
Self-Organizing Peers for Electing Super-Peers in 

Peer-to-Peer Networks 
   

R.Venkadeshan                 Dr.M.Chandrasekar          M.Jegatha 
   Assistant Professor/CSE Department,          Professor / CSE Department                 Assistant Professor/CSE Department, 
     Chettinad College of Engg & Tech,          VKS College of Engg & Tech                    Chettinad College of Engg & Tech, 

Karur, Tamilnadu, India,    Karur, Tamilnadu, India,   Karur, Tamilnadu, India, 

 

 

 

Abstract: Peer-to-Peer (P2P) networks provide a significant solution for file sharing among peers connected to Internet. It is fast and 

completely decentralized system with robustness. But due to absence of a server documents on a P2P network are not rated which 

makes it difficult for a peer to obtain precise information in result of a query.  Two-layer hierarchy unstructured peer-to-peer (P2P) 

systems, comprising an upper layer of super-peers and an underlying layer of ordinary peers, are commonly used to improve the 

performance of large-scale P2P systems.  Super-peer architectures exploit the heterogeneity of nodes in a P2P network by assigning 

additional responsibilities to higher-capacity nodes. In the design of a super-peer network for file sharing, several issues have to be 

addressed: how client peers are related to super-peers, how super-peers locate files, how the load is balanced among the super-peers, 
and how the system deals with node failures. In this paper we introduce the super-peer network architecture (SPNA) that solves 

these issues in a fully decentralized manner. SPNA maintains a super-peer network topology that reflects the semantic similarity of 

peers sharing content interests. Super-peers maintain semantic caches of pointers to files which are requested by peers with similar 

interests. Ordinary peers, on the other hand, dynamically select super-peers offering the best search performance. On the face of it, 

super-peers bear a much larger traffic burden than normal peers and receive negligible improvement in search performance when 

compared to any of the nodes they serve. 

 

Keywords: Unstructured Peer-to-Peer Networks, Super Peers Networks (SPN) Architecture. 

 

1. INTRODUCTION 
 
Unstructured peer-to-peer networks like Gnutella 

and KaZaA are characterized by the absence of specific 

mechanisms for enforcing a particular network topology or 

file placement. The design of search algorithms is critical to 

the performance of unstructured peer-to-peer (P2P) networks. 

In the unstructured P2P networks, each node does not have 

the global information about the whole topology and the 

location of queried resources. 

As a result, search proceeds by flooding queries to 

all nodes within a certain search horizon. Researchers have 

recently proposed extensions to the flooding mechanism, 

such as expanding ring search and random walks, that can 
improve search performance [1]. Unfortunately, these 

extensions require modifications to both the software and the 

protocols used at every node in the network. In contrast, 

systems like KaZaA and more recent versions of Gnutella 

improve both the efficiency and effectiveness of the search 

process by introducing a notion of network structure, 

elevating certain well provisioned nodes to the role of super-

peers. Super-peers serve as network hubs that index files 

belonging to other nodes. The resulting architectures break 

the symmetry of pure P2P systems by assigning additional 

responsibilities to high-capacity nodes called super-peers. In 

a super-peer network, a super-peer acts as a server to client 

(ordinary, weak) peers. Weak peers submit queries to their 

super-peers and receive results from them. Super-peers are 

connected to each other by an overlay network of their own, 

submitting and answering requests on behalf of the weak 

peers. 

It was observed that by grouping peers interested in 

similar files and routing their search requests within these 

groups that the performance of locating content can be 

greatly improved. The biggest challenge is, thus, to build an 

architecture that maintains and exploits the discovered 

semantic structure. In this paper we present the design and 

evaluation of a P2P architecture that combines the 
homogeneity of peer interests with the heterogeneity of peer 

capacities to solve the problem of efficient peer relationship 

management. The design of our self-organizing super-peer 

network is guided by the following set of requirements. The 

self-organization property of Super Peer Network, requires 

that the system is able to discover and exploit the semantic 

structure present in the network no matter what the initial 

topology is. A new peer joining the network has no 

knowledge about the system and is connected to a set of 

randomly selected nodes. The longer a peer stays in the 
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system, the more information it can collect and exploit for 

improving the performance of its searches [2]. The time that 

it takes a new peer to achieve its optimal performance should 

be minimized. SPNA uses two-level semantic caches 

deployed at both the super-peer and the weak-peer level to 

maintain relationships between related peers and files. The 
cache maintained by a super-peer contains references to those 

