
Secure Information Sharing protocol for Mobile Ad Hoc Peer-to Peer Networks

Singaraju.Venkata.Sai kumar

@
 P.Prasanna MuraliKrishna

Dr.M.V.Subramanyam

$

@PG Student, Department of ECE, Dr.SGIET, MARKAPUR
HOD, Department of ECE, Dr.SGIET, MARKAPUR.

$Principal, Santhiram Engineering College, Nandyala

Abstract

 The information sharing systems for the wide-

spread exchange of resources and voluminous

information among thousands of users have

resulted in lot of attention on Peer-to-peer system.

Yet, existing peer-to-peer information sharing

systems work mostly on wired networks. With the

growing number of communication-equipped

mobile devices that can self-organize into

infrastructure-less communication platform,

namely mobile ad hoc networks (MANETs), peer

to- peer information sharing over MANETs is a

promising research area. Herewith we propose a

distributed index structure, Multi-level Peer Index

(MPI) that enables efficient peer-to-peer

information sharing over MANETs. Preliminary

evaluation demonstrates that MPI is scalable,

efficient, and adaptive to node mobility.

1. Introduction

Peer-to-peer (P2P) systems have received a lot

of attention as distributed information sharing

systems for the widespread exchange of resources

and voluminous information among thousands of

users. An important research issue in P2P system

is searching for resources (e.g., data, files, and

services) available at one or more of these

numerous host nodes. The importance of P2P

searches has motivated several proposals for

performing these operations efficiently, such as

distributed hash table (DHT) overlay networks

(e.g., CAN [9], CHORD [12]). However, these

P2P information sharing systems only work on

wired networks. Rapid advance in wireless

technology along with greater demands for user

mobility motivates recent intensive research

efforts in mobile ad hoc networks (MANETs).

MANETs consist of mobile devices equipped

with interfaces for short to medium range wireless

communications, such as laptop, Personal Digital

Assistance (PDA), etc., that can spontaneously

self-organize into a communication structure

without requiring any fixed infrastructure Most of

the recent research efforts inMANETs are focused

on the lower layers, such as link layer, network

layer and transport layer, to enable efficient

communication among nodes in the network (a

survey is provided in [4]). On the other hand, it is

envisioned that the future gadgets such as MP3

players and DVD players will be equipped for

wireless communications via technologies such as

Wi-Fi and Bluetooth. Thus, MANETs will enable

future applications such as sharing and exchange

of documents, pictures, music, and movies on

mobile devices. These kinds of applications

resemble information sharing in P2P systems in

terms of lack of centralized servers and equal roles

taken by nodes in the system, thereby we call them

mobile peer-topeer information sharing

(MP2PIS).

Similar to P2P systems, to enable effective

data exchange in MP2PIS, a first step is to devise

search mechanisms to find a data object of interest

in MANETs. However, due to the unique

characteristics of MANETs compared to P2P

systems, such as limited transmission range,

resource (CPU, bandwidth, storage) constraints,

and node mobility, simply importing DHTs to

MANETs is not a valid solution. In this paper, we

propose a distributed index structure, Multi-level

Peer Index (MPI) that enables efficient P2P

information search over MANETs. Through

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org

simulation, we demonstrate that MPI is scalable,

efficient and adaptive to node mobility.

Various issues in peer-to-peer information

sharing over MANETs are addressed by a few

studies. In ORION and 7DS, the authors apply

cooperative caching concept to enable peer-to-peer

file sharing among nodes in MANETs. However,

using their techniques, the success rate of a search

is not predictable and highly depends on the

search locality in the system. Proposes a cross-

layer protocol that embeds a search mechanism in

a geographical location service. This coupling of

index information with the location information

incurs high overhead when a mobile node stores

multiple data objects since it requires that the

index information for each of the data objects be

updated whenever the node moves. A P2P

platform for developing mobile P2P applications

is proposed. Addresses the data dissemination

issue in ad hoc networks by partitioning a file into

multiple segments so that a node can acquire

different segments at different times and in

different locations, improving the data retrieval

efficiency. However, the issue of how to discover

a particular file of interest is not addressed in this

paper.

