
Self-Organizing Peers for Electing Super-Peers in

Peer-to-Peer Networks

R.Venkadeshan Dr.M.Chandrasekar M.Jegatha
 Assistant Professor/CSE Department, Professor / CSE Department Assistant Professor/CSE Department,
 Chettinad College of Engg & Tech, VKS College of Engg & Tech Chettinad College of Engg & Tech,

Karur, Tamilnadu, India, Karur, Tamilnadu, India, Karur, Tamilnadu, India,

Abstract: Peer-to-Peer (P2P) networks provide a significant solution for file sharing among peers connected to Internet. It is fast and

completely decentralized system with robustness. But due to absence of a server documents on a P2P network are not rated which

makes it difficult for a peer to obtain precise information in result of a query. Two-layer hierarchy unstructured peer-to-peer (P2P)

systems, comprising an upper layer of super-peers and an underlying layer of ordinary peers, are commonly used to improve the

performance of large-scale P2P systems. Super-peer architectures exploit the heterogeneity of nodes in a P2P network by assigning

additional responsibilities to higher-capacity nodes. In the design of a super-peer network for file sharing, several issues have to be

addressed: how client peers are related to super-peers, how super-peers locate files, how the load is balanced among the super-peers,
and how the system deals with node failures. In this paper we introduce the super-peer network architecture (SPNA) that solves

these issues in a fully decentralized manner. SPNA maintains a super-peer network topology that reflects the semantic similarity of

peers sharing content interests. Super-peers maintain semantic caches of pointers to files which are requested by peers with similar

interests. Ordinary peers, on the other hand, dynamically select super-peers offering the best search performance. On the face of it,

super-peers bear a much larger traffic burden than normal peers and receive negligible improvement in search performance when

compared to any of the nodes they serve.

Keywords: Unstructured Peer-to-Peer Networks, Super Peers Networks (SPN) Architecture.

1. INTRODUCTION

Unstructured peer-to-peer networks like Gnutella

and KaZaA are characterized by the absence of specific

mechanisms for enforcing a particular network topology or

file placement. The design of search algorithms is critical to

the performance of unstructured peer-to-peer (P2P) networks.

In the unstructured P2P networks, each node does not have

the global information about the whole topology and the

location of queried resources.

As a result, search proceeds by flooding queries to

all nodes within a certain search horizon. Researchers have

recently proposed extensions to the flooding mechanism,

such as expanding ring search and random walks, that can
improve search performance [1]. Unfortunately, these

extensions require modifications to both the software and the

protocols used at every node in the network. In contrast,

systems like KaZaA and more recent versions of Gnutella

improve both the efficiency and effectiveness of the search

process by introducing a notion of network structure,

elevating certain well provisioned nodes to the role of super-

peers. Super-peers serve as network hubs that index files

belonging to other nodes. The resulting architectures break

the symmetry of pure P2P systems by assigning additional

responsibilities to high-capacity nodes called super-peers. In

a super-peer network, a super-peer acts as a server to client

(ordinary, weak) peers. Weak peers submit queries to their

super-peers and receive results from them. Super-peers are

connected to each other by an overlay network of their own,

submitting and answering requests on behalf of the weak

peers.

It was observed that by grouping peers interested in

similar files and routing their search requests within these

groups that the performance of locating content can be

greatly improved. The biggest challenge is, thus, to build an

architecture that maintains and exploits the discovered

semantic structure. In this paper we present the design and

evaluation of a P2P architecture that combines the
homogeneity of peer interests with the heterogeneity of peer

capacities to solve the problem of efficient peer relationship

management. The design of our self-organizing super-peer

network is guided by the following set of requirements. The

self-organization property of Super Peer Network, requires

that the system is able to discover and exploit the semantic

structure present in the network no matter what the initial

topology is. A new peer joining the network has no

knowledge about the system and is connected to a set of

randomly selected nodes. The longer a peer stays in the

1985

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

system, the more information it can collect and exploit for

improving the performance of its searches [2]. The time that

it takes a new peer to achieve its optimal performance should

be minimized. SPNA uses two-level semantic caches

deployed at both the super-peer and the weak-peer level to

maintain relationships between related peers and files. The
cache maintained by a super-peer contains references to those

