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Abstract:

Secondary k-generalized inverse of a given square matrix is defined and its characterizations are

given. Secondary k- generalized inverses of s-k normal matrices are discussed.
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1.Introduction:

Ann Lee initiated the study of secondary symmetric matrices in[1]. The concept of secondary k -
normal matrices was introduced in [3]. Some equivalent conditions on secondary k- normal matrices are
given in [4]. In this paper we describe secondary k- generalized inverse of a square matrix, as the

unique solution of a certain set of equation . This secondary k-generalized inverse exists for particular

kind of square matrices. Let Cnxn denote the space of nxn complex matrices. ~ We deal with

secondary k-generalized inverse of s-k normal matrices. Throught this paper, if A € Cnxn , then we

assume that if A # Othen A(KVA*VK) =0

ie, AKVA'VK)=0 =A=0 S5
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It is clear that the conjugate secondary k transpose satisfies the following properties.

KV(A+B) VK = (KVA VK) +(KVB VK)

KV(AA) VK = Z(KVA VK)

KV(BA) VK = (KVA VK)(KVB VK)

Now if BA(KVA ' VK) = CA(KKVA VK)  thenby (1)
BA(KVA”VK)-CAKVA*VK) =0

- (BA(KVA™VK)-CAKVA VK))(KV(B-C) 'VK) =0

— (BA-CA)(KV(BA-CA)'VK)=0

— (BA-CA)=0

— BA=CA

Therefore BA(KKVA VK) = CA(KVA™VK) = BA=CA> (2)
similarly, B(KVAVK)A = C(KVA VK)A

—, B(KVA'VK) = C(KVA*VK) >(3)

Definition 1.1: [3]

A Matrix A € Cnxn is said to be secondary k-normal ( s-k normal) if

A(KVA VK) = (KVA VK)A
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Example 1.2:
I 2 3 4
A= ) isa s-k normal matrix for k=(1,3),(2,4) the permutation matrix be
4 -1 2 3
3 4 1 2
2 3 4 -
0 010 0 0 01
0 0 01 0 010
K= and V=
1 0 00 0100
01 00O 1 0 00
Definition 1.3:

A matrix A € Cpyyp is said to be secondary k-unitary (s-k unitary) if

A(KVAVK) = (KVAVK)A = |

Example 1.4:
i -1 1 O
-1 -1 0 1 _ . :
A= 10 i -1 is a s-k unitary matrix
0 1 -1 —i

Section 2: Secondary k - Generalized inverses of a matrix

Theorem 2.1:

Forany A € Cpyp . the four equations

AXA=A > (@)

XAX=X - (5)

KV(AX) VK=AX > ()
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KV(XA) 'VK=XA >
have a unique solution for any A € Cryypy -

Proof: First, we shall show that equations (5) & (6) are equivalent to the single equation
*
XKV(AX) VK =X > (8)
From equations (5) and (6), (7) follows, since it is merely (6) substituted in (5)  Conversely, equation
*
(8) implies AXKV(AX) VK =AX
Since the left hand side is s-k hermitian, (6) follows. By substituting (6) in (8), we get

XAX = Xwhich is actually (5). Therefore (5) and (7) are equivalentto (8)  Similarly, (4) & (7) are

equivalent to the equation

XAKVAVK) = KVA™VK > (9)

Thus to find a solution for the given set of equations, it is enough to find an X satisfying (8) &

(9). Now the expressions (KVA VK)A), (KVA VK)A)Z, (KVA™VK)A)3 ... cannot all

be linearly independent (i.e) there exists a relation
* * 2 * k
M ((KVATVK)A) + 23, (KVA VK)A)® +.. 42 (KVA"VK)A) =0 (10

Where 7\.1,7\,2 ..... Kk are not all zero. Let 7‘[‘ be the first non zero A. (i.e)?»l = Xz :"'Kl‘-l =0.

Therefore (10) implies that

Ap(KVATVK)A)Y = { (KVA VKA L+ + xm((KVA*VK)A)m}

A r+1(

fwe ake B=-271 2 (KVAVK)A)+.. + i (KVATVIOA) ™)
r T hm

r+1I+7‘r+2(

Then

v

B((KVA'VK)A)™ =-1 {/1,+1((KVA*VK)A)”1 A ((KVA*VK)A)m}

B((KVA*VK)A)r-'-1 = ((KVA*VK)A)r . By using (2) & (3) repeatedly, we get
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B(KVA VK)A(KVA VK)=KVA'VK > (11
Now if we take X = B(KVA*VK) then (11) implies that this X satisfies (9)
implies (7), we have (KV(XA) VK)(KVA VK) = KVA VK
- B(KV(XA) VK)(KVA VK) = B(KVA VK)

Therefore X = B(KVA*VK) satisfies (8). Thus X = B(KVA*VK) is a solution

for the given set of equations.
Now let us prove that this X is unique. Suppose that X and Y satisfy (8) and (9). Then by

substituting (7) in (5) and (6) in (4), we obtain
(KV(XA) 'VK)X =X and (KV(AX) VK)A=A
Also, Y = (KV(YA) VK)Y and KVA VK = (KVA VK)AY
Now X = X(KVX VK)(KVA VK)

= X(KVX VK)(KVA VK)AY

= X(KV(AX) VK)AY

= XAY

= XAKV(YA) VK)Y

= XAKVA VK)(KVY VK)Y

= (KVA'VK)(KVY VK)Y

= (KV(YA) 'VK)Y
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X=Y
Therefore X is unique.

