

Security Requirements Analysis For The Development Of Secure

GEOSCHEMACS

K. V. Maruthi Prasad, J. Krishna Kishore

ISRO Satellite centre, HAL Airport road, Bangalore-17, India

Abstract

This paper titled “Security Requirements Analysis for

the Development of Secure GEOSCHEMACS” is an

insight into the software security requirements of

GEOSCHEMACS (ISRO’s in-house developed set of

software components used for Indian geostationary

satellite health monitoring, analysis and ground

control). This analysis is part of the process of

introduction of building security in Software

Development Life Cycle of GEOSCHEMACS under

the research topic “Secure Software for Indian

Spacecraft Ground Software Elements,

GEOSCHEMACS”. The primary objective is to

identify and list software security requirements with

reference to secure GEOSCHEMACS system

development. It is focused at tabulating the software

security requirements for avoiding most of the

programming language inherent vulnerabilities.

Keywords: requirements analysis, software security,

mission ground software, threat, operational

environment.

I. INTRODUCTION.

ISRO (Indian Space Research Organisation) is the

premier government institute involved in space

research and development activities. ISRO has been

known for it’s accomplishments in nation building

through science & technological innovations in space

field. GEOSCHEMACS (GEOstationary SpaCecraft

HEalth Monitoring Analysis and Control Software) is

the in-house developed end to end software solution

and primary set of ground software elements used for

Indian geo mission health monitoring, control and

analysis. GEOSCHEMACS is a software package

based on client / server architecture with the

development environment primarily consisting of

C/C++, X/Motif, Oracle on UNIX / LINUX Operating

System flavours. It is enriched with web version of

spacecraft health monitoring and analysis. The total

size of GEOSCHEMACS is around one million lines of

source code. The role of ground software elements has

been crucial and critical in meeting the ever expanding

space services for users. It is necessary to evolve secure

software for ground elements used for spacecraft health

monitoring, analysis and control so that there is no

disturbance in supporting space services.

Secure Software is the idea of engineering software

so that it continues to function correctly under

malicious attack. The inability of a system to perform

functions without violating an implicit or explicit

security policy can be taken as an attack. An instance of

a fault in the specification, development or

configuration of software such that it’s execution can

violate an implicit or explicit security policy is called

as the vulnerability. A security vulnerability is defined

as a flaw or weakness (in the case of software bug) that

can be exploited by a threat (an attacker or malware) to

cause harm or damage. Not every software security

vulnerability is exploitable, but every security

vulnerability can cause damage. Vulnerability can

cause software to hang or crash, may allow for

privilege escalation on the system, can cause software

to act in unintended way or even allow for execution of

arbitrary code. The amount of time, money and human

resources involved in recovering from the damage has

been enormous.

 With the advent of high technological operational

environment in the mission control centre, various

security issues can arise which includes insider threat

attack. Whatever may be the scenario these

interruptions or crashes or attacks through

vulnerabilities may cause disturbance in spacecraft

health monitoring & control and analysis. This in turn

cause disturbance to the space services for various

customers; hence direct damage of money and

reputation.

Even though GEOSCHEMACS software

development process has been established at IEEE

12207 international standards, the concept of secure

software development in the SDLC (Software

Development Life Cycle) is yet to be introduced. The

main reason of many bugs has been buffer overflow

(one of the security vulnerabilities). Hence, the

necessity of ensuring the software is constructed secure

has been at higher priority. The only way of doing this

308

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

is to integrate a security mindset & process throughout

the SDLC. With software security aspect into

consideration a typical secure software development

life cycle can be depicted as in Figure 2:

Figure 1. GEOSCHEMACS Environment

Figure 2. Secure Software Development Life Cycle

GEOSCHEMACS has been evolving with the

incorporation of new features & requirements and is a

package of complex nature. Complexity issues and

language inherent vulnerabilities are the primary causes

of insecure software. Awareness and understanding

about the necessity of secure software development

process is one of the major steps required to be

attended. The first phase of any software life cycle is

requirements engineering which contains elicitation,

analysis and validation of the requirements. Secure

software development life cycle contains requirements

analysis having attention & concern related to software

security requirements. As part of building security in

GEOSCHEMACS software development process and

as part of the research work being carried on the topic

of “Secure Software for Indian Spacecraft ground

software, GEOSCHEMACS”, this paper presents the

preliminary & first cut security requirements

engineering for GEOSCHEMACS.

II. THE APPROACH

The approach for security requirements engineering of

GEOSCHEMACS shall be a solution primarily for

identifying current vulnerabilities that could produce

exploitable software. The process of producing

software security requirements is complicated with

some issues which increase the difficulty of producing

such requirements. The development lifecycle can

effectively reduce / prevent vulnerabilities only when

these issues are overcome. The issues include [2]:

1) Constant changing of security vulnerabilities

2) Difficulty in validating the security requirements

stated in negative tone

3) Language and platform dependent software security

requirements definitions

4) Possibility of testability & verifiability of security

requirements throughout the phases of software life

cycle

5) Process of selecting the required security

requirements for the application or system with

reference to all the software security requirements

covering security vulnerabilities to cryptography

6) Necessity of training / expertise in security for

stating software security requirements.

These issues can be seen in a positive angle by

providing solutions as

1) Accommodation of new software security

requirements as per the changing scenario of security

related vulnerabilities;

2) Stating the software security requirements in a

positive tone which make the validation easier

compared to the negative tone statements;

3) Software security requirements must be language

and platform independent;

4) A security requirement must be both testable and

verifiable for it to be possible to track the progress of

Telecommand

Telemetry

Security Requirements

& analysis

Security based design

Security added coding

Security added testing

Security concerned

operation &

maintenance

309

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

the requirement throughout the phases, and test to

ensure the requirement was included into the project.

5) A method can be established for ensuring the

required software security requirements to be included

as part of any application / software SRS (Software

Requirement Specification) out of the listed software

security requirements of GEOCHEMACS;

6) Fundamental awareness & training of secure

programming and software security requirements

engineering shall be provided to the development team

and as well as to the management for inculcating the

practices from security aspect.