files which were recently requested by its weak peers, while

the cache of a weak peer stores references to those super-

peers that satisfied most of its requests. First, we improve the

algorithm for establishing relationships among peers by

allowing weak peers to contact each other directly and

exchange information on other peers in the network. Second,

we present a mechanism for balancing the load between

super-peers. Finally, measure the time needed to ¯ nd an

optimal set of neighbors for each peer, which all helps to

understand how the system would perform in a real

environment. Therefore, super-peer overlay networks offer
the potential for building efficient and scalable file-sharing

systems. However, establishing the optimal super-peer

network design necessarily involves making various

performance tradeoffs and raises a number of key questions.

For example, how should the super peers connect with one

another? How should a suitable topology be chosen for the

super-peer overlay network? How should the network design

utilize an efficient broadcasting algorithm to avoid broadcast

storms and redundant messages? To what extent does the

design provide a reliable service given the possibility that a

hierarchical super-peer represents a potential point of failure
for multiple associated clients?

2. SELF-ORGANIZING SUPER PEER NETWORKS

The relationships are organized by defining for each

peer the set of other peers, called the neighbors, it interacts

with. In super-peer networks such as Kazaa, Gnutella

ultrapeers, and Chord super-peers, neighbors are selected

from the set of high-capacity peers called super-peers; low-

capacity peers - the week peers - cannot become neighbors.

2.1 Architecture Overview
 The basic idea behind the system architecture
proposed by us is simple and intuitive. Weak peers with

similar interests are connected to the same super-peers. The

request locality suggests the usage of caches that store the

results of recent searches. But not only super-peers are

responsible for discovering semantic structure in the network.

We also allow weak peers to collect statistics about the

content indexed by the super-peers. Having this information,

weak peers can make local decisions about which super-peers

to connect to. In our architecture, super-peers store the

information about the location of the content recently

requested by their weak peers. Weak peers, on the other
hand, sort the super-peers known to them according to the

number of positive responses to their queries, and prefer to

connect to super-peers that have satisfied most of their

requests. To accelerate the process of grouping peers with

similar interests under the same super-peers, we allow weak

peers to exchange their lists of super-peers. More precisely, if

a search succeeds, the requesting peer asks the peer that has
the requested file for its list of top-ranked super-peers. This

list is then merged with the list of super-peers known to the

requesting peer. The intuition here is that if both peers were

interested in the same file, then it is highly probable that they

will share interest for more files in the future.

2.2 System Model
 The information stored at a node in our system

depends on the type of this node. Each weak peer maintains a

super-peer cache which contains the identities of super-peers

(e.g., their IP addresses and port numbers). Each super-peer

has a file cache of pointers to files stored at the peers. The

relationships between SPNA peers are presented in Figure 1.
All items in the super-peer and file caches are assigned

priorities, which are non-negative integer numbers. The

priority determines the importance of a particular item, the

higher the better. The initial priority assigned to a data item

when it is added to the cache and the way the priority is

modified upon a cache hit are determined by the caching

policy. There are two situations when the priorities are taken

into account. First, when the cache capacity is exceeded, the

item with the lowest priority is removed. Second, the

priorities are used for optimizing query routing. All items in

the super-peer and file caches are assigned priorities, which
are non-negative integer numbers. The priority determines

the importance of a particular item, the higher the better. The

initial priority assigned to a data item when it is added to the

cache and the way the priority is modified upon a cache hit

are determined by the caching policy.

There are two situations when the priorities are

taken into account. First, when the cache capacity is

exceeded, the item with the lowest priority is removed.

Second, the priorities are used for optimizing query routing.

