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Abstract 

    The information sharing systems for the wide-

spread exchange of resources and voluminous 

information among thousands of users have 

resulted in lot of attention on Peer-to-peer system. 

Yet, existing peer-to-peer information sharing 

systems work mostly on wired networks. With the 

growing number of communication-equipped 

mobile devices that can self-organize into 

infrastructure-less communication platform, 

namely mobile ad hoc networks (MANETs), peer 

to- peer information sharing over MANETs is a 

promising research area. Herewith we propose a 

distributed index structure, Multi-level Peer Index 

(MPI) that enables efficient peer-to-peer 

information sharing over MANETs. Preliminary 

evaluation demonstrates that MPI is scalable, 

efficient, and adaptive to node mobility.  

 

1. Introduction 

 

Peer-to-peer (P2P) systems have received a lot 

of attention as distributed information sharing 

systems for the widespread exchange of resources 

and  voluminous information among thousands of 

users. An important research issue in P2P system 

is  searching for resources (e.g., data, files, and  

services) available at one or more of these 

numerous  host  nodes. The importance of P2P 

searches has  motivated several  proposals for 

performing these operations efficiently, such as 

distributed hash table (DHT) overlay networks 

(e.g., CAN [9], CHORD [12]). However, these 

P2P information sharing  systems only work on 

wired networks. Rapid advance in wireless 

technology along with greater demands for user 

mobility motivates recent intensive research 

efforts in mobile ad hoc networks (MANETs). 

MANETs consist of mobile  devices equipped 

with interfaces for short to medium range wireless 

communications, such as laptop, Personal Digital 

Assistance (PDA), etc., that can spontaneously 

self-organize into a communication structure 

without requiring any fixed infrastructure Most of 

the recent research efforts inMANETs are focused 

on the lower layers, such as link layer, network 

layer and transport layer, to enable efficient 

communication among nodes in the network (a 

survey is provided in [4]). On the other hand, it is 

envisioned that the future gadgets such as MP3 

players and DVD players will be equipped for 

wireless communications via technologies such as 

Wi-Fi and Bluetooth. Thus, MANETs will enable 

future applications such as sharing and exchange 

of documents, pictures, music, and movies on 

mobile devices. These kinds of applications 

resemble information sharing in P2P systems in 

terms of lack of centralized servers and equal roles 

taken by nodes in the system, thereby we call them 

mobile peer-topeer information sharing 

(MP2PIS). 

Similar to P2P systems, to enable effective 

data exchange in MP2PIS, a first step is to devise 

search mechanisms to find a data object of interest 

in MANETs. However, due to the unique 

characteristics of  MANETs compared to P2P 

systems, such as limited transmission range, 

resource (CPU, bandwidth, storage) constraints, 

and node mobility, simply importing DHTs to 

MANETs is not a valid solution. In this paper, we 

propose a distributed index structure, Multi-level 

Peer Index (MPI) that enables efficient P2P 

information search over MANETs. Through 
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simulation, we demonstrate that MPI is scalable, 

efficient and adaptive to node mobility. 

Various issues in peer-to-peer information 

sharing over MANETs are addressed by a few 

studies. In ORION and 7DS, the authors apply 

cooperative caching concept to enable peer-to-peer 

file sharing among nodes in MANETs. However, 

using their techniques, the success rate of a search 

is not predictable and highly depends on the 

search locality in the system. Proposes a cross-

layer protocol that embeds a search mechanism in 

a geographical location service. This coupling of 

index information with the location information 

incurs high overhead when a mobile node stores 

multiple data objects since it requires that the 

index information for each of the data objects be 

updated whenever the node moves. A P2P 

platform for developing mobile P2P applications 

is proposed. Addresses the data dissemination 

issue in ad hoc networks by partitioning a file into 

multiple segments so that a node can acquire 

different segments at different times and in 

different locations, improving the data retrieval 

efficiency. However, the issue of how to discover 

a particular file of interest is not addressed in this 

paper. 

2. System Model 

 

Each node in MANETs has limited radio range 

and we assume that all nodes have the same radio 

range. A node can communicate with other nodes 

within its radio range directly or the ones out of its 

radio range indirectly through multi-hop relay. 

