Secondary k-Generalized Inverse of a s-k-Normal Matrices

S. Krishnamoorthy ${ }^{1}$ And G.Bhuvaneswari ${ }^{2}$ *
${ }^{1}$ Head \& Professor of Mathematics, Ramanujan Research Center, Govt. Arts College (Autonomous), Kumbakonam, Tamilnadu-612001, India.
${ }^{2}$ Research Scholar, Lecturer in Mathematics, Ramanujan Research Center, Govt. Arts College (Autonomous), Kumbakonam, Tamilnadu - 612001, India.

Abstract

:

Secondary k-generalized inverse of a given square matrix is defined and its characterizations are given. Secondary k- generalized inverses of s-k normal matrices are discussed.

Ams Classification : 15A09,15A57.
Keywords: s-k normal, s-k unitary, nilpotent, s-k hermitian matrices.

1.Introduction:

Ann Lee initiated the study of secondary symmetric matrices in[1]. The concept of secondary k normal matrices was introduced in [3]. Some equivalent conditions on secondary k - normal matrices are given in [4]. In this paper we describe secondary k - generalized inverse of a square matrix, as the unique solution of a certain set of equation. This secondary k-generalized inverse exists for particular kind of square matrices. Let $\mathrm{C}_{\mathrm{nxn}}$ denote the space of nxn complex matrices. We deal with secondary k-generalized inverse of s-k normal matrices. Throught this paper, if $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$, then we assume that if $\mathrm{A} \neq 0$ then $\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \neq 0$

$$
\begin{equation*}
\text { i.e., } \mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=0 \quad \Rightarrow \mathrm{~A}=0 \quad \rightarrow \tag{1}
\end{equation*}
$$

It is clear that the conjugate secondary k transpose satisfies the following properties. $\mathrm{KV}(\mathrm{A}+\mathrm{B})^{*} \mathrm{VK}=\left(\mathrm{KVA}^{*} \mathrm{VK}\right)+\left(\mathrm{KVB}^{*} \mathrm{VK}\right)$

$$
\begin{aligned}
& \mathrm{KV}(\lambda \mathrm{~A})^{*} \mathrm{VK}=\bar{\lambda}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \\
& \mathrm{KV}(\mathrm{BA})^{*} \mathrm{VK}=\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\left(\mathrm{KVB}^{*} \mathrm{VK}\right) \\
& \text { Now if } \mathrm{BA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{CA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \quad \text { then by (1) } \\
& \mathrm{BA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)-\mathrm{CA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=0 \\
& \Rightarrow\left(\mathrm{BA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)-\mathrm{CA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\right)\left(\mathrm{KV}(\mathrm{~B}-\mathrm{C})^{*} \mathrm{VK}\right)=0 \\
& \Rightarrow(\mathrm{BA}-\mathrm{CA})\left(\mathrm{KV}(\mathrm{BA}-\mathrm{CA})^{*} \mathrm{VK}\right)=0 \\
& \Rightarrow(\mathrm{BA}-\mathrm{CA})=0 \\
& \Rightarrow \mathrm{BA}=\mathrm{CA} \\
& \text { Therefore } \mathrm{BA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{CA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \Rightarrow \mathrm{BA}=\mathrm{CA} \rightarrow \text { (2) } \\
& \text { Similarly, } \mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}=\mathrm{C}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A} \\
& \Rightarrow \mathrm{~B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{C}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \rightarrow(3)
\end{aligned}
$$

Definition 1.1: [3]
A Matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be secondary k-normal (s-k normal) if
$\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}$

Example 1.2:

$$
\begin{aligned}
\mathrm{A}=\left(\begin{array}{cccc}
i & 2 & 3 & 4 \\
4 & -i & 2 & 3 \\
3 & 4 & i & 2 \\
2 & 3 & 4 & -i
\end{array}\right) \text { is a s-k normal matrix for } \mathrm{k}=(1,3),(2,4) \text { the permutation matrix be } \\
\mathrm{K}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \text { and } \mathrm{V}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Definition 1.3:

A matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be secondary k-unitary (s-k unitary) if

$$
\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}=I
$$

Example 1.4:

