITHMS

The Similar join algorithm generates large number
signatures based on value-key pairs. The main goal of the
merge-based algorithm to reduce the number of value-key
pairs. This method reduces the trimming power because the
sub string and the segment may be matching at different start
positions or with different lengths. In both the cases, the false
positives will get generated. Hence the same pruning power
should be retained as similar join algorithm by checking the
start position of the substring and length of the string are
within the bounds. In order to efficiently merge the original
value-key pairs to obtain the new value-key pairs, read the
string once to generate all value-key pairs and in reduce
phase split the input value list into tow lists to generate the
output.

V. LIGHT-WEIGHT FILTERS UNITS

The transmission cost and processing cost in the
verification stage is high to generate the candidate pairs.
Hence light-weight filter units are used usually to reduce the
number of candidate pairs. In Map phase stage of filter, attach
the original string for values field in each <value, key> pairs.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

2

In Reduce phase, the similarity for the candidate pairs
are calculated and the < value, key > pairs whose similarity
observed is less than the threshold present will be deleted.

Fig 2: Similar Join Flow Chart.

This method will minimizes the transmission cost of
candidate pairs, but found increased transmission cost for of
original strings. To address this, the original strings are
replaced by light-weight filter units. Also these filter units
can be used to trim dis similar pairs.

VI. EXPERIMENATL RESULTS

The Similar join algorithm is tested on twitter data sets. The
basic Map Reduce algorithm and similar join algorithm are
compared for the results. The basic Map Reduce and Similar join
algorithms are implemented on Hadoop on a single node.

Fig 3: Similar Join Comparison Graph.

The node is installed with 64-bit Ubuntu Server 14.04, Java

1.7 and above and Hadoop 2.7.1. Fig 3 shows the processing
time for both basic Map Reduce and similar join algorithms.

From the graph we can analyze that the similar join algorithm
finishes the processing of data much faster that basis Map
Reduce algorithms.

Fig 4: Reduction of data at each slave, Join for static result.

Fig. 4 shows the graph for Join operation of static data,
which uses the basic Map Reduce function to reduce the data
for three different slaves.

VII. CONCLUSION

Similar Join algorithm for strings similar join is based on
Map Reduce which is implemented by incorporating merge
algorithm and used the light weight filters for character based
similar functions and set similar functions. By using merge
algorithm, the number of value key pairs are reduced to large
number extent, without reducing the trimming power. Light
weight filter units reduces the number of candidate pairs,
which will increases the performance and reduces the
transmission cost. The Similar join algorithm is able now to
process both short strings and large documents.

REFERENCES

[1] Xing Luna Dong, Divesh Srivastva, Big Data Integration. ICDE
Seminar, 2013.

[2] Veronica, M. J. Carey, and C. Li. Efficient parallel set-similarity
joins using map reduce. In SIGMOD, pages 495–506, 2010.

[3] N. Afrati, A. D. Sharma, D. Menestrina, A. G. Parameswaran, and J.
D. Ullman. Fuzzy joins using map reduce. In ICDE, Pages 498–509,
2012.

[4] D. Deng, Y. Jiang, G. Li, J. Li, and C. Yu. Scalable column concept
determination for web tables using large knowledge bases. PVLDB,
6(13):1606–1617, 2013.

[5] Dean and S. Ghemawat: Map reduces: Simplified data processing on
large clusters. In OSDI, Pages 137–150, 2004.

[6] Metwally and C. Faloutsos. V-smart-join: A scalable map reduce
framework for all-pair similarity joins of multi sets and vectors.
PVLDB, 5(8):704–715, 2012.

[7] Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB, 1(1):933–
944, 2008

[8] F. Li, B C OOI, M, T, Ozsu AND S, Wu Distributed Data
Management using MAP Reduce ACM Compute Survey 2004

[9] Survey of Scalable String Similarity Joins Khalid F. Alfatmi 1,
Archana S. Vaidya2 Department of Computer Engineering, Savitri
Bai Phule Pune University, and Maharashtra, India

[10] String Similarity Joins: An Experimental Evaluation Yu Jiang,
Guoliang Li, Jianhua Feng, Wen-Syan Li, Department of Computer
Science, Tsinghua University, Beijing, China SAP Lab

[11] Mian Want, Tiezheng Nie, Derong Shen, Yue Kou, Ge Yu,
Intelligent Similarity Join for big data Integration10th Web
Information System and Application conference 383-388, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

3

[12] Ranieri baraglia, Gianmarco De Francisci Morales, Claudio

Lucchese Document Similarity Self-Join with Map Reduce, in
ICDM ’10.

[13] L. Gravano, P. G Iperiotis H. V. Jagadish, N. Koudas, S.
Muthukrishna and D. Srivastava, Approximate String Joins in a
database (almost) for free. In VLDB, pages 491-500, 2001.

[14] R. J. Bayardo, Y. Ma and R. Srikant Scaling up all Pairs similarity
search. In WWW, Pages 131-140, 2007.

[15] A. Arasu, V. Ganti, and R. Kaushi, Efficient exact set similarity
joins in VLDB, pages 918-929, 2006.

[16] G. Li. D. Deng, wang and J. Feng. Pass Join: A partition-based
Method for similarity joins. PVLDB, 5(3):253-624, 2011.

[17] S. Chaudhuri, V. Ganti and R. Kaushik: A primitive operator for
similarity joins in data cleaning. In ICDE, Page 5, 2006.

[18] C. Li, J. Lu and Y. Lu. Efficient merging and filtering algorithm for
appropriate string search. In ICDE, Pages 257-266, 2008.

[19] S. Sarawagi and A. Kirpal, Efficient set joins on similarity

predictions. In SIGMOD Conference, pages 743-754, 2004.
[20] C. Xiao, W. Wang and X. Lin, Ed-join: an efficient algorithm for

similarity joins with edit distance constraints. PVLDB, 1(1): 933-
944, 2008.

[21] W. Wang, J. Qin, C. Xiao, X. Lin and H.T. Shen, Venhunckjoin: An
efficient algorithm for edit distance similarity joins. IEEE Trans,
Knowl. Data Eng. 25(8):1916-1926, 2013.

[22] B. S. T. Bocek, E. Hunt Fast Similarity Search in large dictionaries
Technical, Report ifi-2007, 02, Department of Informatics,
University of Zurich, April 2007. http://fastss.csg.uzh.ch/

[23] J. Wang G. Li and J. Fang Can we beat the prefix filtering? An
adaptive framework for similarity joins and search. In SIGMOD
Conference, pages 85-96, 2012.

[24] J. Qin, W. Wang, Y. Lu. C, Xiao and X. Lin: Efficient exact edit
similarity query processing with the asymmetric signature scheme.
In SIGMOD Conference, Pages 1033-144, 2011.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

4