Definition 2.2: Let A € Cpyypy - The unique solution of (4), (5), (6) and (7) is called secondary k-

generalized inverse of A and is written as ATSk .

Example 2.3:
111 1/9 1/9 1/9
tA=|1 1 1|men A% =|19 19 19
111 1/9 1/9 1/9
Note 2.4: By wusing (7) in (5, (6) in (49 and from (8) and (9) we obtain

T T ATsk

N (KV (A sk ) vK)(kva*vK) = Alsk — (KVAVK)(KV (A'sk)*vK)

> (12)
Tsk

Alsk A(KVAVK) = (KVA'VK) = (KVA VK ) AA
If . is a scalar, then ﬂTSk means X'l when A #0and zero when A=0.
Section3: Secondary- k-generalized inverse of s-k normal matrices.

In this paper, characterizations of secondary k-generalized inverse (s-k-g) inverse of a matrix are
obtained s-k-g inverse of s-k-normal matrices are discussed .s-k herimitian matrices are defined and the

condition for s-k normal matrices to be diagonal is investigated.
Theorem 3.1: For A€ Cphyp-
T Tsk
Ak =A (ii)

KV(A*)TSK VK |= KV[ATS" J*VK

(iii) If A is non singular, then AJrSk =A'l (iv) (kA)TSk = XTSkATSK

) (KVAVK)A) s = ATse (evaTseviy*
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Proof: Let Ae Cnxn .

(i) By the definition of s-k-g inverse, we have
ATsk AATSk — ATsk and ATsk (ATsk )Tsk ATsk - ATsk
These two equations imply that

ATskTsk =A

T
(ii) From the definition of AJrSk .we have AA kA=A

_ (KVA'VK)(KV(A 5 VK)(KVAVK) = KVA VK

Also (KVAVK)(KV(A™) 5 VK)(KVA™VK) = KVAVK

From these two equations, we have
(KV(A ) VK) = Kv(a™) sk
(iii) Since A is non singular, A'l exists
Now AATS"A = A (By definition of T, )
Pre multiplying & post multiplying by AL we have
Alsk - a1
(iv) The equations, AATSkA = A and
(XA)(XA)Tsk (AA) = (LA) imply that

A0A) sk = ATsk
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= A sk =25 Tk ynere 2Tk =1

(v) from (12) we have,
Alsk (KV(ATSk ) VK)(KVA VK) = Alsk
Also AATSkA =A.

Therefore AA 15 (KV(A ) "VK)(KVAVK)A = A

Substitute this in the right hand side of the defining relation, we get

(KVAVK)A) s = ATse (kva™) Tsevi

Theorem 3.2: A necessary and sufficient condition for the equation AXB =D to have a solution is

AATSk DBTS" B =D, in which case the general solution is

X= ATSk DBTSk +Y —ATS"AYBBTSk , where Y is arbitrary.
Proof: Let us assume that X satisfies the equation AXB =D, then D = AXB

- AATSk AXBBTS" B = AATSk DBTSk B (By the definition of T, )

Conversely if D= AATSkDBTSkB then X = ATSkDBTSk , then it is a particular solution

of AXB=D.since AXB= AATSkDBTSKB =D.

If Y € Cryxp - then any expression of the form X = ATSk DBTSk +Y —ATS"AYBBTSk is

a solution of AXB=D.and converselyif X is a solution AXB=D, then

X= ATSk DBTSk + X -ATSkAXBTSk B satisfies AXB = D. Hence the theorem.

Theorem 3.3:  The matrix equations AX =B and XD = E have a common solution if and only if

each equation has a solution and AE =BD.
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Proof: Itis easy to see that the conditions is necessary, conversely ATSk B and E DTSk are solutions
of AX=B and XD=E and hence AATSk B=B and EDTSk D =E . Also AE=BD. By using these facts it

can be prove that X = ATSk B+ EDJrSk - ATSk AEDTSk is a common solution of the given equations.
Definition 3.4: A matrix E € Cnxn is said to be secondary-k hermitian idempotent matrix (s-k. h.i) if

E(KVE'VK)=E (i) E=KVE VK and E2 =E.

Theorem 3.5: (i) ATSkA, AATSk, 1-ATSkA, 1-AATS" are all the s-k hermitian idempotent.