It will be wise to take the major benefits of some of the

well known methodologies. It has been quite essential

to improve the software process and practicing with

less ambiguity. That is why it has been selected a mix

of multiple approaches such as CLASP

(Comprehensive Lightweight Application Security

Process) [2][8][55], Haley et al’s Approach

[2][5][7][21], Attack trees [8], misuse cases [8],

SQUARE(Security Quality Requirements Engineering)

[2][27] together with the nature of simplicity in

practicing as the primary criteria. Primarily CLASP

will ride the basic approach with the other four

influencing and complimenting the practices in

bringing software security requirements in

GEOSCHEMACS. It is necessary to mention that

various theses submitted and research done on software

security requirements engineering are other inspirations

behind selecting the mixed approach. The approach is

basically security vulnerabilities based software

requirements engineering with an internal perspective

of the system.

While writing requirements it is necessary to make sure

security is pervasive in all the key areas. The security

requirements shall address the basics and also

application vulnerabilities uncovered during threat

modelling. SRS shall outline how security helps the

overall problem being solved by the application,

specific security goals, security controls inherent in the

application’s major features, security standards,

security enabling detraction of each of use, security

control limitations (that cannot be protected against),

security features that enable user and system

administration in security testing future application

security testing. SRS (Software Requirement

Specification) or some document shall make sure of the

people such as developers, management, users are

aware of security issues at hand.

III. SECURITY OBJECTIVES, POLICIES &

PRACTICES

III.1. Security objectives

Security objectives for GEOSCHEMACS include

building one higher abstraction level than software

functional requirements for addressing system’s

security threats and enforcing organizational security

policies. It shall address primarily the security issues

with reference to building security while developing &

enhancing GEOSCHEMACS software components by

taking care of operational environment and related

spacecraft considerations. Security objectives, if

grouped based on the phases of treating security attacks

can be preventive, detective and corrective. Preventive

security objectives targeting on security mechanism

that can effectively prevent attack before it has any

effect on the system. Detective security objectives

targets on security mechanisms that can quickly and

effectively detect intrusion or abnormal behaviours if

there is any, and covers subsequently actions or

responses. Corrective security objective focuses on

system recovery or data recovery when system or

integrity of data is comprised.

III.1.1 Preventive security objectives

Identification & Authentication: Identifying all types of

GEOSCHEMACS users using attributes such as

separate login and passwords with reference to

GEOSCHEMACS administration, spacecraft

controlling, analysing and expert privileged accounts.

Confidentiality: Protect information from unauthorized

disclosure. Confidentiality is a complex security

objective compared with others. It contains several

aspects, or sub objectives: access control, information

flow control, encryption, and residual data protection.

Authorization is to make sure if user has the proper

permission to perform actions (e.g., read, modify,

delete) on a GEOSCHEMACS application and it is

often required that the user is authenticated. While

access control controls the access/operations on an

SCHEMACS application based on some general rules,

such as type of user, configured set of spacecrafts, type

of system (server or client workstation or client

command workstation) and personnel on shift for

spacecraft control.

Integrity: Integrity protects information from

unauthorized modification instead of disclosure. It is

also possible that integrity is compromised by

authorized users’ mistakes. This is primarily of

avoiding tampering intentionally or getting damaged

310

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

with reference to the mistakes caused by authorized

users. The integrity checks at various levels such as

application level, operation environment level and

whole system level are necessary. Specific logging for

specific applications for the actions by the users is

required.

Availability: It ensures the accessibility of information

and continuousness of system functionalities.

Non-repudiation: It ensures that the users of

GEOSCHEMACS cannot deny that particular

operation / action on any application has been done

such as sending a prohibited command or doing an

action which is temporarily put under “do not’s”. These

are required to be taken care by logging specific events

and some information at regular intervals.

Security Management: It provides users with certain

roles the ability to customize the use of security

mechanisms in GEOSCHEMACS such as enabling /

disabling the security feature(s) of users or roles.

Privacy: Privacy targets on user’s identity or actions

non-observable to others.

III.1.2. Detective security objectives

These include accountability and intrusion detection &

responding. Corrective security objective says about

the recoverability.

Hence, it is necessary to support the security objectives

of GEOSCHEMACS through properly mentioned

software security requirements. Following are the

security objectives which can be listed for the software

security requirements of GEOSCHEMACS:

Ensuring of

 All types of users and GEOSCHEMACS

applications are identified and their identities are

properly verified.

 Authorised Users and GEOSCHEMACS

applications can only access data and services

 Unathorised malicious programs or viruses do not

infect the application or component or environment

 Practicing secure programming guidelines

 Detection of attempted intrusions by unauthorized

persons and insider attackers and also

unauthorized applications

 Not corrupting data and communication

intentionally

 Non repudiation of the actions and interactions

with the software & environment

 Confidential communication and data are kept

private through encryption

 Auditing of the status and usage of security

mechanisms

 Survival of attacks on software and operational

environment, possibly running in degraded mode

 Not disturbing the security mechanism

incorporated through GEOSCHEMACS

applications during system maintenance

 Every application of GEOSCHEMACS is usable

through a licensed key

III.2. Security policies, standards & practices

ISRO has a well defined policy for information

security. Policies for software security shall be brought

out as a separate entity to enhance & focus software

security importance. Training and awareness

programmes are required to be conducted across ISRO

software community including developers, middle &

top level management. As such the software life cycle

international standard, IEEE 12207 has been practiced

through ISPD (ISRO Software Process Document).

This standard does not give any specific mention on

software security requirements. This shall be enhanced

with software security requirements as additional

concern with reference to security vulnerabilities. The

procedures and documents that have been produced and

being produced shall be enhanced / incorporated for

software security related issues. The policies,

procedures and practices shall accommodate the

software security concerns of complete control lying

with any single individual.

A security control is a way to fulfill one or more

security requirements. Security requirements fall into

several categories, each of which can be satisfied by

one or more security controls. The categories are

1) Permission to access data or exercise functionality

2) Verification of “who” and “what”

3) Securing information

4) Security policies, procedures and practices.

III.2.1 Guidelines

Security requirements shall not be specified in terms of

the types of security architecture mechanisms that are

typically used to implement them.

