

SecureLiveApp : A Secure Sharing and Migration Approach for Live Virtual

Desktop Applications in a Private Cloud

 Dr. K. Karuppasamy
1
 K. S. Prabhu

2
 K. Arunkumar

3

 Professor Assistant Professor Assistant Professor

Department of IT, RVS College of Engineering and Technology

Coimbatore, Tamilnadu, India.

Abstract

Computing offers a flexible and relatively

cheap solution to deploy IT infrastructure in an elastic

way. An emerging cloud service allows customers to

order virtual machines to be delivered virtually in the

cloud; and in most cases, besides the virtual hardware

and system software, it is necessary to deploy

application software in a similar way to provide a

fully-functional work environment. Most existing

systems use virtual appliances to provide this function,

which couples application software with virtual

machine (VM) image(s) closely. In this paper, we

propose a flexible collaboration approach to enable

live virtual desktop application sharing, based on a

cloud and virtualization infrastructure. This system

supports secure application sharing and on-demand

migration among multiple users or equipment. To

support VM desktop sharing among multiple users, we

develop a secure access mechanism to distinguish their

view privileges, in which window operation events are

tracked to compute hidden areas of windows in real-

time. A proxy-based window filtering mechanism is

also proposed to deliver desktops to different users.To

achieve the goals of live application sharing and

migration between VMs, a presentation redirection

approach based on VNC protocol and cloud based VM

migration is used. Results of evaluations have verified

that these approaches are effective and useful.

Index Terms - Cloud Computing, User-level

virtualization, Virtual machine, Deployment.

1. INTRODUCTION

Nowadays, the Internet has become a data and

computing center, with a large number of applications,

and ubiquitous equipment. New Internet-based

computing paradigms, e.g., cloud computing [1,2],

have emerged, aiming to bring large-scale computing,

storage, and data service resources together to build a

virtual computing environment. These paradigms

provide simple and transparent approaches that enable

effective sharing and utilization applications over the

Internet.

In the early personal computing era, to use

software, users needed to install it under a granted

license. This traditional method suffers several

limitations as the software has increased both in

amount and number of categories. First, software users

need to deal with many complex tasks in terms of

software installation, configuration, updating, and even

troubleshooting. Besides, software which is dependent

on their respective host operating systems may face

compatibility issues. Normal users are thus loaded with

an extra burden. In contrast, the concept of software as

service (SaaS) [3] that emerged with cloud computing

has been promoted by many companies, such as

Amazon and Google. With SaaS, things become

simpler. Software can be installed into VMs with easier

encapsulation and secure Isolation. Users could access

software on demand through the Internet without

worrying about maintenance issues. There are two

approaches to achieve these goals. One is to redevelop

software (e.g., GoogleDoc) based on Web technologies.

This not only requires much extra work, but also leads

to compatibility problems on various browsers. The

other approach is based on desktop virtualization,

which separates the presentation and execution of

applications, and provides a transparent way to deliver

an application-based remote virtual desktop. Currently,

a virtual desktop can be delivered based on remote

display protocols, such as VNC (Virtual Network

Computing) [4,5], and RDP(Remote Desktop Protocol)

[6]. These protocols generally provide methods for

1822

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120786

remote virtual desktop accessing, so that users can log

into a VM and operate on the desktop.

Over the Internet, secure collaboration among

users and equipment is an important requirement [7],

and, in particular, user terminal equipment shows

increasing mobility. In a cloud computing environment,

applications are executed in VMs. Therefore to provide

a novel flexible collaboration service among live virtual

desktop applications (a live application in short) is the

focus of our work. There are some new scenarios for

live application sharing in a single VM or among

multiple VMs. Ina single VM, the collaboration

scenarios can be supported based on shared desktops.

For example, in a remote teaching system, desktop

sharing enables the instructor and students to operate

on the same view. However, a traditional way for

remote desktop sharing is to simply share the desktop

login account and password, which may induce

inconvenience and insecurity. In a cloud, a virtual

machine monitor (e.g., KVM) only provides a coarse

grained access control in VM-level granularity (e.g.,

Qemu VNCimplementation). This brings a

disadvantage that authorization only has two possible

results: success or failure, and it means that users may

either all have complete operation rights with poor

security and privacy protection, or cannot concurrently

access the desktop at all. In particular, it is impractical

to share the whole desktop including users’ private

windows. Thus, a fine-grained access control

mechanism at window-level granularity is required to

provide security and privacy protection

2. SYSTEM DESIGN

2.1. Secure sharing of a single VM desktop

among multiple users

Fig. 2.1 shows the architecture of secure desktop

sharing for multiple users. For every VM owned by a

user, the display of running applications is delivered to

the VNCViewer on the client sides through a

VNCServer installed in the VM. The basic procedure

of secure desktop sharing among multiple users is as

follows.