$\mathrm{A}=\left(\begin{array}{cccc}i & -1 & 1 & 0 \\ -1 & -i & 0 & 1 \\ 1 & 0 & i & -1 \\ 0 & 1 & -1 & -i\end{array}\right) \quad$ is a s-k unitary matrix

Section 2: Secondary k-Generalized inverses of a matrix

Theorem 2.1:

For any $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$, the four equations

$$
\begin{aligned}
& \mathrm{AXA}=\mathrm{A} \quad \rightarrow(4) \\
& \mathrm{XAX}=\mathrm{X} \quad \rightarrow(5) \\
& \mathrm{KV}(\mathrm{AX})^{*} \mathrm{VK}=\mathrm{AX} \quad \rightarrow(6)
\end{aligned}
$$

$$
\mathrm{KV}(\mathrm{XA})^{*} \mathrm{VK}=\mathrm{XA} \quad \rightarrow(7)
$$

have a unique solution for any $A \in C_{n x n}$.
Proof: First, we shall show that equations (5) \& (6) are equivalent to the single equation

$$
\mathrm{XKV}(\mathrm{AX})^{*} \mathrm{VK}=\mathrm{X} \rightarrow(8)
$$

From equations (5) and (6), (7) follows, since it is merely (6) substituted in (5) Conversely, equation
(8) implies

$$
\operatorname{AXKV}(\mathrm{AX})^{*} \mathrm{VK}=\mathrm{AX}
$$

Since the left hand side is s-k hermitian, (6) follows. By substituting (6) in (8), we get $\mathrm{XAX}=\mathrm{X}$ which is actually (5). Therefore (5) and (7) are equivalent to (8) Similarly, (4) \& (7) are equivalent to the equation

$$
\mathrm{XA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{KVA}^{*} \mathrm{VK} \rightarrow(9)
$$

Thus to find a solution for the given set of equations, it is enough to find an X satisfying (8) \& (9). Now the expressions $\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right),\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{2},\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{3} \ldots$ cannot all be linearly independent (i.e) there exists a relation

$$
\lambda_{1}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)+\lambda_{2}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{2}+\ldots+\lambda_{\mathrm{k}}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{k}}=0 \rightarrow(10)
$$

Where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{k}}$ are not all zero. Let λ_{r} be the first non zero λ. (i.e) $\lambda_{1}=\lambda_{2}=\ldots \lambda_{\mathrm{r}-1}=0$. Therefore (10) implies that

$$
\lambda_{\mathrm{r}}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{r}}=-\left\{\lambda_{\mathrm{r}+1}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{r}+1}+\ldots+\lambda_{\mathrm{m}}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{m}}\right\}
$$

If we take $B=-\lambda_{\mathrm{r}}^{-1}\left\{\lambda_{\mathrm{r}+1} \mathrm{I}+\lambda_{\mathrm{r}+2}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)+\ldots+\lambda_{\mathrm{m}}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{m}-\mathrm{r}-1}\right\}$ Then
$\mathrm{B}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{r}+1}=-\lambda_{\mathrm{r}}^{-1}\left\{\lambda_{\mathrm{r}+1}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{r}+1}+\ldots+\lambda_{\mathrm{m}}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{m}}\right\}$ $\mathrm{B}\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{r}+1}=\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{r}}$. By using (2) \& (3) repeatedly, we get

$$
\mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{KVA}^{*} \mathrm{VK} \quad \rightarrow(11)
$$

Now if we take $\mathrm{X}=\mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$ then (11) implies that this X satisfies (9)
implies (7), we have $\left(\mathrm{KV}(\mathrm{XA})^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{KVA}^{*} \mathrm{VK}$
$\Rightarrow \mathrm{B}\left(\mathrm{KV}(\mathrm{XA})^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$

Therefore $\mathrm{X}=\mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$ satisfies (8). Thus $\mathrm{X}=\mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$ is a solution for the given set of equations.