Ensure that few persons (who have been properly

appointed on behalf of the organization that owns and

controls the application or component) are able to

authorize specific authenticated users and client

applications to access specific application or

component capabilities or information. Ensure that

specific authenticated externals can access specific

application or component capabilities or information if

and only if they have been explicitly authorized to do

so by a properly appointed person(s).

311

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

Authorization depends on both identification and

authentication. Authorization shall be granted on the

basis of user analysis and the associated operational

requirements. Only a limited number of people (or

roles) shall be appointed to grant or change

authorizations.

GEOSCHEMACS can delegate immunity requirements

to the spacecraft operation centre, but only if the centre

provides (and will continue to provide) adequate

security mechanisms to fulfil the requirements. This

would be a legitimate architectural decision under

certain circumstances.

Non repudiation requirements typically involve the

storage of a significant amount of information about

each interaction including the: Authenticated identity of

all parties involved in the transaction, Date and time

that the interaction was sent, received, and

acknowledged (if relevant), Significant information that

is passed during the interaction.

People and applications should have access only to the

data and communications for which they are

authorized.

Care should be taken to avoid unnecessary duplication

between security-auditing and intrusion detection

requirements. Survivability requirements are often

critical for spacecraft control applications.

Physical protection requirements are related to

survivability requirements. Survivability requirements

specify continued functioning after an attack, whereas

physical protection requirements specify the protection

of components. Physical protection requirements are

typically prerequisites for survivability requirements.

System maintenance security requirements may conflict

with operational availability requirements, in that the

operational availability requirements may not allow one

to take the application or component off-line during

maintenance and the repetition of security testing.

III.2.2 Assessment and procedures

1. Identification and assessment of both of the logical

targets of informational & processing resources and

physical targets of hardware, LAN (Local Area

Network) architecture shall be needed.

2. GEOSCHEMACS environment of corresponding

hardware architecture & platform, version of installed

firmware, operating system and it’s version, installed

software, enabled features, configuration parameters,

peripherals & hardware specific software, interfaces

shall be evaluated & looked with the perspective of

security concerns and vulnerabilities.

3. Better information dissemination and response

procedures for mitigating the vulnerability’s impact

shall be made available. Existence of risk analysis,

incident response team and comprehensive & complete

advisory description shall be made mandatory.

4. While assessing exploitation impact or damage,

factors such as availability (denial of service), system

or data integrity violation, loss of data, data disclosure

& confidentiality breach, privilege elevation, stolen

credentials, code/script execution, bypass of intended

controls, misuse of resources, violation of system’s

security policy, affecting neighbour systems

(spreading), erroneous transmission and physical

damage shall be considered.

5. Financial loss (labour time loss), loss of trust,

personal abuse, defamation & humiliation,

unauthorised gain of political authority and status,

blackmail and other criminal action, action against the

law, effects on national security and defense shall be

assessed for the incident of damage.

6. Procedures for the implementation of solutions such

as patching & configuring according to the relevant

security advisories shall be made available. Additional

protection measures might be required such as ACLs

(Access Control Lists), intrusion detection systems,

firewalls, cryptography, virtual private networks and

antivirus applications. Collection of reliable evidence

data by means different loggings is mandatory.

IV. ASSET IDENTIFICATION

An adversary will not attack a system unless there is an

asset available, so identifying assets is key in

determining how the system needs to be protected.

Asset identification can be done through different

viewpoints: the customer’s, the system owner’s, and

the attacker’s. After identifying the assets, further

analysis should be done on each to identify a priority

on protection. This will ensure that the most valuable

assets receive the most attention in threat mitigation.

Assets include data, software & hardware components

and communication services. The assets that can be

listed for GEOSCHEMACS are as follows:

IV.1. Data and software

1. Spacecraft raw telemetry, telecommand and

tracking data from spacecraft control centre and

remote stations.

2. Spacecraft health monitoring and controlling &

validating related telemetry parameter and

telecommand data base.

3. GEOSCHEMACS administration and

configuration data files.

4. Spacecraft ground control required telecommand

312

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

code data files.

5. Spacecraft daily operation schedule files.

6. Spacecraft ground auto controlling required event

files.

7. Contingency recovery related files.

8. GEOSCHEMACS client and server configuring

related files for the required list of spacecrafts.

9. GEOSCHEMACS executables.

10. User account(s) profile files.

11. Processed statistics data.

12. Operator input files used for GEOSCHEMACS

analysis software.

13. Spacecraft specific special payload data.

14. Spacecraft monitoring required normal and critical

alarm limit files.

15. GEOSCHEMACS source code.

IV.2 Hardware components

1. TM (Telemetry) access devices.

2. Telecommand encoding devices.

3. Tracking data access devices.

4. GEOSCHEMACS offline data servers.

5. GEOSCHEMACS acquisition and real-time data

servers.

6. GEOSCHEMACS client workstations.

7. Payload data acquisition and distribution servers.

8. WEBGEOSCHEMACS servers.

9. Communication devices such as routers, switches

and multiplexers.

10. Auxiliary stored / history data media drive such as

digital tape drive, CD/DVD drive and Floppy drive

and USB port access.

IV.3. Users

1. SCHEMACS administrators and software

managers.

2. Spacecraft controller/operators.

3. Shift controller/manager.

4. Spacecraft analyzers and spacecraft experts.

5. Higher authorities.

6. Spacecraft data base managers.

7. Users at spacecraft design and manufacturing

centre.