1. Extraction of application windows in the operating

system. To enable administrators to assign

application permissions to users at window

granularity, SecureLiveApp needs to extract all

related windows from the operating system. First,

SecureLiveApp gets all of the window handlers on a

desktop. Second, SecureLiveApp uses the window

handlers to obtain related process handlers which the

windows belong to, by which we can get the

application process names. Finally, SecureLiveApp

creates an available application list to users for

making security policies.

2. Policy configuration on SecureLiveApp@ Server

side. The owner of the virtual desktop creates a list of

those who are allowed to access his/her desktop and

assigns permissions. The policy is defector an access

control list. The policies include two types —one is a

permit policy which defines the windows that a user

can access, and the other is a forbid policy which

defines the windows that a user cannot access. When

a VNCServer runs in the OS, you can right-click the

MetaVNC icon to pop-up a menu. When one chooses

Properties menu, some configuration options are

shown on the tabs, and we add two extra tabs on the

MetaVNC options dialog to support such

configuration.

3. Authentication of requested users. When a user wants

to access the remote virtual desktop, He/She will first

launch the VNCViewer to send a connection request

to the VNCServer though the RFB protocol. The

authentication modules will authenticate the identity

of the requesting user based on the local policy

database. If the user is authenticated and acquires the

permissions, the VNCServer will build a connection

with theVNCViewer.

4. The PrivacyGate module functions. In current

MetaVNC functions, a VNCClient object is related

when the VNCServerconnection is created. Once

some events occur on the server desktop, the

VNCServer will deliver the updated desktop to every

VNCClient. Therefore, each client will get the exact

same desktop view. In order to allow each user to

have a customized view, the VNCServer works on

the proxy mode to hide some specified windows

according to the policies. The significance of our

design is a breakthrough in the current MetaVNC

structure. A PrivacyGate is used to send the desktop

to each VNCClient, which means that, when the

server desktop is changed, it will update the desktop

view though a PrivacyGate module based on the

permit policy or deny policy. The PrivacyGate

module will hide the window area for which the

corresponding user has no browsing permission, and

1823

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120786

then deliver the filtered desktop view to every

VNCViewer.

5. Hiding specific application windows of PrivacyGate.

In order to allow every user to have an independent

view, the VNCServer needs to hide the specified

windows according to the policy. First,

SecureLiveApp gets the names of the invisible

windows which the administrator has configured for

the user. Through this name, SecureLiveApp calls a

query function to obtain the handlers of the

application window and then gets rectangle area of

this window. Second, this rectangle area is added into

the hidden area, which could be a simple rectangle or

a complex polygon. When setting the hidden area,

some overlapped areas with the hidden windows

belonging to the permitted top-level windows should

be shown.

6. Blocking input from keyboard and mouse at

PrivacyGate. Since some users are permitted to only

browse, not operate, a desktop, SecureLiveApp

blocks input of keyboard and mouse from these

users. If the input variable state is ‘‘DISABLE”, the

server will block the client’s inputs, and the user can

only view the desktop windows, but cannot operate

the server’s windows. If the input variable is

‘‘ENABLE”, the user’s inputs from the remote client

will be handled and responded normally. We control

the input operations through the Windows hook

function, and it intercepts and processes the requests

to decide whether to forward the input events.

2.2. Application sharing and migration among

multiple VMs

To realize remote application access in a cloud, we

use the VNC protocol to transfer the virtual desktop of

a remote VM. The VNC protocol works at the buffer

frame layer and supports the remote access to graphical

user interfaces, and the mouse or keyboard inputs can

be transferred to the remote application, thus achieving

a transparent access to the applications. In such a

presentation streaming-based software delivery mode,

when a client wants to migrate or share an application

to another client, the presentation streaming of this

application should be redirected and the corresponding

VM will be cloned in the case of application sharing.

Based on these considerations, we have designed the

architecture for live application sharing and migration.

The key components are as follows.