Now let us prove that this X is unique. Suppose that X and Y satisfy (8) and (9). Then by substituting (7) in (5) and (6) in (4), we obtain

$$
\left(\mathrm{KV}(\mathrm{XA})^{*} \mathrm{VK}\right) \mathrm{X}=\mathrm{X} \text { and }\left(\mathrm{KV}(\mathrm{AX})^{*} \mathrm{VK}\right) \mathrm{A}=\mathrm{A}
$$

Also, $\mathrm{Y}=\left(\mathrm{KV}(\mathrm{YA})^{*} \mathrm{VK}\right) \mathrm{Y}$ and $\mathrm{KVA}^{*} \mathrm{VK}=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{AY}$

Now $\mathrm{X}=\mathrm{X}\left(\mathrm{KVX}^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$

$$
\begin{aligned}
& =\mathrm{X}\left(\mathrm{KVX}^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{AY} \\
& =\mathrm{X}\left(\mathrm{KV}(\mathrm{AX})^{*} \mathrm{VK}\right) \mathrm{AY} \\
& =\mathrm{XAY} \\
& =\mathrm{XA}\left(\mathrm{KV}(\mathrm{YA})^{*} \mathrm{VK}\right) \mathrm{Y} \\
& =\mathrm{XA}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\left(\mathrm{KVY}^{*} \mathrm{VK}\right) \mathrm{Y} \\
& =\left(\mathrm{KVA}^{*} \mathrm{VK}\right)(\mathrm{KVY}
\end{aligned}
$$

$$
\mathrm{X}=\mathrm{Y}
$$

Therefore X is unique.
Definition 2.2: Let $A \in \mathrm{C}_{\mathrm{nxn}}$. The unique solution of (4), (5), (6) and (7) is called secondary kgeneralized inverse of A and is written as $A^{\dagger}{ }^{\text {sk }}$.

Example 2.3:

$$
\text { If } A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \text { then } A^{\dagger} \mathrm{sk}=\left(\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9
\end{array}\right)
$$

Note 2.4: By using (7) in (5), (6) in (4) and from (8) and (9) we obtain

$$
\left.\begin{array}{l}
A^{\dagger} s k\left(K V\left(A^{\dagger} s k\right)^{*} V K\right)\left(K V A^{*} V K\right)=A^{\dagger} s k=\left(K V A^{*} V K\right)\left(K V\left(A^{\dagger} s k\right)^{*} V K\right) A^{\dagger} s k \tag{12}\\
A^{\dagger} s k A\left(K V A^{*} V K\right)=\left(K V A^{*} V K\right)=\left(K V A^{*} V K\right) A A^{\dagger} s k
\end{array}\right\} \rightarrow
$$

If λ is a scalar, then λ^{\dagger} sk means λ^{-1} when $\lambda \neq 0$ and zero when $\lambda=0$.

Section3: Secondary- k-generalized inverse of s-k normal matrices.

In this paper, characterizations of secondary k-generalized inverse ($\mathrm{s}-\mathrm{k}-\mathrm{g}$) inverse of a matrix are obtained s-k-g inverse of s-k-normal matrices are discussed .s-k herimitian matrices are defined and the condition for s-k normal matrices to be diagonal is investigated.

Theorem 3.1: For $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$.
(i) $\left(\mathrm{A}^{\dagger_{\mathrm{sk}}}\right)^{\dagger_{\mathrm{sk}}}=\mathrm{A} \quad$ (ii) $\left(\mathrm{KV}\left(\mathrm{A}^{*}\right)^{\dagger_{\mathrm{sk}}} \mathrm{VK}\right)=\left(\mathrm{KV}\left(\mathrm{A}^{\dagger_{\mathrm{sk}}}\right)^{*} \mathrm{VK}\right)$
(iii) If A is non singular, then $\mathrm{A}^{\dagger} \mathrm{sk}=\mathrm{A}^{-1}$
(iv) $(\lambda \mathrm{A})^{\dagger_{\mathrm{sk}}}=\lambda^{\dagger_{\mathrm{sk}}} \mathrm{A}^{\dagger_{\mathrm{sk}}}$
(v) $\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\dagger_{\mathrm{sk}}}=\mathrm{A}^{\dagger}{ }_{\mathrm{sk}}\left(\mathrm{KVA}^{\dagger}{ }_{\mathrm{sk}} \mathrm{VK}\right)^{*}$