Any node may join or leave the network, resulting 

in dynamic membership changes. In addition, 

nodes may move, resulting in dynamic topology 

changes. Each node is assumed to know its own 

position as well as its immediate neighbors’ 

position through GPS devices or other means. We 

use Greedy Perimeter Stateless Routing (GPSR) 

[5], a well-known geographical routing protocol 

for wireless networks, as our basic routing 

protocol (necessary modifications are detailed in 

the later part). GPSR consists of two methods for 

forwarding packets: greedy forwarding that 

forwards a packet progressively closer to the 

destination, and perimeter forwarding that 

forwards packets out of a void region where 

greedy forwarding fails.Besides forming a 

communication structure, each node also provides 

certain number of sharable data objects. We 

assume that each data object is associated with a 

wellknown single-attribute key. The search 

mechanism is to find the node storing the data 

object with specified key and obtain the relevant 

data object thereafter. In this paper, we focus on 

the case when a user is interested in obtaining one 

arbitrary data object (instead of all data objects) 

satisfying the specified search criteria if there are 

multiple such data objects.Following terms will be 

used in the rest of this paper.Source node of a data 

object is defined as the node storing this data 

object. Index information (or index entry) of a data 

object is the mapping between the data object and 

the NodeID of its source node, i.e., the pair hkey, 

NodeIDi,while index node of a data object is 

defined as the node storing the index information 

for this data object. Location information(or 

location entry) of a node is the mapping 

betweenthe NodeID of this node and its physical 

location, i.e.,the pair hNodeID, locationi, while 

location node is defined as the node storing the 

location information for this node. 

 

 Motivations 

Due to potential large scale, scarce resources and 

constant node movement, an efficient search 

mechanism for MP2PIS should satisfy following 

requirements. 

• Scalability. A search mechanism should be 

scalable in terms of network size as well as the 

amount of sharable information stored in the 

network. 

• Efficiency. Due to the scarce resources, it is 

desirable that a node can find a nearby source 

node without travelling much further than the 

source node itself. 

• Adaptivity to node movement. The index needs 

to be distributed intelligently amongst nodes so 

that the index structure can adapt to node 

movement without incurring high update 

overhead. 

3. Multi-level Peer Index 

 

To achieve the goals as described in previous 

section, namely, scalability, efficiency and 

adaptivity to node movement, we propose a 
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distributed index structure, Multi-level Peer Index 

(MPI). 

Overview 

To address scalability, the basic structure 

of MPI is built upon well-known hashing 

techniques so that each node has relatively equal  

share of index entries and small storage 

requirement.In MPI, data objects are hashed into 

geographical coordinates within the network 

region (we assume that the network boundary is 

known). Therefore, the physical network region 

becomes the virtual search space, which is 

partitioned into multiple sub-spaces and then 

assigned to nodes.To achieve efficiency, any 

requester ideally should find the nearest source 

node storing data objects of interest without 

traversing much further than the physical distance 

between the requester and the source node. With 

this design goal in mind, we embed hierarchical 

spatial information in the index so that nearby 

nodes can take advantage of their physical 

proximity.We now discuss how to improve the 

system’s adaptivity to dynamics. The network is 

virtually partitioned into grid cells where nodes in 

a grid cell are collectively responsible for the 

assigned keys. With this design, as long as a node 

moves within its grid cell, there is no need for 

update, incurring much lower update overheads 

compared to GHT [10] which assigns keys to a 

specific node residing at a specific geographical 

coordinate.To deal with node mobility, we embed 

a location lookup service, namely Multi-level 

Location Service (MLS), in the multi-level 

structure of MPI. At the same time we decouple 

index and location entries. The benefits for this 

embedding and decoupling are three-folds. First, 

the location service can take advantage of the nice 

properties of this multi-level structure as well. 

Secondly, with this embedding, we have a single 

protocol that provides both data lookup as well as 

location lookup. Lastly, decoupling index entries 

and location entries renders the flexibility to 

update a node’s location and index 

separately.Using MPI, search consists of three 

phases: data lookup,location lookup and data 

retrieval. In the data lookup phase, MPI is used to 

find the NodeID of a nearby source node storing 

data objects of interest. The location lookup phase 

is then conducted to obtain the location 

information of the source node and subsequently 

reach the source node with the assistance of MLS. 

Requested data object is then obtained from the 

source node. 