8. SCHEMACS designers.

9. Spacecraft subsystem experts.

Prioritising among these is bit difficult but with

reference to the space services supporting & business

goals, spacecraft commanding is considered as the

utmost important task. The assets of software, hardware

and data related to commanding shall be given highest

priority. These may include TM access devices,

Telecommand encoders, GEOSCHEMACS acquisition

and real-time data & commanding servers,

GEOSCHEMACS real-time data acquisition,

processing and commanding software components,

real-time presentation software, Spacecraft health

monitoring and controlling & validating related

telemetry parameter and telecommand data base,

Spacecraft ground control required telecommand code

data files, GEOSCHEMACS administration and

configuration data files, Spacecraft controller/operators,

communication devices such as switches. The next and

middle level priority can be allocated to assets of

GEOSCHEMACS offline data servers,

GEOSCHEMACS client workstations, Tracking data

access devices, software components related to TM

(Telemetry), Telecommand and tracking data archival,

tracking data acquisition & processing software

elements, client workstation based software

components, offline analysis software package, ground

operations & defined spacecraft characteristics auto

monitoring & reaction automation software, Spacecraft

ground auto controlling required event files, Spacecraft

daily operation schedule files, Contingency recovery

related files, Spacecraft monitoring required normal

and critical alarm limit files, Operator input files used

for GEOSCHEMACS analysis software, SCHEMACS

administrators and software managers, Spacecraft

analyzers and spacecraft experts. Another priority of

next importance can be allotted to the remaining assets

but for few exceptions such as experimental payload

data & related which can be given the lowest priority.

V. THREATS, ATTACK TREES & MISUSE

CASES

Security engineering is about building systems that are

and can remain dependable in the face of malice, error

or mischance. As a discipline, security engineering

focuses on the tools, processes and methods needed to

design, implement and test complete systems to adapt

existing systems as their environment evolves. The goal

of software security engineering is to build better,

defect free software. Software intensive systems that

are constructed using more securely developed

software are better able to continue operating correctly

in the presence of most attacks by either resisting the

exploitation of weakness in the software by attackers or

tolerating the failures that result from such exploits. A

security environment describes the context in which the

software is expected to evolve. The environment affects

the kind of threats the application is likely to encounter.

Threat is a potential for harm of an asset. Attack is an

313

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

action intended to violate the security of an asset.

Attacker is an entity that carries out attacks. Risk is the

probability that a successful attack occurs. The most

listed threats include theft, vandalism, unauthorized

disclosure, destruction, fraud, extortion, espionage,

trespass. Attackers include crackers, disgruntled

employees, cyber terrorists, spies and even novice idle

experimenters. Among these who could be adversaries?

What types of attacks or misuse cases are possible?

What could be the ways of protecting? These questions

are to be answered before documenting the security

requirements.

It is required to find out misuse cases. Threats are

identified and found based on the experiences and past

projects. Threat modeling is an attempt to capture the

thought process of an adversary that wants to achieve a

set of goals on the system. Threat modeling [2][35]

takes the viewpoint of a potential adversary interacting

with the system. Any methods of interaction with the

system are potential entry points. A threat does not

exist unless an entry point leads to access of an asset.

Any attack that is not mitigated or is mitigated

improperly has a vulnerability that could be exploited

to gain access to the asset that the system protects. The

most common diagram for enumerating threats is attack

tree. Like use cases are for requirements, misuse cases

can be used for forming security requirements. Threat

model describes the possible threats that can occur in a

given security environment. Attack tree can be built to

detail each threat with the attack’s goal represented as

the tree’s root and leaf nodes representing different

ways to achieve that goal. A general solution shall be

brought out to counter each threat. A document shall be

maintained for recording threats. Security solutions

shall be documented along with the threat & misuse

cases. The solution shall be described with the flow of

events with reference to system, users and attacker

activities. With ranking or priority or risk associated

for each threat, the evaluation of risk for the threat can

be analysed. Elimination of threats at an acceptable risk

level and with trust assumptions [21], the list of threats

to be mitigated can be identified.

Figure 3. Attack Tree for SCHEMACS client software
malicious usage

Various software security vulnerabilities include buffer

overflows, stack overflows, heap overflows, invalidated

input, race conditions (time of check–time of use and

inter process communication), insecure file Operations,

access control problems, secure storage and encryption.

Buffer overflows occur when a given size X is

allocated in memory but more than X is written. The

additional bytes overwrite the memory, a bug that lets

an attacker write in memory he or she should not have

access to and that can be exploited in various malicious

ways. For better understanding system vulnerabilities,

proactive security services, teams [58] are used for

simulating the attacks. These teams help in finding

software vulnerabilities and find ways & practices,

countermeasures for mitigating / defending attacks

from script kiddies to well motivated hackers. An

insider threat model can be used adversary simulation

describing a malicious insider using various attributes

such as access, knowledge, privileges, skills, risk,

tactics, motivation and process. This suits for

GEOSCHEMACS. Another threat model [35]

developed by Michael Howard and David Leblanc

which uses an iterative approach to assess the

vulnerabilities in a given application can also be used

for GEOSCHEMACS software. This model begins

with a functional decomposition of an application using

data flow diagrams emphasizing that the more is known

about an application, the easier it is to uncover the

threat targets hidden in the application.

Malicious usage of SCHEMACS client software

Knowing the client

server communication

protocol

Hijacking TCP

connection

Eavesdrop or

unauthorised access of

SCHEMACS design

document

Denial of

service

Spoofing

Denial of

service

Data

modification

Information

leak

Spoofing

314

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

Threat descriptions can be represented as tuples of the

form {threat, asset, damage / impact}. Using the

identified list of assets, violation on the general security

goals such as confidentiality, integrity and availability

and the corresponding damage or harm can be listed

through threat descriptions for using in elicitation of

security requirements. These threat descriptions are

traced against one or more security requirements or one

security requirements can mitigate one or more threats.

Since GEOSCHEMACS is operated in an isolated

mission control network, GEOSCHEMACS software

can be added better security requirements using a

combination of the methods of insider threat model, a

threat model using [35] DFDs (Data Flow Diagram) of

the applications, attack trees, threat descriptions and

misuse cases.

VI. ELICITATION OF SOFTWARE

SECURITY REQUIREMENTS

The approach of positive tone stating of software

security requirements and non dependency on any

language & platform is the primary line in eliciting

software security requirements for GEOSCHEMACS.

Software security requirements can be defined as the

constraints on the functional requirements of the

system, where these constraints operationalise one or

more security objectives and goals. Security

requirements like functional requirements are

prescriptive in providing a specification to achieve the

desired effect. Most of the successful attacks on

software result from successful targeting and

exploitation of known but non-practical vulnerabilities

or unintentional misconfiguration. That is why primary

focus on security vulnerabilities related security

requirements shall be given.