The super-peer and file caches are controlled according to

different caching policies. The priority of a super-peer in a

super-peer cache is increased by one after every positive
feedback provided by this super-peer. The priority of a file

pointer in a file cache is modified according to the mixed

policy. If the file pointer was already in the cache then the

corresponding priority is increased by one. Otherwise, the

file pointer is added to the cache with its priority one higher

than the highest priority of all other cached items. The super-

peers in our system index individually selected files rather

than the entire sets of files stored at their weak peers. This

type of architecture can deal with a situation in which a

single weak peer has files of different semantic types.

Pointers to these files can then be cached by different super-
peers. Additionally, we require that the probability that a

1986

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

search succeeds is high when the requested information is

present at least at one of the super-peers.

3. RELATED WORKS

In recent years, various hierarchical two-layer

unstructured P2P systems have been proposed as a means of

scaling up conventional unstructured P2P systems. Such

systems, of which Gnutella vs. 6 [12] and KaZaA [13] are the

most widely used, comprise super-peers and ordinary peers

and have a number of key advantages for the execution of

large-scale distributed applications, including a higher search

efficiency and the ability to harness the power and resources

of multiple heterogeneous nodes. However, they also suffer
the problems of a heavy workload and the risk of single-point

failures, i.e. the failure or departure of a single super-peer

causes all of its children (ordinary peers) to lose their

connections to the system until they are reassigned to a new

super-peer.

In an attempt to address these issues, Yang et al.

[21] proposed several rules of thumb for accomplishing the

major trade-offs required in super-peer networks and

introduced a k-redundancy concept for improving the system

reliability and reducing the workload imposed on the

individual super-peers. Watababe et al. [26] presented a
method for reducing communication overheads in a two-layer

hierarchical P2P system by allowing ordinary peers within

designated clusters to communicate directly with one another

rather than through a super-peer. Gia [27] improved the

performance of unstructured P2P systems by using a dynamic

scheme to select appropriate super-peers and to construct the

topology around them in an adaptive manner. Furthermore, a

search-based random walk mechanism was proposed for

directing the lookup messages issued by the ordinary peers

towards the high-capacity nodes in the system.

However, the efficiency of the search procedure

relies fundamentally on the matching data being found very

quickly. In the worst case scenario, the random walk search

mechanism either gives up without finding a match or may

have to traverse a very long path. Pyun [28] presented a

protocol designated as SUPs for constructing the super-peer

overlay topology of scalable unstructured P2P systems using

a random graph method.

The results showed that SUPs was not only more

computationally straightforward than the scheme presented in
[34], but also was much compatible with existing system and

was likely be adopted. Although the resulting overlay

network had a lower diameter and the topologies produced

were low cost and almost regular, the authors didn’t discuss

the content search procedure in detail.

Xiao et al. [10] presented a workload model for

establishing the optimal size ratio between the super-layer

and the leaf-layer, and proposed an efficient dynamic layer

management (DLM) scheme for super-peer architectures. In

the proposed approach, the DLM algorithm automatically

selects the peers with larger lifetimes and capacities as super-

peers and designates those with shorter lifetimes and
capacities as leaf peers. However, the DLM algorithm

inevitably incurs a substantial traffic overhead in exchanging

information amongst neighboring peers and a peer

adjustment overhead is incurred when a super-peer is

demoted to be a leaf-peer. Moreover, they did not examine

which topology is suitable for super-peers to

Fig. 1. Architecture of SPN

1987

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

maximize their benefits.

