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Abstract: 

           Secondary k-generalized inverse of a given square matrix is defined and its characterizations are 

given. Secondary k- generalized inverses  of  s-k normal matrices  are discussed. 
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1.Introduction: 

        Ann Lee initiated the study  of secondary symmetric matrices in[1]. The concept of  secondary k - 

normal matrices was introduced in [3]. Some equivalent conditions on secondary k- normal matrices are 

given in [4]. In this paper we describe secondary  k- generalized inverse of a square matrix, as the  

unique solution of a  certain set of equation . This secondary k-generalized inverse  exists  for particular 

kind of square matrices. Let  Cnxn  
denote the space of  nxn  complex matrices.      We deal with 

secondary k-generalized inverse of s-k normal matrices. Throught  this paper, if A Cnxn , then we 

assume that if A 0 then 
*A(KVA VK) 0  

                 i.e., 
*A(KVA VK) = 0  A = 0  (1) 
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 It is clear that the conjugate secondary k transpose satisfies the following properties.

 
* * *KV(A+B) VK = (KVA VK)+(KVB VK)  

  
* *KV( A) VK = (KVA VK)   

  
* * *KV(BA) VK = (KVA VK)(KVB VK)  

  Now if 
* *BA(KVA VK) = CA(KVA VK)   then by (1) 

  
* *BA(KVA VK)-CA(KVA VK) = 0  

   
* * *(BA(KVA VK)-CA(KVA VK))(KV(B-C) VK) = 0  

   
*(BA-CA)(KV(BA-CA) VK) = 0  

   (BA-CA) = 0  

   BA = CA  

  Therefore 
* *BA(KVA VK) = CA(KVA VK)   BA = CA (2) 

  Similarly,   
* *B(KVA VK)A = C(KVA VK)A  

   
* *B(KVA VK) = C(KVA VK)(3) 

Definition 1.1:  [3] 

        A Matrix A Cnxn  is said to be secondary k-normal ( s-k normal) if  

* *A(KVA VK) = (KVA VK)A  
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Example 1.2:       

       A =    
2 3 4

4 2 3

3 4 2

2 3 4

i

i

i

i





 
 
 
 
 
 

  is a  s-k normal matrix for k=(1,3),(2,4) the  permutation matrix be 

                  
and

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0
K =   =

1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

 V   

   
   
   
   
   
   

 

Definition 1.3: 

           A matrix A Cnxn  is said to be secondary k-unitary (s-k unitary) if 

* *A(KVA VK) = (KVA VK)A I  

Example 1.4: 

    is a  s-k unitary matrixA  

1 1 0

1 0 1
=

1 0 1

0 1 1

i

i

i

i

 
 
 
 
 
 
 



 



 

 

Section 2: Secondary k - Generalized inverses of a matrix 

Theorem 2.1: 

 For any A Cnxn , the four equations 

   AXA = A   (4) 

   XAX = X   (5) 

   
*KV(AX) VK = AX   (6) 

1416

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90555

Vol. 2 Issue 9, September - 2013



  

 

   
*KV(XA) VK = XA   (7) 

 have a unique solution for any A Cnxn . 

Proof: First, we shall show that equations (5) & (6) are equivalent to the single equation 

                                  
*XKV(AX) VK = X   (8) 

From equations (5) and (6), (7) follows, since it is merely (6) substituted in (5) Conversely, equation 

(8) implies                    
*AXKV(AX) VK = AX   

Since the left hand side is s-k hermitian, (6) follows. By substituting (6) in (8), we get  

XAX = X which is actually (5). Therefore (5) and (7) are equivalent to (8) Similarly, (4) & (7) are 

equivalent to the equation      

                                   
* *XA(KVA VK) = KVA VK (9) 

 Thus to find a solution for the given set of equations, it is enough to find an X satisfying (8) & 

(9). Now the  expressions ,* * 2((KVA VK)A),((KVA VK)A) * 3((KVA VK)A) … cannot all 

be linearly independent ( i.e) there exists a relation 

* * 2 * kλ ((KVA VK)A)+λ ((KVA VK)A) +…+λ ((KVA VK)A) = 0
1 2 k

 (10) 

Where , , ,λ λ λ
1 2 k

 are not all zero. Let λr  be the first non zero λ . (i.e) =λ λ λ 0
1 2 r-1

  . 