Proof: Let $A \in C_{n x n}$.
(i) By the definition of s-k-g inverse, we have

$$
\mathrm{A}^{\dagger} \mathrm{sk}^{\mathrm{sk}} \mathrm{AA}_{\mathrm{sk}}=\mathrm{A}^{\dagger_{\mathrm{sk}}} \text { and } \quad \mathrm{A}^{\dagger \mathrm{sk}}\left(\mathrm{~A}^{\dagger \text { sk }}\right)^{\dagger \text { sk }} \mathrm{A}^{\dagger \text { sk }}=\mathrm{A}^{\dagger \text { sk }}
$$

These two equations imply that

$$
\mathrm{A}^{\dagger_{\mathrm{sk}} \dagger_{\mathrm{sk}}}=\mathrm{A}
$$

(ii) From the definition of $\mathrm{A}^{\dagger \text { sk }}$, we have $A A^{\dagger \text { sk }} \mathrm{A}=\mathrm{A}$
$\Rightarrow\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\left(\mathrm{KV}\left(\mathrm{A}^{\dagger} \mathrm{sk}\right)^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{KVA}^{*} \mathrm{VK}$

Also $\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\left(\mathrm{KV}\left(\mathrm{A}^{*}\right)^{\dagger}{ }^{\text {sk }} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{KVA}^{*} \mathrm{VK}$

From these two equations, we have

$$
\left(\mathrm{KV}\left(\mathrm{~A}^{\dagger \mathrm{sk}}\right)^{*} \mathrm{VK}\right)=\mathrm{KV}\left(\mathrm{~A}^{*}\right)^{\dagger \mathrm{sk}} \mathrm{VK}
$$

(iii) Since A is non singular, A^{-1} exists

Now $\mathrm{AA}^{\dagger_{\mathrm{sk}}} \mathrm{A}=\mathrm{A}$ (By definition of \dagger_{sk})
Pre multiplying \& post multiplying by A^{-1} we have

$$
\mathrm{A}^{\dagger} \mathrm{sk}=\mathrm{A}^{-1}
$$

(iv) The equations, $\quad A A^{\dagger}{ }^{\dagger} \mathrm{A}=\mathrm{A}$ and

$$
\begin{aligned}
& (\lambda \mathrm{A})(\lambda \mathrm{A})^{\dagger_{\mathrm{sk}}}(\lambda \mathrm{~A})=(\lambda \mathrm{A}) \text { imply that } \\
& \lambda(\lambda \mathrm{A})^{\dagger_{\mathrm{sk}}}=\mathrm{A}^{\dagger_{\mathrm{sk}}}
\end{aligned}
$$

$$
\Rightarrow(\lambda \mathrm{A})^{\dagger} \mathrm{sk}=\lambda^{\dagger \mathrm{sk}} \mathrm{~A}^{\dagger} \mathrm{sk} \text { where } \lambda^{\dagger \mathrm{sk}}=\lambda^{-1}
$$

(v) from (12) we have,

$$
\begin{aligned}
& \mathrm{A}^{\dagger} \mathrm{sk}\left(\mathrm{KV}\left(\mathrm{~A}^{\dagger} \mathrm{sk}\right)^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\mathrm{A}^{\dagger} \mathrm{sk} \\
& \text { Also } \mathrm{AA}^{\dagger} \mathrm{sk} \mathrm{~A}=\mathrm{A}
\end{aligned}
$$

$$
\text { Therefore } \mathrm{AA}^{\dagger_{\mathrm{sk}}}\left(\mathrm{KV}\left(\mathrm{~A}^{\dagger_{\mathrm{sk}}}\right)^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}=\mathrm{A}
$$

Substitute this in the right hand side of the defining relation, we get

$$
\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\dagger_{\mathrm{sk}}}=\mathrm{A}^{\dagger_{\mathrm{sk}}}\left(\mathrm{KV}\left(\mathrm{~A}^{*}\right)^{\dagger_{\mathrm{sk}}} \mathrm{VK}\right)
$$

Theorem 3.2: A necessary and sufficient condition for the equation $\mathrm{AXB}=\mathrm{D}$ to have a solution is $\mathrm{AA}^{\dagger \text { sk }} \mathrm{DB}^{\dagger}{ }_{\mathrm{sk}} \mathrm{B}=\mathrm{D}$, in which case the general solution is

$$
\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{sk} \mathrm{DB}^{\dagger}{ }_{\mathrm{sk}}+\mathrm{Y}-\mathrm{A}^{\dagger} \mathrm{sk} \mathrm{AYBB}{ }^{\dagger}{ }^{\text {sk }} \text {, where } \mathrm{Y} \text { is arbitrary. }
$$

