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Abstract — The Huge amount of text data available should 
be integrated thereby avoiding the squander of storage space, 
which can be achieved by similar join technique. In this paper, 
we propose, similar join technique, which is a based on Map 
Reduce framework used is uses strings for similar join and 
supports set based and character based functionalities. Key 
value pairs are generated using signatures. Merge based 
algorithm can be used implement, which merge large number of 
value-key pairs which intern reduces the transmission cost. Here 
we are using “light-weight” filter units to increase the 
performance, which mainly trims large number of dissimilar 
value-key pairs with less transmission cost. 
 

Keywords — Data Integration; Map Reduce; similar Join; 
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I. INTRODUCTION 
 

Data Integration has become an important process as it 
combines heterogeneous data and results in meaningful and 
valuable data. It mainly includes virtual integration and 
materialized warehousing in multiple dimensions [1], such as 
volume, velocity, variety and veracity. Similar string joins is 
a core operation in data integration field, which finds similar 
pairs of strings from a given collection of strings. Many 
algorithms have been proposed under string similar join. 
Some of the algorithms have been used only for specified 
datasets. Many algorithms could not be decided on which 
kind of data it can be used. This leads to the development for 
new scalable string Similar join algorithms. 

On a large scale based, Map Reduce is a one of the 
programming model which is used here to process the large 
datasets, which are based on string similar join. The Map 
Reduce function processes data in the distributed servers, 
parallel, provides great redundancy and most fault-tolerant. A 
Map Reduce function comprises of map () and reduce () 
functions, map () function performs the filter and sort 
operation, whereas reduce () performs collective summary 
operation. The main disadvantage of this method is it is too 
costly for large datasets. This issues is addressed in Veronica 
et al [2], they proposed a prefix filtering method which used 
filter and verification framework steps. 

In the first step, i.e. filter stage some tokens were selected 
from the strings and set of candidate pairs were generated for 
common tokens. In the second step, i.e. verification step, 
candidate pairs were verified to generate the final results. But 
this method had a biggest limitation with low trimming 
power. Since single token is of small and short and has a low 
selective and many dissimilar pairs will have a common 

token and will not be trimmed. To overcome this limitation, a 
new framework based on Map Reduce called similar Join 
method is implemented for scalable string similarity joins. It 
usually incorporates filter frame work and verification 
framework. In the filter stage, signatures for each string were 
generated and if two strings are similar, only then they share 
common signatures. This property is used for the generation 
of candidate pairs. In the verification stage, candidate pairs 
will be verified to generate the final result [4, 9]. 

The Map Reduce function considers strings as value to 
generate key – value pairs, and signatures as keys. These key 
value pairs will be used to compute the candidate pairs which 
share same key. This approach will generate a large number 
of key value pairs which leads to increase in the transmission 
cost. To avoid this, merging value-key pairs will reduce the 
number of value-key pairs without decreasing the trimming 
power. At last, to increase the performance, “light-weight” 
filter units are used in key value to trim a large number of 
dissimilar pairs without increasing the transmission cost. 
 

II. PRELIMINARY  
 

A. Problem Definition  
Similar or similarity function is used to find the similar 

strings pairs from the given set collection of strings. The 
Similar between the two strings are evaluated by using 
Similar functions, whereas character based similarity 
functions and set based functions are the other two types of 
Similar functions, many algorithms have been proposed to 
manage Similar joins such as which generates signatures for 
each string if two or more strings are similar and the 
signature must be of same [12]. Many filtering techniques 
were also proposed such as, count filtering [13, 18, 19], 
length filtering [13, 16], position filtering [7, 20], and prefix 
filtering [17], content filtering [20]. PartEnum [15], Pass Join 
[16], FastSS [22] and Triejoin [23]. 
 

B.  Related work 
Character Based Similarity functions checks the number of 

character operations required to transform one string to another. 
Distance edit is a type of character similarity function. The Edit 
operations which can be performed on the string are insertion of 
a new characters, deletion of a characters and replacing a 
character by another string. For example, if a=”John” and 
b=”John”, the ED (a, b) =2, because the string can be 
obtained by interchanging the 2 characters. 

Set-Based similarity functions consider each word as a 
string and similarity is found between each strings. The 
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different types of set-based similarity functions are Jacquard 
Similarity, Dice Similarity and Cosine Similarity. They are 
defined as below. 

JAC (a, b) = |a∩b|/|a⋃b| 
 

COS (a, b) = |a∩b|/√ (|a|.|b|) 
 

DICE (a, b) = 2|a∩b|/|a|+|b| 
 

Map Reduce is the heart of Hadoop. It is a simple 
Programming Model which is designed to process and 
generate huge data sets [5]. It is reliable scalable and does the 
parallel processing of large data in a distributed environment 
[8]. The Map Reduce algorithm consists of two main tasks. 
Map and Reduce tasks to suitable servers in the cluster. After 
the task is finished, the cluster collets and reduces the data 
into proper results and sends it back to Hadoop server. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Map Reduce Architecture. 
 