2. System Model

Each node in MANETs has limited radio range

and we assume that all nodes have the same radio

range. A node can communicate with other nodes

within its radio range directly or the ones out of its

radio range indirectly through multi-hop relay.

Any node may join or leave the network, resulting

in dynamic membership changes. In addition,

nodes may move, resulting in dynamic topology

changes. Each node is assumed to know its own

position as well as its immediate neighbors’

position through GPS devices or other means. We

use Greedy Perimeter Stateless Routing (GPSR)

[5], a well-known geographical routing protocol

for wireless networks, as our basic routing

protocol (necessary modifications are detailed in

the later part). GPSR consists of two methods for

forwarding packets: greedy forwarding that

forwards a packet progressively closer to the

destination, and perimeter forwarding that

forwards packets out of a void region where

greedy forwarding fails.Besides forming a

communication structure, each node also provides

certain number of sharable data objects. We

assume that each data object is associated with a

wellknown single-attribute key. The search

mechanism is to find the node storing the data

object with specified key and obtain the relevant

data object thereafter. In this paper, we focus on

the case when a user is interested in obtaining one

arbitrary data object (instead of all data objects)

satisfying the specified search criteria if there are

multiple such data objects.Following terms will be

used in the rest of this paper.Source node of a data

object is defined as the node storing this data

object. Index information (or index entry) of a data

object is the mapping between the data object and

the NodeID of its source node, i.e., the pair hkey,

NodeIDi,while index node of a data object is

defined as the node storing the index information

for this data object. Location information(or

location entry) of a node is the mapping

betweenthe NodeID of this node and its physical

location, i.e.,the pair hNodeID, locationi, while

location node is defined as the node storing the

location information for this node.

 Motivations

Due to potential large scale, scarce resources and

constant node movement, an efficient search

mechanism for MP2PIS should satisfy following

requirements.

• Scalability. A search mechanism should be

scalable in terms of network size as well as the

amount of sharable information stored in the

network.

• Efficiency. Due to the scarce resources, it is

desirable that a node can find a nearby source

node without travelling much further than the

source node itself.

• Adaptivity to node movement. The index needs

to be distributed intelligently amongst nodes so

that the index structure can adapt to node

movement without incurring high update

overhead.

3. Multi-level Peer Index

To achieve the goals as described in previous

section, namely, scalability, efficiency and

adaptivity to node movement, we propose a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

2www.ijert.org

distributed index structure, Multi-level Peer Index

(MPI).

Overview

To address scalability, the basic structure

of MPI is built upon well-known hashing

techniques so that each node has relatively equal

share of index entries and small storage

requirement.In MPI, data objects are hashed into

geographical coordinates within the network

region (we assume that the network boundary is

known). Therefore, the physical network region

becomes the virtual search space, which is

partitioned into multiple sub-spaces and then

assigned to nodes.To achieve efficiency, any

requester ideally should find the nearest source

node storing data objects of interest without

traversing much further than the physical distance

between the requester and the source node. With

this design goal in mind, we embed hierarchical

spatial information in the index so that nearby

nodes can take advantage of their physical

proximity.We now discuss how to improve the

system’s adaptivity to dynamics. The network is

virtually partitioned into grid cells where nodes in

a grid cell are collectively responsible for the

assigned keys. With this design, as long as a node

moves within its grid cell, there is no need for

update, incurring much lower update overheads

compared to GHT [10] which assigns keys to a

specific node residing at a specific geographical

coordinate.To deal with node mobility, we embed

a location lookup service, namely Multi-level

Location Service (MLS), in the multi-level

structure of MPI. At the same time we decouple

index and location entries. The benefits for this

embedding and decoupling are three-folds. First,

the location service can take advantage of the nice

properties of this multi-level structure as well.

Secondly, with this embedding, we have a single

protocol that provides both data lookup as well as

location lookup. Lastly, decoupling index entries

and location entries renders the flexibility to

update a node’s location and index

separately.Using MPI, search consists of three

phases: data lookup,location lookup and data

retrieval. In the data lookup phase, MPI is used to

find the NodeID of a nearby source node storing

data objects of interest. The location lookup phase

is then conducted to obtain the location

information of the source node and subsequently

reach the source node with the assistance of MLS.