4. SUPER PEER NETWORKS SEARCH PROTOCOLS
Peers use the information collected during past

searches to improve the performance of future requests. The

contents of the super-peer and file caches are reorganized
depending on the feedback provided by peers involved in the

search process. The pseudo-code of the search algorithm

employed in our self-organizing super-peer network

presented in Figure 2 is divided into four subroutines. The

super-peer cache of peer p is denoted by p.S, while the file

cache of super-peer s is represented as s.F . The main search

algorithm is the function peer search. When a weak peer p

looks for a file f, it first checks the file caches of the super-

peers known to it (line 2). Note that p starts with the super-

peers with the highest priorities. When the file is found (line

4), a pointer to super-peer s that knows the location of f is

stored for future reference (line 5).
 However, if the file was not found with this method

(line 7), the search request is forwarded to one of the super-

peers in p's super-peer cache selected according to a random

distribution biased towards super-peers with higher priority

(line 8). This super-peer is further responsible for locating

file f. If the search succeeds, a pair < q; t >, where q is a peer

that has f and t is a super-peer that has a pointer < f; q > in

its file cache, is returned to p (line 9). At this point the self-

(re)organization process begins. This process is performed in

two stages. First, peer p increases the priority of the super-

peer t that satisfied the search request (lines 12|15). As a
consequence, in the future p will direct more of its requests to

t. Second, p integrates the list of super-peers kept by the

weak peer q with its own super-peer cache (line 16).

We exploit here a simple, yet powerful principle

called interest-based locality, which postulates that if p and q

are interested in the same file, it is very likely that more of

their requests will overlap. It is thus beneficial for both p and

q to use the same set of super-peers. The algorithm of the

super_peer_local_search is straightforward. The search

succeeds only if a pointer to file f is present in the file cache

of super-peer s (line 19). Before returning the peer q that

possesses file f (line 21), the priority of the corresponding
cache item is increased (line 20). The function super-

peer_search performs the search in the super-peer network

(line 25). Upon receipt of the search results, a pointer to the

requested file f and to the peer q holding file f are added to

the file cache of s (line 27). The return value of the function

(line 28) contains not only the peer q, but also the super-peer

t that has a pointer to f in its file cache. The last function

presented in Figure 2, merge_super-peer_caches, takes two

parameters representing two peers p and q. The super-peer

cache of peer p is updated with the content of q's super-peer

cache (lines 32 and 33). The functionality of merging the
super-peer caches is not crucial for the system operation, but

it accelerates the process of grouping weak peers under the

same super-peers which improves the search performance.

1 peer_search(p : peer, f : file_name):

2 for s in p.S ordered according to decreasing

 priorities do

3 q super-peer local search(s,f)
4 if super-peer local search succeeded then

5 t s

6 break

7 if f was not found until now then

8 s super-peer in p.S selected randomly with

 probability proportional to its priority in p:S

9 < q; t > super-peer search(s,f)

10 if super-peer search did not succeed then

11 return ERROR "File f not found"

12 if p.S contains t then

13 increase the priority of t in p.S

14 else
15 insert t into p.S

16 merge super-peer caches (p, q):

17 return q

18 super-peer_local_search(s:super-peer,f: filename):
19 if an entry < f; q > exists in cache s.F then

20 increase the priority of < f; q > in s.F

21 return q

22 else

23 return ERROR "File f not found"

24 super-peer_search(s, f):
25 perform a search in the super-peer network to

 locate a super-peer t which has an entry < f; q >

 in its cache

26 if search succeeded then

27 insert < f; q > into s.F

28 return < q; t >

29 else

30 return ERROR "File f not found"

31 merge_super-peer_caches(p : peer, q : peer):
32 for s in q.S do
33 if p.S contains s then

34 increase priority of s in p.S

35 else

36 insert s into p.S

Fig. 2. Pseudocode of Search Protocol in SPNA

4.1. Topic Based Search Optimization
Mere participation in a peer-to-peer protocol by

deploying a super-peer infrastructure is likely not sufficient

to exert any control over client behavior. To fully realize the

benefits of being able to control and manipulate the peer-to-
peer protocol, it is essential for the super peers to ensure that