1. The threat descriptions and attack trees along with

mitigation techniques and solutions for not

violating security goals & objectives shall be

brought out as threat specification document.

VI.1. Software requirements related to

vulnerabilities

Following 2 to 33 numbered requirements are the

excerpts from the thesis [2].

2. When copying data into a buffer, the application

shall ensure that the data being copied does not

exceed the bounds of the buffer. If data being

copied into a buffer is expected to have a

termination character to determine end of the data,

then the application shall ensure that the

termination character is present in the data, and

ensure that the data being copied does not exceed

the bounds of the buffer.

3. The application shall not contain code that either

directly or indirectly causes the instruction pointer

to load with an address outside of instruction

space.

4. The application shall ensure the value of an

environment variable is in expected format before

use. If an environment variable used by the

application is expected to have a set of values, the

application shall ensure the value of the

environment variable is one of those expected

values before use. Before invoking another

application for execution, the invoking application

shall clear all environment variables, and set

environment variables required for execution with

trusted values for the application being invoked.

5. After an application makes a request for memory,

the application shall check to see that the memory

was properly allocated, and only use memory that

has been successfully allocated.

6. The application shall store sensitive data in

memory only when necessary, and use a subroutine

provided by the operating system to store the

sensitive data in an encrypted format when the

sensitive data is not in active use. The application

shall not reallocate memory containing sensitive

data.

7. If an application holds sensitive data in memory,

the application shall write zeros to the entire block

of memory before releasing the memory to the

operating system. The application shall not use a

built in subroutine for writing the zeros.

8. After a pointer to a memory location on the heap is

deallocated, the application shall set that pointer’s

value to NULL. Before dereferencing a pointer, the

application shall ensure that the pointer’s value is

not set to NULL. The application shall only set a

pointer’s value to an address located on the stack,

if the lifetime of the stack variable will end after

the lifetime of the pointer.

9. The application shall never make a request to the

operating system for zero bytes of memory.

10. The application shall ensure that all addresses

placed in a pointer variable are to memory

locations other than its own.

11. The application shall ensure the value of string

input is in expected format before use. If an input

has an expected set of values, the application shall

ensure the value of the input is one of those

expected values before use.

12. Before an addition operation where both operands

are positive, the application shall ensure that

subtracting the left operand from the largest

315

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

possible value is greater than or equal to the right

operand. When the previous condition is not met,

the application shall not perform the addition

operation, and block any corresponding input from

further use. Before an addition operation where

both operands are negative, the application shall

ensure that subtracting the right operand from the

smallest possible value is less than or equal to the

left operand. When the previous condition is not

met, the application shall not perform the addition

operation, and block any corresponding input from

further use.

13. Before a subtraction operation with unsigned

numbers, the application shall ensure that the left

operand is greater than the right operand. When the

previous condition is not met, the application shall

not perform the subtraction operation, and block

any corresponding input from further use. Before a

subtraction operation where the left operand is

nonnegative and the right operand is negative, the

application shall ensure that adding the right

operand to the largest possible value is greater than

or equal to the left operand. When the previous

condition is not met, the application shall not

perform the subtraction operation, and block any

corresponding input from further use. Before a

subtraction operation where the left operand is

negative and the right operand is positive, the

application shall ensure that adding the right

operand to the smallest possible value is less than

or equal to the left operand. When the previous

condition is not met, the application shall not

perform the subtraction operation, and block any

corresponding input from further use.

14. Before a multiplication operation where both

operands have the same sign, the application shall

ensure that dividing the right operand by the

largest possible value is greater than or equal to the

left operand. When the previous condition is not

met, the application shall not perform the

multiplication operation, and block any

corresponding input from further use. Before a

multiplication operation where operands have

different signs, the application shall ensure that

dividing the right operand by the smallest possible

value is less than or equal to the left operand.

When the previous condition is not met, the

application shall not perform the multiplication

operation, and block any corresponding input from

further use.

15. The application shall ensure that a division

operation never contains the largest negative value

in the numerator, with a -1 in the denominator.

When the previous condition is not met, the

application shall not perform the division

operation, and block any corresponding input from

use.

16. Before assigning a new value to a variable used as

an index to a buffer, the application shall ensure

the new value is within the buffers bounds.

17. Before assigning a new value to a variable used to

hold the length or quantity of an object, the

application shall ensure that the new value is

nonnegative.

18. The application shall not store sensitive data in

static memory.

19. When creating a new file/directory, the application

shall set the access permissions so the fewest

number of users possible have access. The

application shall set the access permissions using

the file descriptor and not the filename.

20. Before using a file/directory, the application shall

check the ownership and the access permissions of

the file/directory, and only use files/directories

with expected ownership and access permissions.

21. When creating a file, the application shall ensure

the path and name are unique.

22. If the application does not need to open

files/directories through links, the application shall

use a file open subroutine that blocks the opening

of files/directories through links. If the application

needs to open files/directories through links, the

application shall first check the access permissions

of the link itself. Then, the application shall open

the file, and use the file descriptor to check the

access permissions of the file. If the access

permissions of the file and link do not match, the

application shall not use the file.

23. The application shall ensure that data contained in

a file is in expected format before use. If a file used

by the application is expected to have a set of data,

the application shall ensure that the expected data

is in that file before use.

24. After opening a file, but before reading or writing

to that file, the application shall request the

operating system lock the file, using the file

descriptor returned by the file open operation.

Before closing a file, but after all reading and

writing operations have been completed on that

file, the application shall request the operating

system unlock the file, using the file descriptor

given to the previous lock file operation.

25. If writing sensitive data to a file, the application

shall encrypt and provide authentication for the

data. The application shall provide authentication

for unencrypted data in files. The application shall

only use data from files that have verified

authenticity.

316

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

26. After deleting a file, if the data is too sensitive to

be left on disk even in an encrypted format, the

application shall write zeros to the entire hard-

drive partition that contained the file. The

application shall take into consideration that the

procedure could also remove the operating system

from disk.