files which were recently requested by its weak peers, while 

the cache of a weak peer stores references to those super-

peers that satisfied most of its requests. First, we improve the 

algorithm for establishing relationships among peers by 

allowing weak peers to contact each other directly and 

exchange information on other peers in the network. Second, 

we present a mechanism for balancing the load between 

super-peers. Finally, measure the time needed to ¯ nd an 

optimal set of neighbors for each peer, which all helps to 

understand how the system would perform in a real 

environment. Therefore, super-peer overlay networks offer 
the potential for building efficient and scalable file-sharing 

systems. However, establishing the optimal super-peer 

network design necessarily involves making various 

performance tradeoffs and raises a number of key questions. 

For example, how should the super peers connect with one 

another? How should a suitable topology be chosen for the 

super-peer overlay network? How should the network design 

utilize an efficient broadcasting algorithm to avoid broadcast 

storms and redundant messages? To what extent does the 

design provide a reliable service given the possibility that a 

hierarchical super-peer represents a potential point of failure 
for multiple associated clients? 

 

2. SELF-ORGANIZING SUPER PEER NETWORKS 
 

The relationships are organized by defining for each 

peer the set of other peers, called the neighbors, it interacts 

with. In super-peer networks such as Kazaa, Gnutella 

ultrapeers, and Chord super-peers, neighbors are selected 

from the set of high-capacity peers called super-peers; low-

capacity peers - the week peers - cannot become neighbors. 

2.1 Architecture Overview 
 The basic idea behind the system architecture 
proposed by us is simple and intuitive. Weak peers with 

similar interests are connected to the same super-peers. The 

request locality suggests the usage of caches that store the 

results of recent searches. But not only super-peers are 

responsible for discovering semantic structure in the network. 

We also allow weak peers to collect statistics about the 

content indexed by the super-peers. Having this information, 

weak peers can make local decisions about which super-peers 

to connect to. In our architecture, super-peers store the 

information about the location of the content recently 

requested by their weak peers. Weak peers, on the other 
hand, sort the super-peers known to them according to the 

number of positive responses to their queries, and prefer to 

connect to super-peers that have satisfied most of their 

requests. To accelerate the process of grouping peers with 

similar interests under the same super-peers, we allow weak 

peers to exchange their lists of super-peers. More precisely, if 

a search succeeds, the requesting peer asks the peer that has 
the requested file for its list of top-ranked super-peers. This 

list is then merged with the list of super-peers known to the 

requesting peer. The intuition here is that if both peers were 

interested in the same file, then it is highly probable that they 

will share interest for more files in the future. 

2.2 System Model 
 The information stored at a node in our system 

depends on the type of this node. Each weak peer maintains a 

super-peer cache which contains the identities of super-peers 

(e.g., their IP addresses and port numbers). Each super-peer 

has a file cache of pointers to files stored at the peers. The 

relationships between SPNA peers are presented in Figure 1. 
All items in the super-peer and file caches are assigned 

priorities, which are non-negative integer numbers. The 

priority determines the importance of a particular item, the 

higher the better. The initial priority assigned to a data item 

when it is added to the cache and the way the priority is 

modified upon a cache hit are determined by the caching 

policy. There are two situations when the priorities are taken 

into account. First, when the cache capacity is exceeded, the 

item with the lowest priority is removed. Second, the 

priorities are used for optimizing query routing. All items in 

the super-peer and file caches are assigned priorities, which 
are non-negative integer numbers. The priority determines 

the importance of a particular item, the higher the better. The 

initial priority assigned to a data item when it is added to the 

cache and the way the priority is modified upon a cache hit 

are determined by the caching policy.  

There are two situations when the priorities are 

taken into account. First, when the cache capacity is 

exceeded, the item with the lowest priority is removed. 

Second, the priorities are used for optimizing query routing. 

The super-peer and file caches are controlled according to 

different caching policies. The priority of a super-peer in a 

super-peer cache is increased by one after every positive 
feedback provided by this super-peer. The priority of a file 

pointer in a file cache is modified according to the mixed 

policy. If the file pointer was already in the cache then the 

corresponding priority is increased by one. Otherwise, the 

file pointer is added to the cache with its priority one higher 

than the highest priority of all other cached items. The super-

peers in our system index individually selected files rather 

than the entire sets of files stored at their weak peers. This 

type of architecture can deal with a situation in which a 

single weak peer has files of different semantic types. 