Requested data object is then obtained from the

source node.

Index Structure of MPI

To embed nested spatial information in the index

structure, we partition the network hierarchically

as follows. The entire region is partitioned into m

equal-sized squares while each of these squares is

partitioned further into m smaller children squares

and so on. We label the squares from the highest

level (associated with the entire region) to the

lowest level (associated with the square with

minimum size) with increasing numeric value, i.e.,

the highest level has label 1.Every node in each of

these squares collectively constructs a hash index

(the details will be explained shortly), forming a

multi-level index structure. With this design, MPI

does not assign higher responsibilities to any node,

avoiding performance bottleneck and single point

of failure which are normally associated with

hierarchical tree structures. We now present how

nodes within a square collectively construct a hash

index. The whole network is associated with a

primary hash function, which takes the key value

of a data object and the geographical boundary of

a square as inputs, and generates an output that is a

geographical coordinate bounded by the specified

boundary. When a node joins the network, it

publishes the index information of its locally

stored data objects to the network as follows. For

each of its locally stored data objects, it first

calculates a set of hashed geographical coordinates

using the geographical boundaries associated with

each of the squares that it resides in and the key of

the data object as inputs. Then it publishes the

index information for the data object to these

geographical coordinates (how to choose index

nodes around these coordinates will be detailed

shortly).Through MPI, the requested data objects

can always be found within the smallest square

where both the requester and the source node

reside in. This search efficiency comes with the

overhead of publishing index information to each

level of MPI. We expect that the number of levels

in MPI is small, and search request rate will be

very high compared to the node join rate, thereby

this overhead is expected to be reasonable. To

implement the grid structure, in the lowest level

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

3www.ijert.org

(minimum sized) squares, the spatial region is

further partitioned into regular-sized grid cells,

and all nodes within a grid cell become the index

nodes for data objects hashed into the grid cell.

The downside of the grid approach is that the

index information needs to be propagated to all

nodes within a grid cell. To make this overhead

reasonable, the size of a grid cell should not be too

large. In our current design, we set the side length

of a grid cell, L, to r p2 where r indicates the radio

range so that any two nodes in a grid cell can

communicate directly, i.e., they are within each

other’s radio range. In some rare cases, it is still

possible that there is no nodes existing in a grid

cell temporarily due to node movement. To deal

with this issue, we apply a secondary hash

function to choose surrogate index nodes (or

surrogate location nodes) to store index entries (or

location entries) that are originally assigned to an

empty grid cell (using the primaryhash function).

Figure 1(a) gives an example for MPI with

4-level hierarchy when m = 4. The first level

(entire region) denoted by Q is partitioned into

four level-2 squares Q1, Q2, Q3, Q4 (we name the

four squares in clockwise order starting from the

one at top left corner). Then each of these squares

is partitioned into four level-3 squares. For

instance, Q1 is partitioned into Q11, Q12, Q13,

Q14. Node 1 in Q111 has a data object with Key

A and it publishes the index information for this

data object to the entire region Q and the three

squares Q1, Q11, and Q111 that it resides in. Here

the grey circles, I1,A, I2,A, I3,A, and I4,A

represent the index nodes for Key A in

corresponding regions.