 Client Controller: With a modified VNCViewer to

display application windows from multiple VM

machines, the Client Controller manages multiple

VNC connections between the VNCViewer and

VNCServers. Using an inter-process

communication technology, the Client Controller

can close or create a specified VNC connection.

 Server Controller: This maintains information of all

live users and applications in the VM pool. This

component provides a unified management and

processing of all clients’ requests, which includes

application presentation streaming, and application

sharing and migration service.

 VM Manager: This provides functionalities of

monitoring, stopping, cloning, or restarting a

specified VM with running applications. The VM

Manager receives notifications from the Server

Controller to clone a VM or manage the VM pool.

2.3. Virtual desktop application sharing and

migration protocols

When a Client Controller requests to migrate or

share a live application, two corresponding protocols

are designed to achieve these goals. Several steps are

taken to complete the migration or sharing, as shown in

Fig 2.2 and Fig 2.3.

Fig 2.2 Application Migration Protocol

The steps of application migration are as follows.

Step 1: Client1 → Sever Controller: {AppName,

MigrationSource,MigrationDes}. Client1 sends a

migration request to the ServerController with the

AppName, MigrationSource, and MigrationDes. In

SecureLiveApp, all connected clients first register in

the ServerController, so Client1 can choose the

destination from the client list on the LiveApp@Client

side.

Step 2: Sever Controller → Client2: {AppName,

VMInfo, MigrationSource, and MigrationDes}. Client2

gets a migration notification from the LiveApp@VM

Pool side, and the VM IP address and VNCServerport

are enclosed in VMInfo, so the VNCViewer can

connect to a remote VNCServer to view the

1824

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120786

application. Sometimes, Client2 does not have a public

IP address (e.g., it is located in a local network), so the

Server Controller cannot initialize a connection to

Client2. In SecureLiveApp, we can change the mode

ofStep 2 through actively querying the Server

Controller at a certain interval.

Step3:ClientController@Client2→VNCViewer@Client

2: {VMInfo}.Client2’s Client Controller creates a new

Client2’s VNCViewer connection to the remote

VNCServer running on the VM, and the VNCServer

will also close the connection with Client1. Therefore,

the presentation streaming of Client1 can be redirected

to Client2, and the application view and data are

exactly the same due to there being no change in its

running environment.

Step4:Client2→ServerController: {MigrationFinal}.

Client2sends a MigrationFinal message to the Server

Controller.

Step5:ServerController→Client1

:{MigrationComplement}.The Server Controller

updates the meta information of VMPool, and sends a

Migration Complement message to Client1.

Step6:ClientController@Client1→VNCViewer@Client

1 :{VMInfo}. Client1’s Client Controller clears the

connection record of Client1’s VNCViewer, and shows

a migration success dialog on Client

Fig 2.3 Application sharing protocol among multiple
VMs.

1.The steps of application sharing are as follows.

Step 1: Client1 → Server Controller: {AppName,

SharingSource,SharingDes}. Client1 sends an

application sharing request to ServerController with the

AppName, SharingSource, and SharingDes. In

SecureLiveApp, all connected clients first register in

the ServerController, so Client1 can choose the

destination from the client list on the LiveApp@Client

side.

Step 2: Server Controller → Client2: {AppName,

SharingSource, SharingDes}. Client2 gets a sharing

notification from the LiveApp@VM Pool side.

Sometimes, Client2 does not have a public IP address

(e.g., it is located in a local network), so the Server

Controller cannot initialize a connection to Client2. In

SecureLiveApp, we can change the mode of Step 2

through actively querying the Server Controller at an

interval.

Step 3: Client2 → Server Controller: {CloneRequest}.

Client2sends a clone request to the Server Controller

after it accepts the sharing message from Client1.

Step 4 & Step 5: Server Controller → VMManager:

{VMClone,VMInfo}. The Server Controller sends a

VM clone request to the VMManager, and the

VMManager clones a VM with the Libvirt command.

Step 6: Server Controller → Client2: {VMInfo}. The

cloned VMIP address and VNCServer port are

enclosed in VMInfo, so the VNCViewer can connect to

a remote VNCServer to view the application.

Step 7: Client Controller@Client2 →

VNCViewer@Client2: {VMInfo}.Client2’s Client

Controller creates a new Client2’s

VNCViewerconnection to the remote VNCServer

running on the cloned VM. Therefore, Client2 can view

the duplicated application like Client1,and the initial

application view and data are exactly the same.

Step 8: Client2 → Server Controller: {SharingFinal}.