Fig 1, explain the Map Reduce architecture, the input data 
is split into proper number of sizes and are assigned to map a 
function. Map function generates intermediate <value-key> 
pairs of the input data. The intermediate values will be sent to 
the desired reduce node and the values will be sorted 
according to keys, then the values will be merged to obtain 
the final result. V-SMART [6] joins is another scalable Map 
Reduce based framework which is applicable to sets, vectors 
and multi sets. It also include two stage algorithm process, 
where in first step it computes and joins the intermediate 
results and in second step, it finds the similarity for all the 
candidate key pairs. Another important issue while generating 
the candidate pairs is duplicate records. 

To address this issue, i.e., to find the duplicate records 
efficiently, many algorithms were proposed such as, prefix 
filtering method, positional filtering based method, suffix 
filtering as mentioned in [7, 11]. Fuzzy Joins the fuzzy joins 
used two main approaches such as approximate matching and 
exact matching earlier. Recently fuzzy joins uses Map 
Reduce [2, 13] to locate the similar sets like by using prefix-
based method [12]. Positional and suffix filtering techniques 
[7] and then parallelizes the techniques. In [3], the methods 
used for returning the correct output are exact matching 
techniques.  

III. SIMILAR JOIN FRAMEWORK 
 

Similar Join is a Map Reduce framework for string 
similar joins supports character similar functions and set 

similar functions. The work flow of similar join algorithm 
can be explained in three steps: Signature generation stage, 
filter stage and verification stage. 
 

A.  Signature generation 
The set-based similarity function generates the signature 

for each string based on the string length and character-based 
similarity function generates the signature based on edit 
distance threshold. Since both the functions use different 
methods to generate signature, a new method which can 
generate signatures for both set-similar function and character 
base similar function are used. The signature generation in 
similar join algorithm can be done using two methods. 
Position known method and multi match conscious method. 
Both the can be used together as hybrid method to generate 
the signatures. These methods will reduce the number of 
signature generation significantly and avoids false negatives. 
 

B.  Filter stage 
Filter stage consists of Map phase first and Reduce phase 

second. The candidate pairs are generated using the methods 
explained in signature generation stage. In Map phase, 
signatures are considered as keys and strings as values. Since 
two same similar strings have same key, they are scuffled to 
same reduce task. As well, strings are replaced by string ids 
which reduce transmission cost. In reduce phase, value key 
pairs are considered as input which consists of signature and 
strings list containing the signature. Then it divides the list 
into two groups for <aid> and <bid>. 
 
C.  Verification stage 

The Verification stage consists of two stages as seen in 
Fig. 2. Both the stages again performs Map and Reduce 
functions in which it eliminates the duplicates candidate pairs 
which were generated due to two strings sharing multiple 
signature. The string ids will be replaced by original strings 
to verify the candidate pairs. 
 

IV. MERGE-BASED ALGORITHMS 
 

The Similar join algorithm generates large number 
signatures based on value-key pairs. The main goal of the 
merge-based algorithm to reduce the number of value-key 
pairs. This method reduces the trimming power because the 
sub string and the segment may be matching at different start 
positions or with different lengths. In both the cases, the false 
positives will get generated. Hence the same pruning power 
should be retained as similar join algorithm by checking the 
start position of the substring and length of the string are 
within the bounds. In order to efficiently merge the original 
value-key pairs to obtain the new value-key pairs, read the 
string once to generate all value-key pairs and in reduce 
phase split the input value list into tow lists to generate the 
output. 
 

V. LIGHT-WEIGHT FILTERS UNITS 
 

The transmission cost and processing cost in the 
verification stage is high to generate the candidate pairs. 
Hence light-weight filter units are used usually to reduce the 
number of candidate pairs. In Map phase stage of filter, attach 
the original string for values field in each <value, key> pairs. 
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In Reduce phase, the similarity for the candidate pairs 
are calculated and the < value, key > pairs whose similarity 
observed is less than the threshold present will be deleted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: Similar Join Flow Chart. 
 

This method will minimizes the transmission cost of 
candidate pairs, but found increased transmission cost for of 
original strings. To address this, the original strings are 
replaced by light-weight filter units. Also these filter units 
can be used to trim dis similar pairs. 
 

VI. EXPERIMENATL RESULTS 
 

The Similar join algorithm is tested on twitter data sets. The 
basic Map Reduce algorithm and similar join algorithm are 
compared for the results. The basic Map Reduce and Similar join 
algorithms are implemented on Hadoop on a single node. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig 3: Similar Join Comparison Graph. 

 
The node is installed with 64-bit Ubuntu Server 14.04, Java 

1.7 and above and Hadoop 2.7.1. Fig 3 shows the processing 
time for both basic Map Reduce and similar join algorithms. 

From the graph we can analyze that the similar join algorithm 
finishes the processing of data much faster that basis Map 
Reduce algorithms. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Reduction of data at each slave, Join for static result. 
 

Fig. 4 shows the graph for Join operation of static data, 
which uses the basic Map Reduce function to reduce the data 
for three different slaves. 
 

VII. CONCLUSION 
 

Similar Join algorithm for strings similar join is based on 
Map Reduce which is implemented by incorporating merge 
algorithm and used the light weight filters for character based 
similar functions and set similar functions. By using merge 
algorithm, the number of value key pairs are reduced to large 
number extent, without reducing the trimming power. Light 
weight filter units reduces the number of candidate pairs, 
which will increases the performance and reduces the 
transmission cost. The Similar join algorithm is able now to 
process both short strings and large documents. 
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