Therefore (10) implies that 

  * r * r+1 * mλ ((KVA VK)A) = - λ ((KVA VK)A) +…+λ ((KVA VK)A)r mr+1
 

 If we take  -1 * * m-r-1B = -λ λ I+λ ((KVA VK)A)+…+λ ((KVA VK)A)r mr+1 r+2

 Then

 * r+1 -1

r r+1

* r+1 * mB((KVA VK)A) = - ((KVA VK)A) +…+λ ((KVA VK)A)m   

 
* r+1 * rB((KVA VK)A) = ((KVA VK)A) . By  using (2) & (3) repeatedly, we get 
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* * *B(KVA VK)A(KVA VK) = KVA VK   (11) 

 Now if we take 
*X = B(KVA VK)  then (11) implies that this X satisfies (9)    

           implies (7), we have 
* * *(KV(XA) VK)(KVA VK) = KVA VK  

  
* * *B(KV(XA) VK)(KVA VK) = B(KVA VK)  

 Therefore 
*X = B(KVA VK)  satisfies (8). Thus 

*X = B(KVA VK)  is a solution     

           for the given set of equations. 

 Now let us prove that this X is unique. Suppose that X and Y satisfy (8) and (9).  Then by  

             substituting (7) in (5) and (6) in (4), we obtain 

 
*(KV(XA) VK)X = X  and  

*(KV(AX) VK)A = A  

 Also,  
*Y = (KV(YA) VK)Y  and 

* *KVA VK = (KVA VK)AY  

 Now 
* *X = X(KVX VK)(KVA VK)  

   
* *= X(KVX VK)(KVA VK)AY  

  
*= X(KV(AX) VK)AY  

  = XAY  

  
*= XA(KV(YA) VK)Y  

  
* *= XA(KVA VK)(KVY VK)Y  

  
* *= (KVA VK)(KVY VK)Y  

  
*= (KV(YA) VK)Y  
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          X = Y  

 Therefore X is unique.  

Definition 2.2: Let A Cnxn . The unique solution of (4), (5), (6) and (7) is called secondary k- 

generalized inverse of A and is written as sk
†

A .  

Example 2.3: 

  If  

1 1 1

A = 1 1 1

1 1 1

 
 
 
 
 

 then sk

1/9 1/9 1/9
†

A = 1/9 1/9 1/9

1/9 1/9 1/9

 
 
 
  
 

 

Note 2.4: By using (7) in (5), (6) in (4) and from (8) and (9) we obtain                                

( ( ) )( ) ( )( ( ) )* *

† †* * *( ) ( ) ( )

† † † † †
sk sk sk sk skKV VK KVA VK KVA VK KV VK

sk skA A KVA VK KVA VK KVA VK AA

A A A A A


  


 

 
    (12)             

If  is a scalar, then sk
†

  means 
-1λ  when λ 0 and zero when λ = 0 . 

Section3: Secondary- k-generalized inverse of s-k normal matrices. 

 In this paper, characterizations of secondary k-generalized inverse (s-k-g) inverse of a matrix are 

obtained s-k-g inverse of s-k-normal matrices are discussed .s-k herimitian matrices are defined and the 

condition for s-k normal matrices to be diagonal is investigated. 

Theorem 3.1: For A Cnxn . 

 (i) 
sk

sk

†
†

A A
 

 
 

               (ii)   sk sk

*
† †

*KV A VK = KV A VK

 
    
          

 

 

 (iii) If A is non singular, then sk
† -1A = A        (iv) sk sk sk

† † †
(λA) = λ A  

 (v) sk sk sk
† † †* *((KVA VK)A) = A (KVA VK)  
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Proof: Let A Cnxn . 