 (a)MPI structure (b)Search using MPI

Figure1. An illustrative example for MPI.
MLS

As discussed in Section 3.1, to address

node mobility, we embed the location lookup

structure, Multi-level Lookup Service (MLS),

naturally in the multi-level structure ofMPI and at

the same time decouple index entries and location

entries. Specifically, a node chooses its location

nodes at each level by applying the same hash

function and grid structure of MPI, except here

NodeID instead of key value for a data object is

used as one input for the hash function. To reduce

location update overhead, we hide certain degree

of movement from higher levels of the hierarchy

so that location nodes at different levels can react

differently to node mobility at different

granularities. In MLS, nodes at lower level squares

maintain finer location information while nodes in

higher level squares only maintain coarser location

information. Location nodes at the lowest level

has detailed location information while the ones at

higher level (i.e., level-i) square only maintain a

pointer pointing to one of its children squares (i.e.,

level-(i+1)) square) that a node resides in Figure 1

also gives an example for MLS. Node 1 publishes

its location information to Q and the three square

Q1, Q11, and Q111. Here the white circles, L1,1,

L2,1, L3,1, and L4,1 represent the location nodes

for Node 1 in these corresponding regions. After

explaining the general idea of MLS, we discuss

how MLS structure is updated upon node

movements. When a node moves from its previous

grid cell x to a new grid cell y, it becomes one of

the location nodes for those nodes that have

hashed coordinates mapped to its current grid cell

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

4www.ijert.org

y and is no longer a location node for those nodes

having hashed coordinates mapped to grid cell x.

Therefore,it deletes its old location information

stored locally and obtains the location information

from any node in grid cell y. In addition, when a

node moves from its previous level-I square to a

new level-i square, it publishes its new location to

the location nodes in its current level-i square, and

deletes the location information from the location

nodes in the old level-i square. Furthermore, it

updates the location information at the location

nodes in its parent level-(i-1) square so that

location nodes in this square point to the level-i

square that this node is currently residing in.

Search

When a node issues a search request, it

includes the key associated with the requested data

object, its NodeID and current location. We

discuss the three phases in search, namely data

lookup, location lookup and data retrieval,

respectively, in this section.

Data lookup: When a node issues a search

request, it first check its own local data store. If a

result is found, the search terminates. Otherwise, it

invokes data lookup by sending the request to an

index node (i.e., the first index node reached in the

relevant grid cell) in its lowest level (i.e., level-H

where H is the maximum level of MPI) square1. If

the index node does not have an entry for the

requested key, the request is then forwarded to the

index node at next higher level square (i.e., the

parent square). The process is repeated until either

the index entry for the requested key is found or

the top level of MPI is reached without finding an

index entry for the requested key. For the former

case, the location lookup as described below is

invoked. For the latter case, the search fails and a

failure message is returned back to the requester

node.

Location lookup: The location lookup is invoked

at the square where the index entry for the

requested key is found. Assuming that this square

is a level-x square. The location request is first

routed to the location node responsible for the

NodeID of the source node at this square.

Fromthis location node, the requester will either

obtain a pointer pointing to a level-(x+1) square

(i.e., one of its children squares) that the source

node resides in or the precise location information

of the source node (if level-x is the lowest level).

In the former case, the request is forwarded to the

location node in the pointed level-(x+1) square.

This process is repeated until the lowest level

square (i.e., level-H) is reached where the precise

location of the source node is found. At this point,

data retrieval as described below is invoked.

Data retrieval: Since the location of the requester

node is included in the request message, data

retrieval can be done easily if the requester node

stays in its original grid cell. However, there are

two possible cases when a node moves out of its

original grid cells. The first case is that a node

moves out of its original grid cell but still within

its lowest level (i.e., level-H) square. In this case,

when the reply message reaches its original grid

cell, a location lookup is invoked in this square

and the reply message is forwarded to the new

location of the requester. The second case is that

the requester moves out of its level-H square. To

handle thiscase, a node always leaves a forwarding

pointer at its old location nodes which points to

the grid cell that it moves into. When the reply

message reaches the old square specified in the

reply message, the forwarding pointer is obtained

from the location nodes so that the reply message

can be delivered to the current square that the node

resides in. The reply message might go through

multiple forwarding pointers before it reaches the

current location of the requester. Figure 1 (b) gives

a search example in 4-level MPI while

Node 1 searches for Key B. In this example, Node

2 stores the data object with Key B. Node 1 first

invokes data lookup by forwarding the search

message to Key B’s index node in its level-4

square, I4,B. Assume that this index node does not

has an index entry for Key B. The searchmessage

is then forwarded to level-3 index node, I3,B. This

process is repeated until the search message

reaches level-2 index node, I2,B, which has an

index entry indicating that Node 2 has the

requested data object. At this point, location

lookup for Node 2 is invoked in this level-2

square, Q1. The location lookup request is

forwarded sequentially to L2,2, L3,2 and L4,2,

which are the location nodes at level-2, level-3 and

level-4 squares, respectively. After the location for

Node 2 is obtained from L4,2, the message is then

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

5www.ijert.org

forwarded to Node 2 and data retrieval is invoked

thereafter.