Proof: Let us assume that X satisfies the equation $\mathrm{AXB}=\mathrm{D}$, then $\mathrm{D}=\mathrm{AXB}$
$=\mathrm{AA}^{\dagger}{ }^{\dagger \mathrm{sk}} \mathrm{AXBB}^{\dagger}{ }^{\dagger \mathrm{sk}} \mathrm{B}=\mathrm{AA}^{\dagger}{ }^{\dagger \mathrm{sk}} \mathrm{DB}^{\dagger}{ }_{\mathrm{sk}} \mathrm{B}$ (By the definition of \dagger_{sk})
Conversely if $\mathrm{D}=\mathrm{AA}^{\dagger}{ }_{\mathrm{sk}} \mathrm{DB}^{\dagger}{ }^{\dagger} \mathrm{sk} \mathrm{B}$,then $\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{sk} \mathrm{DB}^{\dagger}$ sk , then it is a particular solution of $\mathrm{AXB}=\mathrm{D}$. since $\mathrm{AXB}=\mathrm{AA}^{\dagger \text { sk }} \mathrm{DB}^{\dagger}{ }_{\mathrm{sk}} \mathrm{B}=\mathrm{D}$.

If $Y \in \mathrm{C}_{\mathrm{nxn}}$, then any expression of the form $\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{sk} \mathrm{DB}^{\dagger}{ }^{\dagger \mathrm{sk}}+\mathrm{Y}-\mathrm{A}^{\dagger} \mathrm{sk}^{\mathrm{AYBB}}{ }^{\dagger}{ }_{\mathrm{sk}}$ is a solution of $\mathrm{AXB}=\mathrm{D}$.and conversely, if X is a solution $\mathrm{AXB}=\mathrm{D}$, then $\mathrm{X}=\mathrm{A}^{\dagger_{\mathrm{sk}}} \mathrm{DB}^{\dagger_{\mathrm{sk}}}+\mathrm{X}-\mathrm{A}^{\dagger_{\mathrm{sk}}} \mathrm{AXB}^{\dagger_{\mathrm{sk}}} \mathrm{B}$ satisfies $\mathrm{AXB}=\mathrm{D}$. Hence the theorem.

Theorem 3.3: The matrix equations $\mathrm{AX}=\mathrm{B}$ and $\mathrm{XD}=\mathrm{E}$ have a common solution if and only if each equation has a solution and $\mathrm{AE}=\mathrm{BD}$.

Proof: It is easy to see that the conditions is necessary, conversely $\mathrm{A}^{\dagger} \mathrm{sk}_{\mathrm{B}}$ and $\mathrm{E} D^{\dagger}{ }^{\dagger \mathrm{sk}}$ are solutions of $\mathrm{AX}=\mathrm{B}$ and $\mathrm{XD}=\mathrm{E}$ and hence $A A^{\dagger s k} B=B$ and $E D^{\dagger s k} D=E$. Also $\mathrm{AE}=\mathrm{BD}$. By using these facts it can be prove that $X=A^{\dagger s k} B+E D^{\dagger s k}-A^{\dagger s k} A E D^{\dagger s k}$ is a common solution of the given equations.

Definition 3.4: A matrix $\mathrm{E} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be secondary-k hermitian idempotent matrix (s-k. h.i) if $\mathrm{E}\left(\mathrm{KVE}^{*} \mathrm{VK}\right)=\mathrm{E}$ (i.e) $\mathrm{E}=\mathrm{KVE}^{*} \mathrm{VK}$ and $\mathrm{E}^{2}=\mathrm{E}$.

Theorem 3.5: (i) $\mathrm{A}^{\dagger_{\mathrm{sk}}} \mathrm{A}, \mathrm{AA}^{\dagger_{\mathrm{sk}}}, 1-\mathrm{A}^{\dagger_{\mathrm{sk}}} \mathrm{A}, 1-\mathrm{AA}^{\dagger_{\mathrm{sk}}}$ are all the s-k hermitian idempotent. (ii) J is idempotent \Leftrightarrow there exist s-k hermitian idempotent's E and F such that $J=(F E)^{\dagger}{ }^{\dagger}$ sk in which case $\mathrm{J}=\mathrm{EJF}$.