1988

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

a large fraction of the queries are routed through the super-

peer infrastructure. It follows that some incentive mechanism

is required to encourage individual peers to preferentially

connect through these super-peers. By giving end users a

superior search experience, both in terms of the ability to find

what is being searched for as well as faster downloads, super
peers

provide a strong incentive for end users to remain connected

to them. Newer versions of some peer-to peer applications

give the end user the ability to choose to which super-peer its

client software connects [3]. Alternatively, the application

logic itself may make this decision by choosing peers that

return better results. In either case, the superior quality and

performance of searches increases the likelihood that

individual peers will connect to a super-peer infrastructure in

preference to other peers in the system. Super-peers therefore

require specific mechanisms to improve search performance

for end-user queries. Accordingly, we introduce a new
paradigm for query routing in our super-peers, which we call

topic-based search optimization. Our strategy tries to exploit

the following observations:

• There is likely to be significant locality in the type
of content requested by individual peers, i.e., peers

are likely to be able to respond to queries similar to

queries they themselves have made in the past.
• Super-peers are in a unique position to generate

aggregated views of the content in the network by

observing the queries that are routed through them.

Topic-based search optimization involves generating a profile

of the content currently available in the network by

categorizing it into distinct topics. The topics are created
dynamically by analyzing the meta data contained in Query

Response messages routed via the super-peer. Since most

queries are routed through a super-peer, it is in a unique

position to be able to generate this topic based view of the

content and its location in the network. Meta data associated

with an object typically contains a set of key-value pairs

pertinent to the type of the object. For example, in the case of

an audio file the meta data may contain one or more values in

the following fields: title, artist, album, category, release

year, bit rate, length, description, and keywords. In addition

to meta data the Query Response message also provides a
unique signature for every item returned in the form of a

SHA digest.

Figure 3 shows meta-data information gathered from real

Query Hit responses, and Figure 2 shows a view of this

information in a multi-dimensional name space. Topics can

be created by considering the type of objects, the category,

the artist, or any representative combination of the fields that

can be gathered from the meta data. Associated with each

topic is a list of peers who are likely to be interested in that

particular topic based on their past query history. This list

provides the super peer with a wide selection of candidate

peers who are likely to have related content. Topic-based

search optimization improves upon two simpler potential

strategies for improving search performance: The content

itself could be cached at the super-peer, requiring large

amounts of space and possibly incurring legal liability.

Alternatively, the super-peer could maintain an index for
each individual piece of content, rather than aggregating

based on topics. We believe that, given the huge amounts of

content available as well as the large number of peers we

expect to connect to a single super-peer (a few thousand in

our traces), these strategies are inefficient. Furthermore, we

believe they might not even be necessary given sufficient

effectiveness of topic-based search optimization. Also, unlike

several previous schemes that exploit the locality of client

interests, topic-based search optimization operates

transparently to the end user.

4.2 Balancing the load among Super-Peers
Load balancing is critical to the availability, accessibility,
scalability, and throughput of a P2P system. Poor load

balancing may gradually transform the super-peer network

into a backbone network as was observed for Gnutella [11].

The idea here is to avoid overloading individual super-peers,

which is the case when some super-peers are getting

significantly more queries than others. Before describing the

load-balancing mechanism of SPNet, we first define the

requirements of load balancing for a super-peer network in

general. A minimal requirement is to prevent situations in

which the load imposed on some super-peers exceeds their

capacity limits. A more advanced load-balancing solution can
further guarantee that the load assigned to each super-peer is

proportional to its capacity. Finally, the performance

overhead and implementation burden incurred by adding the

load-balancing extensions should be low. In the remainder of

this section we show how the above goals can be easily

achieved by exploiting the properties of the self-organizing

super-peer network.