Index maintenance

When a node joins the network, it needs to

perform two tasks: publishing its data objects and

location information (which has been explained

previously); obtaining index information and

location information hashed to the grid cell that it

resides in. To obtain these index and location

information, upon joining the network, a node

broadcasts a HELLO message containing its

NodeID. Any node within its grid cell can hear the

HELLO message since they are within the radio

range. After hearing the HELLO message,a node

waits for a random interval before it replies with

its current index entries as well as location entries.

One node will reply first and any other nodes in

the grid cell can hear this reply and will not reply

again. When a node moves out of its previous grid

cell, it becomes one of the index nodes for those

data objects that have hashed coordinates mapped

to the new grid cell that it moves into and is no

longer an index node for those data objects having

hashed coordinates mapped to its previous grid

cell. Therefore, it deletes its old index information

and obtains the index information from any node

in its current grid cell. In addition, a node needs to

republish the index information for its data objects

when it moves out of a level-I square and enters a

new level-i square.

4. Proposed model:

Enabling efficient peer-to-peer information

sharing over MANETs (MP2PIS) is a promising

application and vital research area. One of the

challenges for MP2PIS is to develop efficient

search mechanism that can find requested data

object quickly in an environment with great node

mobility and scarce resources. Herewith we

propose a distributed index structure, Multi-level

Peer Index (MPI), which will consist of data

lookup service and location lookup service, to

enable efficient search in MANETs. We are

conducting more in-depth analysis and simulation

to evaluate the effect of various system

parameters, such as size of grid cell and number of

levels in MPI, on the performance of MPI.

 The model proposed by Mei Li et al in efficient

peer –to-peer networks is limited to improvise the

QOS factors in terms of information sharing. In

our model we develop a contract signing protocol.

This protocol helps to authenticate information

sharing between two peers with mobility.

Simulation evaluation

In this section, we first present our simulation

setup, following which we present the preliminary

simulation results.

Simulation setup

We implement a simulator using csim[11]. The

network setup, workload and performance metrics

are as follows:

Network setup: In the simulation, each node has a

radio range 250 meter. The network sizes are 64,

256, 1024, and 4096. The default network size is

set to 1024 if unspecified otherwise. m is set to 4

and the lowest level square of MPI is set to

contain 4 grids. The nodes are initially randomly

placed in a square region, whose area is scaled

with the number of nodes so that the average

density is 4 nodes in a 175*175 square region. All

nodes move using the random waypoint model [1]

with a maximum velocity ranging from 0m/s to

20m/s. The pause time is set to 0 second.

Workload: Each node holds 10 data objects. A

node issues random searches into the network

while the average time interval between two

searches issued by a node is 20 seconds. The

simulation time is 500 seconds. The results shown

in following sections are averaged over 10 trials

for each set of the simulation.

Performance metrics: Path length is the average

number of hops traversed from requester node to

source node in a search (including the data lookup

and location lookup phases). This metric indicates

search latency. Path stretch is defined as (real

path length/ideal path length) where real path

length is defined as above and ideal path length is

the number of hops along the shortest path

between the requester node and the source node.

This metric indicates how close the path taken in a

search is to the shortest path between the requester

node and source node.

Message number is the total number of messages,

including search messages, index publish/update

messages, location publish/update messages, and

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org

other control messages such as HELLO messages,

processed by a node per second.

5. Results

In this section, we first show the effect of

network size. The effect of nodes’ moving speed is

then followed. We use the basic flooding approach

as the baseline for comparison.

Figure 2. Effect of moving speed on message

number.
Effect of network size. Figure 2 shows the path

length, path stretch, and message number when we

vary the network size from 64 to 4096. From

Figure 2(a), we can see that the path length

increases slowly with the network size. The path

stretch shown in Figure 2(b) is bounded by a small

constant number (i.e., 5). Figure 2(c) shows the

message number. We include the message

overhead for flooding technique here for

comparison. From this figure, we can see that the

message number of flooding is much higher than

the message number of MPI. These results

confirm our expectation that MPI is scalable and

efficient.