(i) J is idempotent <> there exist s-k hermitian idempotent’s E and F such that J = (FE)TSk

in which case J = EJF.

Proof: Proof of (i) is obvious. If J is idempotent then J*=J. By (i) of theorem (3.1),

T
J={(JTSKJ)(JJT5")} ; . Now if we take E=JJTSk and F=JTS"J they will satisfy our

requirements conversely if J = (FE)TSK then J=EFPEF where
= Tsk * Tsk Tsk * -
P =(KV((FE) ) VK)(FE) S*(KV/(FE) %) VK). Therefore J=EJF and hence

12 = E(FE)TSK FE(FE)TSk F= E(FE)TSk F =J. Hence J is idempotent.

Note 3.6:(i) s-k hermitian idempotent matrices are s-k normal matrices.

(ii) The s-k-g inverse of an s-k hermitian idempotent matrix is also s-k hermitian idempotent

matrix.

Definition 3.7: For any square matrix A there exists a unique set of matrices JK defined for each

complex number A such that

J?CJ w= S}L“J A > (13)

¥, =1 > (14)
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Al, =J. A -> (15)
A-ADJ. isnilpotent = (16)
A
Then the non zero \]x ’s are called the principal idempotent elements of A.

Theorem3.8: If E =1-{(A-M)n }TS" (A-M)n and FK =1- (A-M)n {(A_M)H}Tsk,

A

where n is sufficiently large, then the principal idempotent element of A are given by

T
‘]7L = {FXEK} Sk and n can be taken as unity iff A is diagonable.

Proof: Assume that A is diagonable.
Lt E, =1-{(A-AD} (A-AD), and F =1-(A-AD{(A-AD) T

Then by 3.5(i) E?» and F?» are s-k hermitian idempotent matrices. If A is not an eigen value of

A, then |A-M|¢O and hence FX and EX are zero by (iii) of theorem(3.1). Clearly,

(A- uI)EM =0and FK(A-M) =0->(17)
Therefore “FKEH = F}LAE wo= kaEH

Hence FXEH =0 if #u > (18)

Now if we take JX = {FKEX}TSK then by (ii) of theorem (3.5),

_ Tok
Jk = EX{FXEK} s Fx > (19),

Now(18) implies kau = SXuJX Also by( 18), F},JMEY = SMLSPWFXEX > (20) If Zg
is an eigen vector of A corresponding to the eigen value o then Eaza = ZOL' As A s

diagonable, any column vector X conformable with A is expressible as a sum of eigen vectors (i.e) it is

expressible in the form X =3 E ;X . This is a finite sum over all complex .
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* * *
Similarly, if Y is conformable with A, it is expressibleas Y = ZY/i F/1 Now by

equations (18) and (20) Y*(Z ‘J,u)x = (ZYIFA)(Z ‘],u)(z EQ/XJ,)

*
=2V, FE X

=Y (£3,)X =X
=Y (23, -)X =0
= Z‘]y =

=M, =J

Also(17) and (19) lead to AJX 2

WA QD)

This implies (A-AI)J A is nilpotent and (15) and (16) are satisfied.
Moreover A = ZMX > (22)

Conversely if Z‘]x =] and Ais not diagonable (n=1) then X = ZJXX gives X as a sum

of eigen vectors of A, since (21) was derived without assuming the diagonability of A. If A is not

diagonable. It seems more convenient simply to prove that for any set of J,’s satisfying (19), (20), (21) &

(22) each Jk = (FXEK)JrSk where F}L and E?» are defined as in the theorem.

If the J,’s satisfy (13), (14), (15) & (16) ZJ7L =1 and
(A-M)”JX =0= JX(A-M)” > (23)

Which comes by using the fact that (A-M)Jk is nilpotent, where n is sufficiently large.

From (23) and the definition of Ek and Fk , we have

EF =, =3 F >
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By wusing Euclid’s algorithm, there exist P and Q which are polynomials in A such that

1= (A-AD"P+Q(A -pD)" it A u.

Now FK(A-M)n =0 :(A-uI)nEu. Hence F, Ey, =0 if 2

From (24) FX]H =0= ‘])LE},t if A# .  Since ZJ“ =1, we get

F?CJX = F?» and JXEK = E?» —>(25) using (24) and (25 ) it is easy to see that

{F)\,EX}TS-k = ‘]7»' Hence the theorem

Theorem 3.9: If A is s-k normal, it is diagonable and its principal idempotent elements are  s-k
hermitian.

Proof: If A is s-k normal then (A-Al) is s-k normal. By using (viii)of the theorem (3.1) in the

definition of E, and F, of theorem (3.8) we obtain E :1-{(A-M)}Tsk (A-AD) and

Rk A
F, =1-(A-AD{(A-AD) s

Hence A is diagonable. since Ek N Fk’ J?» = E?» is s-k hermitian.
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