Proof: Proof of (i) is obvious. If J is idempotent then $\mathrm{J}^{2}=\mathrm{J}$. By (i) of theorem (3.1), $\mathrm{J}=\left\{\left(\mathbf{J}^{\dagger} \mathrm{sk} \mathbf{J}\right)\left(\mathrm{J} \mathbf{J}^{\dagger_{\mathrm{sk}}}\right)\right\}^{\dagger_{\mathrm{sk}}}$. Now if we take $\mathrm{E}=\mathrm{JJ}{ }^{\dagger}$ sk and $\mathrm{F}=\mathbf{J}^{\dagger^{\text {sk }} \mathbf{J}}$ they will satisfy our requirements conversely if $\mathrm{J}=(\mathrm{FE})^{\dagger}{ }^{\text {sk }}$ then $\mathrm{J}=\mathrm{EFPEF}$ where $\left.\mathrm{P}=\left(\mathrm{KV}\left((\mathrm{FE})^{\dagger_{\mathrm{sk}}}\right)^{*} \mathrm{VK}\right)(\mathrm{FE})^{\dagger_{\mathrm{sk}}}\left(\mathrm{KV}(\mathrm{FE})^{\dagger_{\mathrm{sk}}}\right)^{*} \mathrm{VK}\right)$. Therefore J=EJF and hence $\mathrm{J}^{2}=\mathrm{E}(\mathrm{FE})^{\dagger_{\mathrm{sk}}} \mathrm{FE}(\mathrm{FE})^{\dagger_{\text {sk }}} \mathrm{F}=\mathrm{E}(\mathrm{FE})^{\dagger_{\mathrm{sk}}} \mathrm{F}=\mathrm{J}$. Hence J is idempotent.

Note 3.6:(i) s-k hermitian idempotent matrices are s-k normal matrices.
(ii) The s-k-g inverse of an s-k hermitian idempotent matrix is also s-k hermitian idempotent matrix.

Definition 3.7: For any square matrix A there exists a unique set of matrices J_{λ} defined for each complex number λ such that

$$
\begin{array}{ll}
\mathrm{J}_{\lambda} \mathrm{J}_{\mu}=\delta_{\lambda \mu} \mathrm{J}_{\lambda} & \rightarrow(13) \\
\sum \mathrm{J}_{\lambda}=1 & \rightarrow(14)
\end{array}
$$

$$
\begin{aligned}
& \mathrm{AJ}_{\lambda}=\mathrm{J}_{\lambda} \mathrm{A} \quad \rightarrow(15) \\
& (\mathrm{A}-\lambda \mathrm{I}) \mathrm{J}_{\lambda} \text { is nilpotent } \rightarrow(16)
\end{aligned}
$$

Then the non zero J_{λ} 's are called the principal idempotent elements of A .
Theorem 3.8: If $\mathrm{E}_{\lambda}=1-\left\{(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}}\right\}^{\dagger \text { sk }}(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}}$ and $\mathrm{F}_{\lambda}=1-(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}}\left\{(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}}\right\}^{\dagger_{\text {sk }}}$,
where n is sufficiently large, then the principal idempotent element of A are given by $\mathrm{J}_{\lambda}=\left\{\mathrm{F}_{\lambda} \mathrm{E}_{\lambda}\right\}^{\dagger_{\text {sk }}}$ and n can be taken as unity iff A is diagonable.