At first sight the load-balancing problem that we

face in the SPNet design seems to be more difficult than in

other super-peer networks because the SPNet super-peers do

not explicitly know their weak peers. Furthermore, in the

SPNet architecture, the assignment of weak peers to super-
peers is not fixed. As a consequence, the super-peers cannot

transfer the weak peers between each other without the active

Cooperation of the weak-peer layer. Being aware of these

limitations, we have built into the search protocol a

mechanism that indirectly influences the set of super-peers

contacted by the weak peers by discouraging directing

requests to overloaded super-peers. The basic idea behind the

load-balancing mechanism of SPNet relies on the observation

that a super-peer may control the number of received requests

by affecting its priority in the super-peer caches of weak

peers. An overloaded super-peer can simply start dropping
some of the requests, effectively decreasing its priority in the

1989

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

super-peer caches of the requesting peers. As the priority of a

super-peer has a direct impact on the probability of that

super-peer being selected as a request target, the load

exercised on the overloaded super-peer will gradually

decrease. Note that if a super-peer s refuses to service a

request then eventually the client peer will ask another super-
peer t to search for the file and to subsequently store a

reference in its file cache. In other words, t will eventually

take over some of the file references that were cached by s.

The requirement that the load experienced by a super-peer is

proportional to its capacity involves relating the effective

load of that super-peer to the loads of other super-peers in the

system. To avoid introducing an independent load-

information exchange protocol, we let super-peers gather

load values of other nodes while performing the search. In

one specific case the behavior of the load-balancing

algorithm can be confusing. Let's assume that super-peer s is

overloaded and that it has in its cache the pointer < f; q > to
file f requested by p. The request will be forwarded to another

super-peer, say t. Super-peer t will then perform a super-peer

search, find s, store pointer to f in its own cache, but return

< q; s > to p. As a consequence, peer p will increase the

priority of s in its super-peer cache. This behavior is

counterintuitive as p should be discouraged to contact s in the

near future. However, the increase of the priority of s should

be interpreted as a one-time tradeoff. If a different peer sends

subsequently a request for file f to t, super-peer t will satisfy

the request from its local file cache.

Our load-balancing algorithm has thus the highly
desired property of replicating file pointers cached by the

overloaded super-peers at lighter-loaded peers. The load-

balancing scheme that we presented here is simple yet

powerful and extremely flexible. While many state-of-the-art

load-balancing algorithms assume that all peers have equal

capacities, our self-organizing architecture can deal with

arbitrary capacity values and even allows these values to be

changed during system operation. The load imbalance caused

by a change of the parameters of the super-peers is

automatically taken into account, and the system gradually

adapts to the new circumstances. Because neither the weak

peers nor the file pointers have to be explicitly reassigned
from one super-peer to another, no complex overlay

infrastructure such as virtual servers or buckets of file

identifiers needs to be introduced.

4.3 Ordinary Peer Entry in P2P Networks
1. When a node x enters the system, it immediately becomes

its own group Gx. Gx forms a list of credentials, including its

bandwidth capabilities and its number of public files.

2. Node x contacts a well-known location, called a “node

cacher”, to find other nodes S in the system (similar to

Gnutella and Mojo Nation). This bootstrapping component

only keeps a list of other nodes that have recently contacted
it, also trying to find other nodes in the system. Because this

list is the only state it contains, it can be easily replicated, and

can pop in and out of existence.

3. Using the nodes S that the new node learns about from the

“node cacher,” Gx forwards its credentials to the groups

containing s € S, by sending messages to each _, which then

forward this information to their roots.
4. Each root that considers Gx valid for entry respond to Gx

with its credentials. Gx chooses which group to join by

picking the one with the best credentials. If this group agrees,

Gx then merges with this group. If it refuses, Gx tries another

group.

4.4 Ordinary Peer Exit
We have experimented with two designs for keeping

the descendants of a node part of a group when a node exits.

In one mechanism, nodes try to maintain knowledge of their

siblings and grandparents. This information is sufficient to

elect a new leader to take the place of the missing parent and

then contact the grandparent to inform it of the new topology,
including the summary filter change. The other, lazy

mechanism just drops children from a group when their

parent dies. This expends fewer topology messages and is the

one we use in the simulation.