 (a) Average path length

 (b) Average path stretch

(c) Average number of messages

Figure 3. Effect of network sizes.

Effect of node mobility. The relationship between

message number and moving speed is illustrated in

Figure 3. The message number increases linearly

with the maximum moving speed. However, even

at the highest moving speed 20m/s, the message

number is still much lower than flooding

technique. These results demonstrate the

adaptivity of MPI to node mobility.

Conclusion

Enabling efficient peer-to-peer information

sharing over MANETs (MP2PIS) is foreseen to be

a promising application and vital research area.

One of the challenges for MP2PIS is to develop

efficient search mechanism that can find requested

data object quickly in an environment with great

node mobility and scarce resources. In this paper,

we propose a distributed index structure, Multi-

level Peer Index (MPI), which consists of data

lookup service and location lookup service, to

enable efficient search in MANETs. Preliminary

evaluation demonstrates that our proposal is

scalable, efficient and adaptive to node mobility.

We are conducting more in-depth analysis and

simulation to evaluate the effect of various system

parameters, such as size of grid cell and number of

levels in MPI, on the performance of MPI. We are

also investigating how to expand the search ability

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

7www.ijert.org

of MPI to more complex query types, such as

range queries, multi-attribute queries, etc.

References

[1] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C.

Hu, and J. Jetcheva. A performance comparison of

multi-hop wireless ad hoc network routing

protocols. In Proceedings of MOBICOM, pages

85–97, October 1998.

[2] G. Ding and B. Bhargava. Peer-to-peer file-

sharing over mobile ad hoc networks. In

Proceedings of IEEE Annual Conference on

Pervasive Computing and Communications

Workshops, pages 104–109, March 2004.

[3] S. K. Goel, M. Singh, D. Xu, and B. L.

Efficient peer-to-peer data dissemination in mobile

ad-hoc networks. In Proceedings of International

Conference on Parallel Processing Workshops,

pages 152–158, August 2002.

[4] X. Hong, K. Xu, and M. Gerla. Scalable

routing protocols for mobile Ad hoc networks.

IEEE Network Magazine, pages 11–21,

July/August 2002. [5] B. Karp and H. T. Kung.

GPSR: greedy perimeter stateless routing for

wireless networks. In Proceedings of MOBICOM,

pages 243–254, August 2000.

[6] G. Kortuem, J. Schneider, D. Preuitt, T. G. C.

Thompson, S. Fickas, and Z. Segall. When peer-

to-peer comes face-to-face: Collaborative peer-to-

peer computing in mobile ad hoc networks. In

Proceedingsof Peer-to-Peer Computing (P2P),

pages 75–93, August 2001.

[7] C. Lindemann and O. P. Waldhorst. A

distributed search service for peer-to-peer file

sharing in mobile applications. In Proceedings of

International Conference on Peer-to-Peer

Computing (P2P), pages 73–80, September

2002.[8] M. Papadopouli and H. Schulzrinne.

Effects of power conservation,wireless coverage

and cooperation on data dissemination among

mobile devices. In Proceedings of ACM

Interational Symposiumon Mobile Ad Hoc

Networking and Computing (MobiHoc),

pages117–127, October 2001.

[9] S. Ratnasamy, P. Francis, M. Handley, R.M.

Karp, and S. Schenker. A scalable content-

addressable network. In Proceedings of

SIGCOMM, pages 161–172, August 2001.

[10] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin,

R. Govindan, L. Yin, and F. Yu. Data-centric

storage in sensornets with GHT, a geographic hash

table. Mobile Networks and Applications

(MONET), Special Issue on Mobile and Wireless

Data Management, 8(4):427 – 442, August 2003.

[11] H. Schwetman. Csim18 - the simulation

engine. In Proceedings of the 1996 Winter

Simulation Conference, pages 517–521, December

1996.

[12] I. Stoica, R. Morris, D. Karger, M. F.

Kaashoek, and H. Balakrishnan.Chord: A scalable

peer-to-peer lookup service for Internet

applications. In Proceedings of SIGCOMM, pages

149–160, August 2001.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

8www.ijert.org