Proof: Assume that A is diagonable.
Let $\quad E_{\lambda}=1-\{(\mathrm{A}-\lambda \mathrm{I})\}^{\dagger}$ sk $(\mathrm{A}-\lambda \mathrm{I})$, and $\quad \mathrm{F}_{\lambda}=1-(\mathrm{A}-\lambda \mathrm{I})\{(\mathrm{A}-\lambda \mathrm{I})\}^{\dagger \text { sk }}$

Then by $3.5(\mathrm{i}) \mathrm{E}_{\lambda}$ and F_{λ} are s-k hermitian idempotent matrices. If λ is not an eigen value of A, then $|\mathrm{A}-\lambda \mathrm{I}| \neq 0$ and hence F_{λ} and E_{λ} are zero by (iii) of theorem(3.1). Clearly, $(\mathrm{A}-\mu \mathrm{I}) \mathrm{E}_{\mu}=0$ and $\mathrm{F}_{\lambda}(\mathrm{A}-\lambda \mathrm{I})=0 \rightarrow(17)$

$$
\begin{aligned}
& \text { Therefore } \mu \mathrm{F}_{\lambda} \mathrm{E}_{\mu}=\mathrm{F}_{\lambda} \mathrm{AE}_{\mu}=\lambda \mathrm{F}_{\lambda} \mathrm{E}_{\mu} \\
& \text { Hence } \mathrm{F}_{\lambda} \mathrm{E}_{\mu}=0 \quad \text { if } \lambda \neq \mu \rightarrow(18)
\end{aligned}
$$

Now if we take $\mathrm{J}_{\lambda}=\left\{\mathrm{F}_{\lambda} \mathrm{E}_{\lambda}\right\}^{\dagger_{\text {sk }}}$ then by (ii) of theorem (3.5),

$$
\mathrm{J}_{\lambda}=\mathrm{E}_{\lambda}\left\{\mathrm{F}_{\lambda} \mathrm{E}_{\lambda}\right\}^{\dagger \mathrm{sk}} \mathrm{~F}_{\lambda} \quad \rightarrow(19)
$$

Now(18) implies $\mathrm{J}_{\lambda} \mathrm{J}_{\mu}=\delta_{\lambda \mu} \mathrm{J}_{\lambda}$.Also by(18), $\mathrm{F}_{\lambda} \mathrm{J}_{\mu} \mathrm{E}_{\gamma}=\delta_{\lambda \mu} \delta_{\mu \gamma} \mathrm{F}_{\lambda} \mathrm{E}_{\lambda} \quad \rightarrow$ (20) If Z_{α} is an eigen vector of A corresponding to the eigen value α then

$$
\mathrm{E}_{\alpha} \mathrm{Z}_{\alpha}=\mathrm{Z}_{\alpha} . \quad \text { As } \quad \mathrm{A} \quad \text { is }
$$ diagonable, any column vector X conformable with A is expressible as a sum of eigen vectors (i.e) it is expressible in the form $X=\sum \mathrm{E}_{\lambda} \mathrm{X}_{\lambda}$. This is a finite sum over all complex λ.

Similarly, if Y^{*} is conformable with A, it is expressible as $Y^{*}=\sum Y_{\lambda}^{*} F_{\lambda} \quad$ Now \quad by equations (18) and (20) $\quad Y^{*}\left(\sum J_{\mu}\right) X=\left(\sum Y_{\lambda}^{*} F_{\lambda}\right)\left(\sum J_{\mu}\right)\left(\sum E_{\gamma} X_{\lambda}\right)$

$$
\begin{aligned}
& \quad=\sum Y_{\lambda}^{*} F_{\lambda} E_{\lambda} X \lambda \\
& =Y^{*}\left(\sum J_{\mu}\right) X=Y^{*} X \\
& \Rightarrow Y^{*}\left(\sum J_{\mu}-\mathrm{I}\right) X=0 \\
& \Rightarrow \sum J_{\mu}=I
\end{aligned}
$$

Also(17) and (19) lead to $A \mathrm{~J}_{\lambda}=\lambda \mathrm{J}_{\lambda}=\mathrm{J}_{\lambda} \mathrm{A} \rightarrow$ (21)

This implies $(\mathrm{A}-\lambda \mathrm{I}) \mathrm{J}_{\lambda}$ is nilpotent and (15) and (16) are satisfied.

$$
\text { Moreover } \mathrm{A}=\sum \lambda \mathrm{J}_{\lambda} \quad \rightarrow(22)
$$

Conversely if $\sum_{\lambda} J_{\lambda}=I$ and A is not diagonable ($n=1$) then $X=\sum J_{\lambda} X$ gives X as a sum of eigen vectors of A , since (21) was derived without assuming the diagonability of A . If A is not diagonable. It seems more convenient simply to prove that for any set of J_{λ} 's satisfying (19), (20), (21) \& (22) each $J_{\lambda}=\left(\mathrm{F}_{\lambda} \mathrm{E}_{\lambda}\right)^{\dagger}$ sk where F_{λ} and E_{λ} are defined as in the theorem.