5. EXPERIMENTAL SETUP

We evaluate our proposal through trace-based

simulation. For the purposes of data collection we

implemented a Gnutella client based on the publicly available

Mutella [4] source code. When running, the client actively

participates in the public Gnutella network as a super-peer.
Our data-collection super-peers do not introduce any traffic

into the network; they only gather the data that is being

routed through them. Each super peer allows between 20 and

200 leaf-nodes to connect to it. We have not yet compared

the results of our study— which uses version 0.6 of the

Gnutella protocol [5]—to those of a previous study using an

earlier version [6]. We are interested in comparing the

effectiveness of our scheme against a naive caching approach

that simply

stores a copy of all requested data.

Figure 3 presents the query activity of a randomly

selected two-hour period from our trace files. The absolute
number of queries per minute is labeled QR. As a base line,

we simulate the optimal caching strategy by checking the

signatures contained in all Query Responses against all

previously received response signatures (recall that this is a

two hour section from the middle of our trace, so the cache is

already warm). Hence, the line SC represents an optimistic

upper bound for the performance of proposed caching based

schemes. It is problematic to compare the performance of our

scheme, as we return related search results that might not

have been returned in the original network. Instead, we

attempt to provide a rough estimate of the likelihood that
topic-based search would return useful responses. The curve

1990

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

labeled TC represents the number of queries which had

overlapping interest with at least one cached topic group.

Fig. 3. The Curve QR represents the number of queries, the
curve SC represents the cache hit rate for objects matching

exactly, and the curve TC represents the hit rate for the

queries matching a topic of interest

Although the number of queries that match this criteria is

much higher than the number of queries that match the

cached objects, we cannot directly compare the two. Recall

the topic-based cache is built by aggregating the client’s

query requests and responses— thus we have no way to

know what they actually store. Therefore there are no

guarantees that clients will find the data they are looking for

in any of the peers querying for content related to the topic.
The likelihood of success is tied directly to the locality of

clients’ interest; that is, the chance that clients actually share

data related to the topics of their queries. We quantify the

locality of client interest using a,

Fig. 4. This graphs compares the number of neighboring

hosts making queries (Hosts), to the number of these hosts

(RHosts) responding with useful results when sent a query

separate study. We wrote a second crawler based on the

Gnutella protocol that connects to a large number of peers.
Upon receiving a query from a neighboring peer, it extracts

the first two words from the query, and creates a new query

from these words and sends them to the neighbor the query

had originated at. Even though this does not precisely capture

the users interest topic, as many times the first two words

signify nothing in particular, we believe they represent a

crude notion of a search topic. The results of the crawler

represented in Figure 4 seem promising: It is clear from the

figure that approximately 15% of the peers do indeed respond

to the queries that we are sending to them.

Fig. 5. This graph shows a comparison between the number

of active groups in the topic-based cache (GIGC), and the

expected number of files in the file cache (FIFC).

Combing the results of the previous two studies, we can

deduce a very rough approximation of the effectiveness of

topic-based search optimization. If we consider the 15% hit

rate from above as representative of the response rate for

peers in a given topic then we can infer from Figure 3 that
topic-based search optimization is likely to out perform an

infinitely large cache, since 15% of the TC curve is still

substantially above the SC line. Furthermore, the storage

requirements are substantially less. Figure 5 shows the

number cached objects in our simulated cache as compared to

the number of groups. Keeping in mind that the average size

of each object is over 5 Megabytes, it’s clear that topic-based

search optimization is far more practical to implement.

A major concern with our approach, and, indeed any

approach that only caches pointers to peers storing data as

opposed to the data itself, is that the peers will not be
available when subsequent queries arrive. Figure 6 attempts

to quell that fear by plotting the uptime of all peers that

1991

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

connected to our super-peers during the duration of the trace.

Note that a large number of peers remain connected for a

substantial period of time.

Fig. 6. The duration of peer relationships

6. CONCLUSION

We have introduced a self-organizing super-peer network

architecture called SPANet built on top of an unstructured

topology with semantic correlations between peers and files.