27. After attempting a write to a file, the application

shall ensure that the write was successful.

28. If writing sensitive data to a file, the application

shall encrypt and provide authentication for the

data. The application shall provide authentication

for unencrypted data in files. The application shall

only use data from files that have verified

authenticity.

29. When receiving encrypted data over a network, the

application shall decrypt and authenticate all data

before its use, and reject data that does not

authenticate or decrypt properly. When receiving

unencrypted data over a network from another

host, the application shall authenticate all data

before its use, and reject data that does not

authenticate properly.

30. The application shall authenticate the remote host

to verify its identity before sending or accepting

any data from that host. The application shall

ensure data received from a remote host is in

expected format before use. The application shall

only send data in the expected format.

31. If an application is sending sensitive data to

another host on a network, the application shall

encrypt and provide authentication for the data.

When sending data over a network to another host,

the application shall provide authentication for the

data.

32. The application shall check to see if the desired

TCP port is available for listening before waiting

for connections on that port. The application shall

check to see if a connection to a remote host was

accepted before sending data to that host.

33. The application shall send all numerical data over a

network in network byte order. The application

shall expect all numerical data received over a

network to be in network byte order.

34. The application shall handle the errors properly for

all the system routines and library function calls by

applying fail safe method.

35. Inter process communication methods (such as

shared memory, message queues, semaphore sets

etc..) used in GEOSCHEMACS shall be created

and maintained with appropriate and minimum

required access permissions for posting &

retrieving so that unauthorized access can be

thwarted.

36. The application shall avoid sharing signal handler

routine and the signal handler routines shall be

simple.

37. The application shall use reentrant safe function

calls in signal handler routines.

38. The application shall create child process securely

such that no extra privileges are passed to the

child.

39. The application with setuid or setgid shall drop the

privileges once after the required work with

privileges is over.

40. The application shall limit the number of sockets

being created, the number of threads being

spawned.

41. The application shall limit the allocation of buffers

on the stack and the number of file system reads &

writes.

42. The application shall avoid writing configuration

files to world accessible directories.

43. The application shall use copy functions that copy

a maximum number of bytes rather than ones that

rely on NULL terminated strings only.

44. The application shall coin unique names for

temporary files and shall ensure the temporary files

are protected from removing before the usage &

it’s lifetime.

45. The application shall use file handling functions

that identify files using file descriptors.

46. The application shall avoid filenames with leading

dashes, with control characters and with spaces.

47. The application shall check the standard input,

standard output and standard error file descriptors

are open; if not, it shall open them using /dev/null.

48. Any application shall avoid opening a new file

with a fixed file descriptor.

49. The application shall ensure to provide a format

string argument.

Requirements related to cryptography have not been

included since utilization & necessity of cryptographic

resources are in specific software only and also have

been categorized under confidential.

VI.2. Identification requirements [1]

50. The application shall identify all of its client

applications before allowing them to use it’s

capabilities. The application shall identify all of its

human users before allowing them to use

capabilities.

51. GEOSCHEMACS using centre shall identify all

personnel before allowing them to enter to specific

317

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

places such as server rooms, mission control

centre, etc.

52. Any application shall have single sign-on during a

single session of usage. If required each

application may ensure the name of the user

against payroll database or employee database.

VI.3 Authentication requirements [1]

The authentication requirements for GEOSCHEMACS

can be:

53. The application shall verify the identity of all of its

users before allowing them to use its capabilities.

The application shall verify the identity of all of its

users before allowing them to update their user

information.

54. GEOSCHEMACS using centre shall verify the

identity of all personnel before permitting them to

enter to specific places such as server room,

mission control centre etc.

55. GEOSCHEMACS applications where two or more

levels of authentication required shall be ensured

for the login attempts to the corresponding

applications are restricted to an identified number

with reference to the current working terminal.

VI.4 Authorisation requirements

56. Any application in GEOSCHEMACS shall allow

each user to obtain access to all of user’s account

information only with the necessary privileges and

permissions granted [1].

57. Every application under GEOSCHEMACS shall

implement the license key for it’s operation so that

unauthorized execution and access can be

controlled.

VI.5 Immunity requirements

58. The application shall protect itself from infection /

attack by ensuring the capabilities of validating all

entered data [1]. The application shall notify the

user / administrator if any violation of input data.

The application shall get developed using secure

programming practices.

59. GEOSCHEMACS operational account related

login profiles shall be protected for modifications

and deletions.

60. Every application shall undergo an identified (or in

house built) and customized code review tool for

secure programming coding standards & practices.

61. GEOSCHEMACS operational environment shall

be seen with disabling of memory crash dumps of

the applications.

VI.6 Integrity requirements [1]

62. GEOSCHEMACS application shall validate and

protect the corruption of data for the unintentional

mistakes or data access across multiple spacecrafts

and also protect the corruption / deletion /

modification of any TM or transmitted

Telecommand data coming from external users,

remote stations and communication services. Good

secure programming practices shall be

implemented into the applications.

VI.7 Intrusion detection requirements [1]

63. The application shall detect and record all

attempted accesses that fail identification,

authentication, or authorization requirements.

VI.8 Non repudiation requirements [1]

64. GEOSCHEMACS software shall record all

important events and log every Telecommand

transmission. The application shall log every

interaction of the user for mission database editing

during the current session.

65. The application shall log or record the

modification / addition / deletion of any

configuration or configuration data file.

VI.9 Privacy requirements [1]

66. GEOSCHEMACS shall ensure of the privacy of

sensitive data and shall ensure of not having any

personal information kept in part of data or

communication. The application shall make the

required data only available for the authorised

people for the requests put on.

67. GEOSCHEMACS software shall ensure to apply

isolation of data and applications access from

mission control network to any remote stations and

other public networks.

VI.10 Security auditing requirements [1]

68. GEOSCHEMACS shall record, summarise and

report the status of security mechanisms involved

and also the incidents of attacks or breaches to

appropriate authority or security auditing team.

318

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

VI.11 Survivability requirements [1]

69. GEOSCHEMACS applications shall be developed

for avoiding single point of failure. The

applications shall be able to continue to work

possible extent (mostly in degraded mode) even in

the case of any attack, destruction of data or

environment.