If the J^{\prime} 's satisfy (13), (14), (15) \& (16) $\sum \mathrm{J}_{\lambda}=\mathrm{I}$ and

$$
(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}} \mathrm{~J}_{\lambda}=0=\mathrm{J}_{\lambda}(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}} \quad \rightarrow(23)
$$

Which comes by using the fact that $(\mathrm{A}-\lambda \mathrm{I}) \mathrm{J}_{\lambda}$ is nilpotent, where n is sufficiently large.
From (23) and the definition of E_{λ} and F_{λ}, we have
$\mathrm{E}_{\lambda} \mathrm{F}_{\lambda}=\mathrm{J}_{\lambda}=\mathrm{J}_{\lambda} \mathrm{F}_{\lambda} \rightarrow(24)$

By using Euclid's algorithm, there exist P and Q which are polynomials in A such that

$$
\mathrm{I}=(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}} \mathrm{P}+\mathrm{Q}(\mathrm{~A}-\mu \mathrm{I})^{\mathrm{n}} \quad \text { if } \lambda \neq \mu
$$

Now $\mathrm{F}_{\lambda}(\mathrm{A}-\lambda \mathrm{I})^{\mathrm{n}}=0=(\mathrm{A}-\mu \mathrm{I})^{\mathrm{n}} \mathrm{E}_{\mu} . \quad$ Hence $\mathrm{F}_{\lambda} \mathrm{E}_{\mu}=0$ if $\lambda \neq \mu$
From (24) $F_{\lambda} J_{\mu}=0=J_{\lambda} E_{\mu}$ if $\lambda \neq \mu . \quad$ Since $\sum_{\mu}=I$, we get $\mathrm{F}_{\lambda} \mathrm{J}_{\lambda}=\mathrm{F}_{\lambda}$ and $\mathrm{J}_{\lambda} \mathrm{E}_{\lambda}=\mathrm{E}_{\lambda} \rightarrow$ (25) using (24) and (25) it is easy to see that $\left\{\mathrm{F}_{\lambda} \mathrm{E}_{\lambda}\right\}^{\dagger} \mathrm{s}-\mathrm{k}=\mathrm{J}_{\lambda} . \quad$ Hence the theorem

Theorem 3.9: If A is s-k normal, it is diagonable and its principal idempotent elements are s-k hermitian.

Proof: If A is s-k normal then (A- $\lambda \mathrm{I}$) is s-k normal. By using (viii)of the theorem (3.1) in the definition of E_{λ} and F_{λ} of theorem (3.8) we obtain $E_{\lambda}=1-\{(A-\lambda I)\}^{\dagger}{ }^{\text {sk }}(A-\lambda I) \quad$ and $\mathrm{F}_{\lambda}=1-(\mathrm{A}-\lambda \mathrm{I})\{(\mathrm{A}-\lambda \mathrm{I})\}^{\dagger_{\mathrm{sk}}}$

Hence A is diagonable. since $E_{\lambda}=F_{\lambda}, J_{\lambda}=E_{\lambda} \quad$ is s-k hermitian.

References:

[1] Ann Lee: Secondary symmetric, Secondary skew symmetric, Secondary orthogonal matrices:
Period math. Hungary 7(1976),63-76
[2] Isarel-Adi Ben and Greville Thomas ME;Generalized inverses:Theory and Applications; A wiley interscience publications Newyork,(1974).
[3] S. Krishnamoorthy, G. Bhuvaneswari, Secondary k- normal Matrices, International Journal of Recent scientific Research Vol, 4,issue 5,pp 576-578, May 2013.
[4] S. Krishnamoorthy, G. Bhuvaneswari, Some Characteristics on Secondary k- normal Matrices,Open Journal of Mathematical Modeling July 2013,1(1):80-84.
[5] Weddurburn, J.H.M.,Lectures on matrices, colloq.Publ.Amer. Math.Soc.No.17,1934.