Starting with random sets of neighbors, peers are always able

to find super-peers which guarantee the highest performance

of their searches. All decisions in our system are made

locally by each peer based on the information collected

during previous searches. We have also proposed a novel

performance model of a P2P network where peer requests

exhibit semantic patterns. Through simulations with real-

world trace-based data, we have shown that in SPANet not
only very popular files, but also less popular content can be

located very efficiently. Further, we have demonstrated that a

new peer that joins the system can very quickly find the set

of super-peers that guarantee the highest performance. To

that end, we described a novel mechanism called topic based

search that improves search performance for client nodes by

caching meta data at super-peers. Exploiting locality in user

interests to improve search is a promising approach that has

been pursued previously. Our approach is unique, however,

in that information is collated at the super-nodes

transparently to the end users.

REFERENCES
[1] Sabu, M.T. and S.K. Chandra, 2010. Survey of search

 and replication schemes in unstructured P2P networks.

 Network Protocols Algorithms, 2: 93-131.

[2] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search

 and replication in unstructured peer-to-peer networks,”

 in Proc. 16
th

 Annual ACM Int’l Conference on

 Supercomputing, 2002.

[3] S. Sen and J. Wang, “Analyzing peer-to-peer traffic
 across large networks,” in Proc. Second Annual ACM

 Internet Measurement Workshop, Nov. 2002,

 pp. 137–150.

[4] A. Gerber, J. Houle, H. Nguyen, M. Roughan, and S.

 Sen, “P2P: the gorilla in the cable,” in Proc. National

 Cable & Telecommunications Association (NCTA), June

 2003, (to appear).

[5] “Mutella,” 2003. [Online]. Available: mutella.

 sourceforge.net

[6] “Gnutella v0.6,” 2002. [Online]. Available: groups.

 yahoo.com/groups/files/Development/ Gnutella

 Protocolv 0.6- 200206draft.txt
[7] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the

 Gnutella network: Properties of large-scale peer-to-

 peer systems and implications for system design,”

 IEEE Internet Computing Journal, vol. 6, no. 1, 2002.

[8] E. Cohen and S. Shenker, “Replication strategies in

 unstructured peer-to-peer networks,” in Proc. ACM

 SIGCOMM, Oct. 2002, pp. 177–190.

[9] “Sandvine.” [Online]. Available: www.sandvine.com/

[10] E. Cohen, A. Fiat, and H. Kaplan, “Associative search

 in peer-to-peer networks: Harnessing latent semantics,”

 in Proc. IEEE INFOCOM, Apr. 2003.
[11] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Enabling

 efficient content location and retrieval in peer-to-peer

 systems by exploiting locality in interests,” ACM

 Computer Communication Review, vol. 32, Jan. 2002.

[12] Gnutella - A protocol for Revolution, http://rfcgnutella.

 sourceforge.net.com/.

[13] KaZaA available at http://www.kazaa.com/. http://www.

[14] Overnet/edonkey2000, available at .

 edonkey2000.com/, 2000.

[15] Bittorrent, available at http://bitconjurer.org/BitTorrent/,

 2003.

[16] Saeyoung Han and Sungyong Park, “A Dynamic Layer
 Management Scheme for a Superpeer Ring with a

 Loosely Consistent DHT”, IEEE Pacific Rim

 Conference on Communications, Computers and Signal

 Processing, pp. 383-386, Aug. 2007.

[17] Yingwu Zhu and Yiming Hu. Efficient, proximity-

 aware load balancing for dht-based p2p systems. IEEE

 Transactions on Parallel and Distributed Systems,

 16(4):349 { 361, April 2005.

[18] David R. Karger and Matthias Ruhl. Simple efficient

 load balancing algorithms for peer-to-peer systems. In

 SPAA '04: Proceedings of the Sixteenth Annual ACM

 Symposium on Parallelism in Algorithms and

1992

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

 Architectures, pages 36{43, New York, NY, 2004.

 ACM Press.

1993

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110492