Index Structure of MPI 

To embed nested spatial information in the index 

structure, we partition the network hierarchically 

as follows. The entire region is partitioned into m 

equal-sized squares while each of these squares is 

partitioned further into m smaller children squares 

and so on. We label the squares from the highest 

level (associated with the entire region) to the 

lowest level (associated with the square with 

minimum size) with increasing numeric value, i.e., 

the highest level has label 1.Every node in each of 

these squares collectively constructs a hash index 

(the details will be explained shortly), forming a 

multi-level index structure. With this design, MPI 

does not assign higher responsibilities to any node, 

avoiding performance bottleneck and single point 

of failure which are normally associated with 

hierarchical tree structures. We now present how 

nodes within a square collectively construct a hash 

index. The whole network is associated with a 

primary hash function, which takes the key value 

of a data object and the geographical boundary of 

a square as inputs, and generates an output that is a 

geographical coordinate bounded by the specified 

boundary. When a node joins the network, it 

publishes the index information of its locally 

stored data objects to the network as follows. For 

each of its locally stored data objects, it first 

calculates a set of hashed geographical coordinates 

using the geographical boundaries associated with 

each of the squares that it resides in and the key of 

the data object as inputs. Then it publishes the 

index information for the data object to these 

geographical coordinates (how to choose index 

nodes around these coordinates will be detailed 

shortly).Through MPI, the requested data objects 

can always be found within the smallest square 

where both the requester and the source node 

reside in. This search efficiency comes with the 

overhead of publishing index information to each 

level of MPI. We expect that the number of levels 

in MPI is small, and search request rate will be 

very high compared to the node join rate, thereby 

this overhead is expected to be reasonable. To 

implement the grid structure, in the lowest level 
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(minimum sized) squares, the spatial region is 

further partitioned into regular-sized grid cells, 

and all nodes within a grid cell become the index 

nodes for data objects hashed into the grid cell. 

The downside of the grid approach is that the 

index information needs to be propagated to all 

nodes within a grid cell. To make this overhead 

reasonable, the size of a grid cell should not be too 

large. In our current design, we set the side length 

of a grid cell, L, to r p2 where r indicates the radio 

range so that any two nodes in a grid cell can 

communicate directly, i.e., they are within each 

other’s radio range. In some rare cases, it is still 

possible that there is no nodes existing in a grid 

cell temporarily due to node movement. To deal 

with this issue, we apply a secondary hash 

function to choose surrogate index nodes (or 

surrogate location nodes) to store index entries (or 

location entries) that are originally assigned to an 

empty grid cell (using the primaryhash function). 

 

Figure 1(a) gives an example for MPI with 

4-level hierarchy when m = 4. The first level 

(entire region) denoted by Q is partitioned into 

four level-2 squares Q1, Q2, Q3, Q4 (we name the 

four squares in clockwise order starting from the 

one at top left corner). Then each of these squares 

is partitioned into four level-3 squares. For 

instance, Q1 is partitioned into Q11, Q12, Q13, 

Q14. Node 1 in Q111 has a data object with Key 

A and it publishes the index information for this 

data object to the entire region Q and the three 

squares Q1, Q11, and Q111 that it resides in. Here 

the grey circles, I1,A, I2,A, I3,A, and I4,A 

represent the index nodes for Key A in  

corresponding regions. 

 
             (a)MPI structure    (b)Search using MPI 

Figure1. An illustrative example for MPI. 
MLS 

As discussed in Section 3.1, to address 

node mobility, we embed the location lookup 

structure, Multi-level Lookup Service (MLS), 

naturally in the multi-level structure ofMPI and at 

the same time decouple index entries and location 

entries. Specifically, a node chooses its location 

nodes at each level by applying the same hash 

function and grid structure of MPI, except here 

NodeID instead of key value for a data object is 

used as one input for the hash function. To reduce 

location update overhead, we hide certain degree 

of movement from higher levels of the hierarchy 

so that location nodes at different levels can react 

differently to node mobility at different 

granularities. In MLS, nodes at lower level squares 

maintain finer location information while nodes in 

higher level squares only maintain coarser location 

information. Location nodes at the lowest level 

has detailed location information while the ones at 

higher level (i.e., level-i) square only maintain a 

pointer pointing to one of its children squares (i.e., 

level-(i+1)) square) that a node resides in Figure 1 

also gives an example for MLS. Node 1 publishes 

its location information to Q and the three square 

Q1, Q11, and Q111. Here the white circles, L1,1, 

L2,1, L3,1, and L4,1 represent the location nodes 

for Node 1 in these corresponding regions. After 

explaining the general idea of MLS, we discuss 

how MLS structure is updated upon node 

movements. When a node moves from its previous 

grid cell x to a new grid cell y, it becomes one of 

the location nodes for those nodes that have 

hashed coordinates mapped to its current grid cell 
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y and is no longer a location node for those nodes 

having hashed coordinates mapped to grid cell x. 

Therefore,it deletes its old location information 

stored locally and obtains the location information 

from any node in grid cell y. In addition, when a 

node moves from its previous level-I square to a 

new level-i square, it publishes its new location to 

the location nodes in its current level-i square, and 

deletes the location information from the location 

nodes in the old level-i square. Furthermore, it 

updates the location information at the location 

nodes in its parent level-(i-1) square so that 

location nodes in this square point to the level-i 

square that this node is currently residing in. 