VI.12 Physical protection requirements [1]

70. GEOSCHEMACS operational environment shall

ensure the protection of hardware, software, data

against physical damage, theft, replacement,

destruction and sabotage.

VI.13 System maintenance requirements [1]

71. GEOSCHEMACS software shall ensure all types

of security requirements are complied during any

enhancement or upgrading of data, hardware or

software component. The application shall ensure

the integrity of data, environment with reference to

the enhancement and/or maintenance.

VI.14 Web application based security

requirements

The software security requirements specific &

additional for WEBGEOSCHEMACS applications can

be stated as follows:

72. Every web application shall validate the input

properly and preferably at server level to avoid

buffer overflows, SQL injection and cross site

scripting.

73. Web applications shall log important events with

sufficient data for enabling the administrator to

detect the attacks, errors, non repudiation issues

and for recovery from the attacks.

74. Web applications shall incorporate more than one

defense countermeasures to discourage potential

attackers.

75. Web applications shall enable the minimum and

required privilege for data & functionality access.

76. Web applications shall validate all URIs / URLs.

77. Web application shall forbid HTTP GET to

perform non queries.

VI.15 Prioritisation, compromising and

selection

The selection of the necessary software security

requirements from the list elicited above into specific

SRS can be based on the severity of impact of the

attack on the software & related asset(s), the trust

assumptions and the level of compromising with the

corresponding requirements. It is impossible to

produce cent percent secure software and environment

for GEOSCHEMACS. The inclusion of all types of

security requirements into the SRS and incorporating in

the software during the development phase will

certainly give high quality and secure software &

environment and inturn saves huge amount of time &

money. Specifying security features at the SRS ensures

that acceptance tests include testing for security

features, a measure which significantly improves the

security assurance of the software being produced.

Prioritisation of any misuse cases and incorporation of

the protection against them shall be as per the identified

asset priority and severity of impact. Trust assumptions

are the basic guidelines that are assumed to be made

available or followed. Some of the requirements under

software security can be compromised with the

procedure & policy guidelines assured and practiced.

The requirements which can be under guidelines,

procedures and trust assumptions can be deliberated

with user & developer community and as per the type

& priority of software.

VI.16 Verification & validation

Since all the software requirements have been stated in

positive tone and are the constraints on functionality,

each of the software security requirements can be

verified in the same manner what is practiced for

functional requirements. Security requirements

typically require security specific testing in addition to

the traditional types of testing. Test cases may be based

on misuse cases; load & stress testing may be useful in

validating. Security requirements shall be validated for

satisfying the security goals. Arguments shall be

produced for validating trust assumptions.

VII. CONCLUSION

Addition of security concern and incorporation of the

security objectives right from the initial phase of

requirements is the beginning of the path towards

secure development of GEOSCHEMACS. The next

phases of life cycle such as design, coding and system

testing shall also be continued with specific additions &

practices into the development process of

GEOSCHEMACS. Secure programming awareness &

training shall be another factor for enhancing the

software process towards secured assurance. The

software security requirements mentioned above are

319

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

implementable into next phases; they are concise,

testable and also verifiable. The above requirements

are specific to software vulnerabilities which are the

root cause of exploits. This software security

requirements engineering would serve as an initial step

for GEOSCHEMACS programming securely.

REFERENCES

[1] Engineering Security Requirements: Donald G

Firesmith, Firesmith Consulting, USA; Journal of Object

Technology, Vol 2, No 1, January-February 2003.

[2] Thesis submitted on “Security Requirements for the

Prevention of Modern Software Vulnerabilities and a

Process for Incorporation into Classic Software

Development Lifecycles” by Lee M. Clagett II.

[3] http://csrc.nist.gov/cc/ccv20/ccv2list.html

[4] A thesis submitted on “Security Functional

Requirements Analysis for developing secure software”

by Dan Wu

[5] “Security Requirements Engineering: A Framework for

Representation and Analysis” by Charles B. Haley,

Robin Laney, Jonathan D. Moffett, Member, IEEE, and

Bashar Nuseibeh, Member, IEEE Computer Society;

IEEE transactions on Software Engineering, Vol. 34,

No. 1, January/February 2008.

[6] “Security Requirements Engineering for Software

Systems: Case Studies in Support of Software

Engineering Education” by Nancy R. Mead and Eric D.

Hough; Proceedings of the 19th Conference on Software

Engineering Education & Training (CSEET’06).

[7] A thesis submitted on “Arguing Security: A Framework

for Analyzing Security Requirements” by Charles B.

Haley.

[8] “Security Requirements Engineering: A Survey” by Jose

Romero-Mariona, Hadar Ziv, Debra J. Richardson;

University of California, Irvine.

[9] “Security Requirements Engineering Framework for

Software Product Lines” by Daniel Mellado, Eduardo

Fernández-Medina2 and Mario Piattini.

[10] “Security Requirements Engineering: When Anti-

requirements Hit the Fan” by Robert Crook*, Darrel

Ince, Luncheng Lin, Bashar Nuseibeh.

[11] “Towards a Risk-Based Security Requirements

Engineering Framework” by Nicolas Mayer, Andr´e

Rifaut, Eric Dubois.

[12] “A Meta-Model for Usable Secure Requirements

Engineering” by Shamal Faily and Ivan Fléchais.

[13] “Introduction to Software Engineering for Secure

Systems” by Danilo Bruschi, Bart De Win and Mattia

Monga.

[14] “Software Security Requirements Gathering Instrument”

by Smriti Jain and Maya Ingle; (IJACSA) International

Journal of Advanced Computer Science and

Applications, Vol. 2, No. 7, 2011.

[15] “Software Security Rules: SDLC Perspective” by C.

Banerjee, S. K. Pandey; (IJCSIS) International Journal

of Computer Science and Information Security, Vol. 6,

No.1, 2009.

[16] “Security Requirements Engineering – A Strategic

Approach” by Dr Alagarsamy K and Chandrabose A.