  (i) By the definition of s-k-g inverse, we have 

   sk sk sk=
† † †

A AA A  and sk sk sk sk sk) =
† † † † †

A (A A A  

   These two equations imply that 

   sk sk =
† †

A A  

  (ii) From the definition of sk
†

A , we have 
sk =

†
AA A A  

   sk
†* * * *(KVA VK)(KV(A ) VK)(KVA VK) = KVA VK  

  Also sk
†* * * *(KVA VK)(KV(A ) VK)(KVA VK) = KVA VK  

   From these two equations, we have 

   sk sk
† †* *(KV(A ) VK) = KV(A ) VK  

  (iii) Since A is non singular, 
-1A  exists 

   Now sk =
†

AA A A  (By definition of 
sk

† ) 

   Pre multiplying & post multiplying by 
-1A  we have   

                                    sk =
† -1A A  

  (iv) The equations, sk =
†

AA A A  and 

   sk
†

(λA)(λA) (λA) = (λA)  imply that 

   sk sk
† †

λ(λA) = A  
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    sk sk sk
† † †

(λA) = λ A  where sk
† -1λ = λ  

  (v) from (12) we have, 

   sk sk sk
† † †* *A (KV(A ) VK)(KVA VK) = A  

   Also sk =
†

AA A A . 

   Therefore sk sk
† † * *AA (KV(A ) VK)(KVA VK)A = A  

  Substitute this in the right hand side of the defining relation, we get 

   sk sk sk
† † †* *((KVA VK)A) = A (KV(A ) VK)  

Theorem 3.2: A necessary and sufficient condition for the equation AXB= D  to have a solution is

 sk sk
† †

AA DB B = D , in which case the general solution is 

  sk sk sk sk
† † † †

X = A DB +Y-A AYBB , where Y is arbitrary. 

Proof:   Let us assume that X satisfies the equation AXB= D , then D = AXB          

sk sk
† †

= AA AXBB B  sk sk
† †

= AA DB B  (By the definition of 
sk

† ) 

 Conversely if sk sk
† †

D = AA DB B ,then sk sk
† †

X = A DB , then it is a particular solution 

of AXB= D . since sk sk
† †

AXB = AA DB B = D . 

 If CnxnY , then any expression of the form sk sk sk sk
† † † †

X = A DB +Y-A AYBB  is 

a solution of AXB= D .and conversely,if X is a solution AXB= D , then 

sk sk sk sk
† † † †

X = A DB +X-A AXB B  satisfies AXB= D . Hence the theorem. 

Theorem 3.3: The matrix equations AX = B and  XD = E have a common solution if and only if 

each equation has a solution and AE = BD . 
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Proof:     It is easy to see that the conditions is necessary, conversely sk
†

A B  and E sk
†

D  are solutions 

of AX=B and XD=E and hence  
†sk

A BA B  and 
†sk

ED D E . Also AE=BD. By using these facts it 

can be prove that 
† † † †sk sk sk sk

X A ED A AEB D   is a common solution of the given equations. 

Definition 3.4: A matrix E Cnxn  is said to be secondary-k hermitian idempotent matrix (s-k. h.i) if 

*E(KVE VK) = E  (i.e) 
*E = KVE VK  and 

2E = E . 

Theorem 3.5: (i) sk
†

A A , sk
†

AA , sk
†

1-A A , sk
†

1-AA  are all the s-k hermitian idempotent.

 (ii) J is idempotent  there exist s-k hermitian  idempotent’s  E and F such that sk
†

J = (FE)  

in which case J = EJF. 

Proof:   Proof of (i) is obvious. If J is idempotent then J
2
=J. By (i) of theorem (3.1), 

sk
sk sk

†
† †

J = (J J)(JJ )
 
 
 

. Now if we take 
†
skE = JJ  and sk

†
F = J J  they will satisfy our 

requirements conversely if sk
†

J = (FE)  then J=EFPEF where 

sk sk sk(
† † †* *P = (KV((FE) ) VK)(FE) KV(FE) ) VK) . Therefore J=EJF and hence 

sk
†2J = E(FE) sk

†
FE(FE)  sk

†
F = E(FE) F = J . Hence J is idempotent. 

 

Note 3.6:(i) s-k hermitian idempotent matrices are s-k normal matrices. 

     (ii) The s-k-g inverse of an s-k hermitian idempotent matrix is also s-k   hermitian idempotent 

matrix. 

Definition 3.7: For any square matrix A there exists a unique set of matrices J
λ

 defined for each 

complex number  such that 

    J J = δ Jμλ λμ λ
  (13) 

    J 1
λ
    (14) 
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    AJ = J A
λ λ

   (15) 

    (A-λI)J
λ

 is nilpotent  (16) 

 Then the non zero J
λ

’s are called the principal idempotent elements of A. 