Client2sends a SharingFinal message to the Server

Controller.

Step 9: Server Controller → Client1:

{SharingComplement}. TheServer Controller updates

some Meta information of VMPool, and sends a

Sharing Complement message to Client1, and lient1

will unlock its interaction.

In terms of application sharing, we intend to

provide a completely duplicated application for the two

clients. In SecureLiveApp, this requirement is met by

cloning the VMin which the application runs. We will

discuss the design and implementation of VMcloning

in a later section. When a Client Controller sends a VM

cloning request to the Server Controller, the latter will

send the VM id to the VM Manager, who will return

the new VM IP address after the cloning completes. In

this new cloned VM, all the disk and memory data are

the same as the original one, thus providing a

duplicated application view.

1825

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120786

3. RELATED WORK

The representative projects on desktop

virtualization include THINC [9,8,10], Citrix

XenDesktop [6,11], Microsoft Terminal Service [6] and

some VNC systems [5,12]. THINC is a remote display

system architecture for high-performance thin-client

computing in both LAN and WAN environments.

THINC enables higherlevelgraphics primitives used by

applications to be transparently mapped to a few simple

low-level primitives that can be implemented easily and

efficiently. Citrix provides full VDC(Virtual Desktop

Computing) using their ICA protocol in parallel with

the Ardencies image and provisioning manager and

desktop server hypervisor. Recently, XenClient has

extended the benefits of desktop virtualization to

mobile users, offering improved control for IT with

increased flexibility for users. RDP enhancements in

Windows Server 2008 and in recent MS client

Operating Systems will also address some of the

problems identified in relation to video and other

graphics-intensive applications over RDP. VNC[4,13–

15] is based on the PRB protocol, which is a simple and

powerful remote display protocol. Unlike other remote

display protocols such as the X Window System and

Citrix’s ICA, the VNCprotocol is totally independent of

operating system, windowing system, and applications.

RealVNC [12] proposes different remote display

solutions for client access: the software is executed at

remote servers; the user’s client just gets the

presentation desktop. This solution only focuses on the

separation of execution and presentation, and does not

involve software deployment and execution-related

fields. MetaVNC [5] pursues a remote desktop

environment on which users can control applications on

different hosts seamlessly. MetaVNC is a window-

aware VNC, and it merges windows from multiple

remote desktops nto a single desktop screen. In

addition, some products and research work have

emerged to address the software service requirements

for mobile equipment in recent years. Microsoft

Application Virtualization (App-V, previously named

SoftGrid) is a core component of the Microsoft desktop

optimization pack for software assurance: it transforms

applications into centrally managed virtual services that

are ever installed and do not conflict with other

applications. The Progressive Deployment System

(PDS) [16], Yang’s work [17], and FVM [18] employ

OS-level virtualization technology to reduce the

deploying, updating, and management labor cost of IT

as well as the execution environment isolation. All the

virtual software packages are managed at central server

sites. When a user wants to use some software, the

software package will be delivered to the local machine

in a streaming way. MobiDesk [19] is a mobile virtual

desktop computing hosting infrastructure, and it

transparently virtualizes a user’s computing session by

abstracting underlying system resources in three key

areas: display, operating system, and network. It

provides a thin virtualization layer that decouples a

user’s computing session from any particular end-user

service, and moves all application logic to hosting

providers. In summary, there are some desktop

virtualization approaches to providing remote access to

a cloud computing environment. However, these

approaches only focus on displaying the remote

desktop, and do not consider flexible collaboration for

live application sharing and migration.

4. CONCLUSION

In cloud computing environment, users can get

SaaS subscriptions instead of traditional perpetual-use

licenses from software vendors. We have developed a

dynamic prototype system to support application

sharing and migration on demand among multiple

clients. The System provides two key services: a secure

multi-user sharing service for the virtual desktop of a

VM and multi-VM application sharing and migration.

We designed a mechanism for tracking window

operation events, and the hidden window areas can be

computed quickly. To filter various windows, a proxy-

based filtering mechanism is used to deliver a desktop

to different users. To achieve the goals of live

application sharing and migration between VMs, a

presentation redirection approach based on VNC

protocol and a VM cloning service based on the Libvirt

interface are used.

All these methods have been implemented in

this prototype based on extended MetaVNC and the

virtual machine monitor KVM. We experimentally

verified that these approaches are effective and useful.

Several extensions will be made for future work. We

are currently developing virtualization-based software

as a service platform, and we are exploring how to

integrate the system into some mobile based computing

environments for flexible collaboration among

smartphone users.

5. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz,

A. Konwinski, G. Lee, D.Patterson, A. Rabkin, I. Stoica, M.

Zaharia, Above the Clouds: A Berkeley Viewof Cloud

Computing, 2009.

[2] RajkumarBuyya, Chee Shin Yeo, SrikumarVenugopal,

James Broberg, Ivona brandic: cloud computing and

emerging IT platforms: vision, hype, and reality for

delivering computing as the 5th utility, Future Generation

ComputerSystems 25 (6) (2009) 599–616.

1826

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120786

[3] M. Turner, D. Budgen, P. BreretonTristan Richardson,

Quentin Stafford-Fraser, Kenneth R. Wood, Andy Hopper,

Turning software into a service,IEEE Computer 36 (10)

(2003) 38–44.

http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/docs/

att/tr.98.1.pdf.

[4] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R.

Wood, Andy Hopper, Virtual network computing, IEEE

Internet Computing 2(1)(1998)33-

38.http://www.cl.cam.ac.uk/Research/ DTG/attarchive

/pub/docs/att/tr.98.1.pdf.

[5] MetaVNC, a part of the Collective at Stanford University

http://metaVNC.sourceforge.net/.

[6] T.W. Mathers, S.P. Genoway, Windows NT Thin Client

Solutions: Implementing Terminal Server and Citrix

MetaFrame, Macmillan Technical Publishing,Indianapolis,

IN, 1998.

[7] Jianxin Li, JinpengHuai, Chunming Hu, Yanming Zhu, A

secure collaboration service for dynamic virtual

organizations, Information Sciences 180 (17)(2010) 3086–

3107.

[8]Albert Lai, Jason Nieh, BhagyashreeBohra,

VijayarkaNandikonda, Abhishek P.Surana,

SuchitaVarshneya, Improving web browsing on wireless

PDAs usingthin-client computing, in: Proceedings of the 13th

International World WideWeb Conference,WWW2004, New

York, NY, May 17–22, 2004, pp. 143–154.

[9] Info World Test Center staff. InfoWorld’s 2010

Technology of the YearAwards[Z]. Info world,2010.

[10] Albert Lai, Jason Nieh, On the performance of wide-area

thin-client computing,ACM Transactions on Computer

Systems (TOCS) 24 (2) (2006) 175–209.

[11] Citrix Systems—Virtualization, Networking and Cloud.

http://www.citrix.com/.

[12] RealVNC – VNC⃝ R remote control software, http://

www.realVNC.com/.

[13] Tom Wall, Virtualisation and thin client: a survey of

virtual desktop environments, Technical Report, Dublin

Institute of Technology, 2009, http://arrow.dit.ie/ahfrcart/5/.

[14] C. Taylor, J. Pasquale, Improving video performance in

VNC under high latency conditions, 2010, in: International

Symposium on Collaborative Technologies and Systems,

CTS, 17–21 May, 2010, pp. 26–35.

[15] Oren Laadan, Ricardo Baratto, Dan Phung, Shaya Potter,

Jason Nieh, DejaView:a personal virtual computer recorder,

in: Proceedings of the 21st ACM Symposium on Operating

Systems Principles, SOSP 2007, Stevenson, WA, October

14–17,2007, pp. 279–292.

[16] Alpern, Bowen, Joshua Auerbach, et al. PDS: a virtual

execution environment for software deployment, in:

Proceedings of the First ACM/USENIX International

Conference on Virtual Execution Environment, March, 2005.

[17] Yu, Yang, Fanglu Guo, Susanta Nanda, Lapchung Lam,

Tzi-cker Chiueh, A Feather weight virtual machine for

windows applications, in: Proceedings of the Second

ACM/USENIX Conference on Virtual Execution

Environments, VEE’06, June, 2006.

[18] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,

J. Chow, J. Norris,M.S. Lam, M. Rosenblum, Virtual

appliances for deploying and maintaining software, in:

Proceedings of Seventeenth USENIX Large Installation

SystemAdministration Conference, October, 2003.

[19] Ricardo A. Baratto, Shaya Potter, Gong Su, Jason Nieh,

MobiDesk: mobile virtual desktop computing, in:

Proceedings of the 10th annual international conference on

Mobile computing and networking, MobiCom ’04, ACM,

NewYork, NY, USA, 2004, pp. 1–15.

1827

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120786