[17] “Security-aware Software Development Life Cycle

(SaSDLC) – Processes and Tools” by Asoke K

Talukder, Vineet Kumar Maurya, Santhosh Babu G,

Jangam Ebenezer, Muni Sekhar V, Jevitha K P, Saurabh

Samanta, Alwyn Roshan Pais.

[18] “Information Security Anti patterns in Software

Requirements Engineering” by Miroslav Kis

[19] “Incorporating Security Requirements from Legal

Regulations into UMLsec model” by Shareeful Islam P,

Jan Jürjens.

[20] “Security Requirements Engineering: State of the Art

and Practice and Challenges” by Golnaz Elahi.

[21] “Using Trust Assumptions in Security Requirements

Engineering” by Charles B. Haley, Robin C. Laney,

Bashar Nuseibeh, Jonathan D. Moffett.

[22] “Security and Trust Requirements Engineering” by

Paolo Giorgini, Fabio Massacci, and Nicola Zannone.

[23] “A Novel Model for Security Requirements Process” by

Hui Wang, Shulan Gao, Bibo Lu, Zihao Shen.

[24] “Extending XP Practices to Support Security

Requirements Engineering” by Gustav Boström, Jaana

Wäyrynen and Marine Bodén.

[25] “Review of Security Requirements Engineering

Processes” by Brendan Cervin.

[26] “Requirement Engineering meets Security: A Case

Study on Modelling Secure Electronic Transactions by

VISA and Mastercard” by Paolo Giorgini and Fabio

Massacci1 John Mylopoulos.

[27] “Security Quality Requirements Engineering (SQUARE)

Methodology” by Nancy R. Mead and Ted Stehney.

[28] “Security Requirements Engineering; State of the Art

and Research Challenges” by M. A. Hadavi, V. S.

Hamishagi, H. M. Sangchi.

[29] “Agile Security Requirements Engineering” by Johan

Peeters

[30] “How to capture, model, and verify the knowledge of

legal, security and privacy experts: a pattern-based

approach” by Luca Compagna, Paul El Khoury and

Fabio Massacci.

[31] Thesis submitted on “Capturing Software Systems

Security Requirements” by Hassan EL-Hadary.

[32] “Capturing Security Requirements through Misuse

Cases” by Guttorm Sindre Andreas L. Opdahl.

[33] “Goal-Oriented Security Trade-Off Modeling and

Analysis with Knowledge Support” by Golnaz Elahi

[34] “THREAT-DRIVEN ARCHITECTURAL DESIGN OF

SECURE INFORMATION SYSTEMS” by Joshua

Pauli.

[35] “Threat Modeling as a Basis for Security Requirements”

by Suvda Myagmar, Adam J. Lee and William Yurcik.

[36] “Using Security Patterns to Model and Analyze Security

Requirements” by Betty H.C. Chengy, Sascha Konrad,

Laura A. Campbell, and Ronald Wassermann.

[37] “RUPSec: An Extension on RUP for Developing Secure

Systems - Requirements Discipline” by Mohammad

320

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

Reza Ayatollahzadeh Shirazi, Pooya Jaferian, Golnaz

Elahi, Hamid Baghi, Babak Sadeghian.

[38] “A MODEL-DRIVEN APPROACH TO

ARCHITECTING SECURE SOFTWARE” by

Ebenezer A. Oladimeji, Sam Supakkul Lawrence Chung

[39] “Trade-off Analysis of Misuse Case-based Secure

Software Architectures: A Case Study” by Joshua J.

Pauli, Dianxiang Xu

[40] “Cutting Edge Practices for Secure Software

Engineering” by Kanchan Hans

[41] “SECURITY THREAT MODELING AND

ANALYSIS: A GOALORIENTED APPROACH” by

Ebenezer A. Oladimeji, Sam Supakkul and Lawrence

Chung

[42] “Effective Security Impact Analysis with Patterns for

Software Enhancement” by Takao Okubo, Haruhiko

Kaiya and Nobukazu Yoshioka

[43] “Security Requirements Analysis, Specification,

Prioritization and Policy Development in Cyber-Physical

Systems” by Kenneth Kofi Fletcher and Xiaoqing

(Frank) Liu

[44] “Security Requirements Addressing Security Risks for

improving Software Quality” by Shareeful Islam, Wei

Dong

[45] “Hierarchy-Driven Approach for Attack Patterns in

Software Security Education” by Joshua J. Pauli, Patrick

H. Engebretson

[46] “Misuse Case-Based Design and Analysis of Secure

Software Architecture” by Joshua J. Pauli and Dianxiang

Xu

[47] “Effective Security Requirements Analysis:HAZOP and

Use Cases” by Thitima Srivatanakul_, John A. Clark,

and Fiona Polack

[48] “Suraksha: A Security Designers’ Workbench” by

Vineet Kumar Maurya, Santhosh Babu G, Jangam

Ebenezer, Muni Sekhar V, Asoke K Talukder, Alwyn

Roshan Pais

[49] “A Security Requirements Approach for Web Systems”

by Stefan Wagner, Daniel Mendez Fernandez, Shareeful

Islam, and Klaus Lochmann

[50] http://www.cert.org

[51] http://www.CommonCriteriaportal.org/public/expert/

[52] http://www.schneier.com/paper-attacktrees-ddj-ft.html

[53] http://searchsoftwarequality.techtarget.com/tip/0289483s

id92-gci118682100.html

[54] http://sites.google.com/site/ijcsis/

[55] Building security requirements with CLASP by John

Viega

[56] Secure software development by example; by Axelle

Apvrille and Makan Pourtandij; IEEE security &

privacy July / August 2005.

[57] Practical Internet Security By Vacca John R, Springer.

[58] Towards an automated attack model for red teams; by

Helayne T rAy, Raghunath vemuri, Hariprasad R

Kantubhukta; IEEE security & privacy July/August

2005.

[59] Applied Cryptography, Bruce Schneier, 2nd edition,

WSE wiley.

[60] Cryptography and Network security, William stallings,

Prentice Hall.

[61] Secure Programming Cookbook for C and C++ by Matt

Messier and John Viega.

[62] Secure Programming for Linux and Unix HOW TO by

David A.Wheeler.

321

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80139