Search 

When a node issues a search request, it 

includes the key associated with the requested data 

object, its NodeID and current location. We 

discuss the three phases in search, namely data 

lookup, location lookup and data retrieval, 

respectively, in this section. 

Data lookup: When a node issues a search 

request, it first check its own local data store. If a 

result is found, the search terminates. Otherwise, it 

invokes data lookup by sending the request to an 

index node (i.e., the first index node reached in the 

relevant grid cell) in its lowest level (i.e., level-H 

where H is the maximum level of MPI) square1. If 

the index node does not have an entry for the 

requested key, the request is then forwarded to the 

index node at next higher level square (i.e., the 

parent square). The process is repeated until either 

the index entry for the requested key is found or 

the top level of MPI is reached without finding an 

index entry for the requested key. For the former 

case, the location lookup as described below is 

invoked. For the latter case, the search fails and a 

failure message is returned back to the requester 

node. 

Location lookup: The location lookup is invoked 

at the square where the index entry for the 

requested key is found. Assuming that this square 

is a level-x square. The location request is first 

routed to the location node responsible for the 

NodeID of the source node at this square. 

Fromthis location node, the requester will either 

obtain a pointer pointing to a level-(x+1) square 

(i.e., one of its children squares) that the source 

node resides in or the precise location information 

of the source node (if level-x is the lowest level). 

In the former case, the request is forwarded to the 

location node in the pointed level-(x+1) square. 

This process is repeated until the lowest level 

square (i.e., level-H) is reached where the precise 

location of the source node is found. At this point, 

data retrieval as described below is invoked. 

Data retrieval: Since the location of the requester 

node is included in the request message, data 

retrieval can be done easily if the requester node 

stays in its original grid cell. However, there are 

two possible cases when a node moves out of its 

original grid cells. The first case is that a node 

moves out of its original grid cell but still within 

its lowest level (i.e., level-H) square. In this case, 

when the reply message reaches its original grid 

cell, a location lookup is invoked in this square 

and the reply message is forwarded to the new 

location of the requester. The second case is that 

the requester moves out of its level-H square. To 

handle thiscase, a node always leaves a forwarding 

pointer at its old location nodes which points to 

the grid cell that it moves into. When the reply 

message reaches the old square specified in the 

reply message, the forwarding pointer is obtained 

from the location nodes so that the reply message 

can be delivered to the current square that the node 

resides in. The reply message might go through 

multiple forwarding pointers before it reaches the 

current location of the requester. Figure 1 (b) gives 

a search example in 4-level MPI while 

Node 1 searches for Key B. In this example, Node 

2 stores the data object with Key B. Node 1 first 

invokes data lookup by forwarding the search 

message to Key B’s index node in its level-4 

square, I4,B. Assume that this index node does not 

has an index entry for Key B. The searchmessage 

is then forwarded to level-3 index node, I3,B. This 

process is repeated until the search message 

reaches level-2 index node, I2,B, which has an 

index entry indicating that Node 2 has the 

requested data object. At this point, location 

lookup for Node 2 is invoked in this level-2 

square, Q1. The location lookup request is 

forwarded sequentially to L2,2, L3,2 and L4,2, 

which are the location nodes at level-2, level-3 and 

level-4 squares, respectively. After the location for 

Node 2 is obtained from L4,2, the message is then 
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forwarded to Node 2 and data retrieval is invoked 

thereafter. 

Index maintenance 

When a node joins the network, it needs to 

perform two tasks: publishing its data objects and 

location information (which has been explained 

previously); obtaining index information and 

location information hashed to the grid cell that it 

resides in. To obtain these index and location 

information, upon joining the network, a node 

broadcasts a HELLO message containing its 

NodeID. Any node within its grid cell can hear the 

HELLO message since they are within the radio 

range. After hearing the HELLO message,a node 

waits for a random interval before it replies with 

its current index entries as well as location entries. 

One node will reply first and any other nodes in 

the grid cell can hear this reply and will not reply 

again. When a node moves out of its previous grid 

cell, it becomes one of the index nodes for those 

data objects that have hashed coordinates mapped 

to the new grid cell that it moves into and is no 

longer an index node for those data objects having 

hashed coordinates mapped to its previous grid 

cell. Therefore, it deletes its old index information 

and obtains the index information from any node 

in its current grid cell. In addition, a node needs to 

republish the index information for its data objects 

when it moves out of a level-I square and enters a 

new level-i square. 