Theorem 3.8:    If    sk
†n nE =1- (A-λI) (A-λI)

λ
 and   sk

†n nF =1-(A-λI) (A-λI)
λ

,  

 where n is sufficiently large, then the principal idempotent element of A are given by 

  sk
†

J F E
λ λ λ
  and n can be taken as unity iff A is diagonable. 

Proof:  Assume that A is diagonable. 

 Let    sk
†

E =1- (A-λI) (A-λI)
λ

, and     sk
†

F =1-(A-λI) (A-λI)
λ

 

 Then  by 3.5(i)  E
λ

and F
λ

 are s-k hermitian idempotent matrices. If  is not an eigen value of 

A, then 0A-λI   and hence F
λ

 and E
λ

 are zero by (iii) of theorem(3.1).   Clearly,    

0(A-μI)Eμ  and F (A-λI) = 0
λ

 (17) 

 Therefore μF Eμλ
  F AEμλ
   = λF Eμλ

 

 Hence F E 0μλ
   if     (18) 

 Now if we take    sk
†

J F E
λ λ λ
  then by (ii) of theorem (3.5), 

 sk
†

J = E {F E } F
λ λ λ λ λ

  (19),   

         Now(18) implies   J J = δ Jμλ λμ λ
.Also by( 18), F J E = δ δ F Eμ γ μγλ λμ λ λ

  (20) If Zα  

is an eigen vector of A corresponding to the eigen value α then  E Z = Zα α α . As A is 

diagonable, any column vector  X conformable with A is expressible as a sum of eigen vectors (i.e) it is 

expressible in the form X E X  . This is a finite sum over all complex . 
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 Similarly, if 
*Y  is conformable with A, it is expressible as 

* *Y Y F
 

  Now by 

equations (18) and (20)   
* *( ) ( )( )( )Y YJ X F J E X    

     

     
*Y F E X
   

  

     =
* *( )Y YJ X X   

    I 0*( )Y J X    

    J I   

 Also(17) and (19) lead to  AJ = λJ = J A
λ λ λ

  (21) 

 This implies (A-λI)J
λ

 is nilpotent and (15) and (16) are satisfied. 

 Moreover A = λJ
λ   (22) 

 Conversely  if J I
λ
  and  A is not diagonable (n=1) then X = J X

λ  gives X as a sum 

of eigen vectors of A, since (21) was derived without assuming the diagonability of A. If A is not 

diagonable. It seems more convenient simply to prove that for any set of J’s satisfying (19), (20), (21) & 

(22) each 
†
skJ = (F E )

λ λ λ
 where F

λ
 and E

λ
 are defined as in the theorem. 

 If the J’s satisfy (13), (14), (15) & (16) J = I
λ  and 

   
n n(A-λI) J = 0= J (A-λI)
λ λ

  (23) 

 Which comes by using the fact that (A-λI)J
λ

 is nilpotent, where n is sufficiently large. 

 From (23) and the definition of E
λ

 and F
λ

, we have                          

E F J J F
λ λ λ λ λ

    (24) 
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 By  using  Euclid’s algorithm, there exist P and Q which are polynomials in A such that

 
n nI = (A-λI) P+Q(A-μI)  if   . 

 Now 
nF (A-λI) 0

λ
  

n(A-μI) Eμ . Hence F E = 0μλ
 if    

 From (24) F J = 0 = J Eμ μλ λ
 if   . Since J = Iμ , we get 

 F J = F
λ λ λ

and J E = E
λ λ λ

(25)  using (24) and (25 ) it is easy to see that 

  
†
s-kF E = J

λ λ λ
.       Hence the theorem 

Theorem 3.9:  If A is s-k normal, it is diagonable and its principal idempotent elements are   s-k 

hermitian. 

Proof:      If A is s-k normal then (A-λI)  is s-k normal. By using (viii)of the theorem (3.1) in the 

definition of E
λ

 and F
λ

of theorem (3.8) we obtain   sk
†

E =1- (A-λI) (A-λI)
λ

 and  

   sk
†

F =1-(A-λI) (A-λI)
λ

 

 Hence  A  is diagonable.  since E F
λ λ
 , J = E

λ λ
 is s-k hermitian. 
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