 

4. Proposed model: 

 

Enabling efficient peer-to-peer information 

sharing over MANETs (MP2PIS) is a promising 

application and vital research area. One of the 

challenges for MP2PIS is to develop efficient 

search mechanism that can find requested data 

object quickly in an environment with great node 

mobility and scarce resources. Herewith we 

propose a distributed index structure, Multi-level 

Peer Index (MPI), which will consist of data 

lookup service and location lookup service, to 

enable efficient search in MANETs. We are 

conducting more in-depth analysis and simulation 

to evaluate the effect of various system 

parameters, such as size of grid cell and number of 

levels in MPI, on the performance of MPI. 

    The model proposed by Mei Li et al in efficient 

peer –to-peer networks is limited to improvise the 

QOS factors in terms of information sharing. In 

our model we develop a contract signing protocol. 

This protocol helps to authenticate information 

sharing between two peers with mobility. 

 

Simulation evaluation 

In this section, we first present our simulation 

setup, following which we present the preliminary 

simulation results. 

Simulation setup 

We implement a simulator using csim[11]. The 

network setup, workload and performance metrics 

are as follows: 

Network setup: In the simulation, each node has a 

radio range 250 meter. The network sizes are 64, 

256, 1024, and 4096. The default network size is 

set to 1024 if unspecified otherwise. m is set to 4 

and the lowest level square of MPI is set to 

contain 4 grids. The nodes are initially randomly 

placed in a square region, whose area is scaled 

with the number of nodes so that the average 

density is 4 nodes in a 175*175 square region. All 

nodes move using the random waypoint model [1] 

with a maximum velocity ranging from 0m/s to 

20m/s. The pause time is set to 0 second. 

Workload: Each node holds 10 data objects. A 

node issues random searches into the network 

while the average time interval between two 

searches issued by a node is 20 seconds. The 

simulation time is 500 seconds. The results shown 

in following sections are averaged over 10 trials 

for each set of the simulation.  

Performance metrics: Path length is the average 

number of hops traversed from requester node to 

source node in a search (including the data lookup 

and location lookup phases). This metric indicates 

search latency. Path stretch is defined as (real 

path length/ideal path length)  where real path 

length is defined as above and ideal path length is 

the number of hops along the shortest path 

between the requester node and the source node. 

This metric indicates how close the path taken in a 

search is to the shortest path between the requester 

node and source node.  

Message number is the total number of messages, 

including search messages, index publish/update 

messages, location publish/update messages, and 
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other control messages such as HELLO messages, 

processed by a node per second. 

 

5. Results 

 

In this section, we first show the effect of 

network size. The effect of nodes’ moving speed is 

then followed. We use the basic flooding approach 

as the baseline for comparison. 

 

 
Figure 2. Effect of moving speed on message 

number. 
Effect of network size. Figure 2 shows the path 

length, path stretch, and message number when we 

vary the network size from 64 to 4096. From 

Figure 2(a), we can see that the path length 

increases slowly with the network size. The path 

stretch shown in Figure 2(b) is bounded by a small 

constant number (i.e., 5). Figure 2(c) shows the 

message number. We include the message 

overhead for flooding technique here for 

comparison. From this figure, we can see that the 

message number of flooding is much higher than 

the message number of MPI. These results 

confirm our expectation that MPI is scalable and 

efficient. 
 

 
                (a) Average path length 

 
          (b) Average path stretch 

 
(c) Average number of messages 

Figure 3. Effect of network sizes. 
 

Effect of node mobility. The relationship between 

message number and moving speed is illustrated in 

Figure 3. The message number increases linearly 

with the maximum moving speed. However, even 

at the highest moving speed 20m/s, the message 

number is still much lower than flooding 

technique. These results demonstrate the 

adaptivity of MPI to node mobility. 

 

Conclusion 

Enabling efficient peer-to-peer information 

sharing over MANETs (MP2PIS) is foreseen to be 

a promising application and vital research area. 

One of the challenges for MP2PIS is to develop 

efficient search mechanism that can find requested 

data object quickly in an environment with great 

node mobility and scarce resources. In this paper, 

we propose a distributed index structure, Multi-

level Peer Index (MPI), which consists of data 

lookup service and location lookup service, to 

enable efficient search in MANETs. Preliminary 

evaluation demonstrates that our proposal is 

scalable, efficient and adaptive to node mobility. 

We are conducting more in-depth analysis and 

simulation to evaluate the effect of various system 

parameters, such as size of grid cell and number of 

levels in MPI, on the performance of MPI. We are 

also investigating how to expand the search ability 
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of MPI to more complex query types, such as 

range queries, multi-attribute queries, etc. 
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