Pointers to these files can then be cached by different super-
peers. Additionally, we require that the probability that a 
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search succeeds is high when the requested information is 

present at least at one of the super-peers. 

 

 

 
 

 

 
3.  RELATED WORKS 

 

In recent years, various hierarchical two-layer 

unstructured P2P systems have been proposed as a means of 

scaling up conventional unstructured P2P systems. Such 

systems, of which Gnutella vs. 6 [12] and KaZaA [13] are the 

most widely used, comprise super-peers and ordinary peers 

and have a number of key advantages for the execution of 

large-scale distributed applications, including a higher search 

efficiency and the ability to harness the power and resources 

of multiple heterogeneous nodes. However, they also suffer 
the problems of a heavy workload and the risk of single-point 

failures, i.e. the failure or departure of a single super-peer 

causes all of its children (ordinary peers) to lose their 

connections to the system until they are reassigned to a new 

super-peer.  

In an attempt to address these issues, Yang et al. 

[21] proposed several rules of thumb for accomplishing the 

major trade-offs required in super-peer networks and 

introduced a k-redundancy concept for improving the system 

reliability and reducing the workload imposed on the 

individual super-peers. Watababe et al. [26] presented a 
method for reducing communication overheads in a two-layer 

hierarchical P2P system by allowing ordinary peers within 

designated clusters to communicate directly with one another 

rather than through a super-peer. Gia [27] improved the 

performance of unstructured P2P systems by using a dynamic 

scheme to select appropriate super-peers and to construct the 

topology around them in an adaptive manner. Furthermore, a 

search-based random walk mechanism was proposed for 

directing the lookup messages issued by the ordinary peers 

towards the high-capacity nodes in the system.  

 

 

 

 
 

 

 

 
 

However, the efficiency of the search procedure 

relies fundamentally on the matching data being found very 

quickly. In the worst case scenario, the random walk search 

mechanism either gives up without finding a match or may 

have to traverse a very long path. Pyun [28] presented a 

protocol designated as SUPs for constructing the super-peer 

overlay topology of scalable unstructured P2P systems using 

a random graph method.  

The results showed that SUPs was not only more 

computationally straightforward than the scheme presented in 
[34], but also was much compatible with existing system and 

was likely be adopted. Although the resulting overlay 

network had a lower diameter and the topologies produced 

were low cost and almost regular, the authors didn’t discuss 

the content search procedure in detail.  

Xiao et al. [10] presented a workload model for 

establishing the optimal size ratio between the super-layer 

and the leaf-layer, and proposed an efficient dynamic layer 

management (DLM) scheme for super-peer architectures. In 

the proposed approach, the DLM algorithm automatically 

selects the peers with larger lifetimes and capacities as super-

peers and designates those with shorter lifetimes and 
capacities as leaf peers. However, the DLM algorithm 

inevitably incurs a substantial traffic overhead in exchanging 

information amongst neighboring peers and a peer 

adjustment overhead is incurred when a super-peer is 

demoted to be a leaf-peer. Moreover, they did not examine 

which topology is suitable for super-peers to 

Fig. 1. Architecture of SPN 
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maximize their benefits.  

 

4. SUPER PEER NETWORKS SEARCH PROTOCOLS 
Peers use the information collected during past 

searches to improve the performance of future requests. The 

contents of the super-peer and file caches are reorganized 
depending on the feedback provided by peers involved in the 

search process. The pseudo-code of the search algorithm 

employed in our self-organizing super-peer network 

presented in Figure 2 is divided into four subroutines. The 

super-peer cache of peer p is denoted by p.S, while the file 

cache of super-peer s is represented as s.F . The main search 

algorithm is the function peer search. When a weak peer p 

looks for a file f, it first checks the file caches of the super-

peers known to it (line 2). Note that p starts with the super-

peers with the highest priorities. When the file is found (line 

4), a pointer to super-peer s that knows the location of f is 

stored for future reference (line 5). 
 However, if the file was not found with this method 

(line 7), the search request is forwarded to one of the super-

peers in p's super-peer cache selected according to a random 

distribution biased towards super-peers with higher priority 

(line 8). This super-peer is further responsible for locating 

file f. If the search succeeds, a pair < q; t >, where q is a peer 

that has f and t is a super-peer that has a pointer < f;  q > in 

its file cache, is returned to p (line 9). At this point the self-

(re)organization process begins. This process is performed in 

two stages. First, peer p increases the priority of the super-

peer t that satisfied the search request (lines 12|15). As a 
consequence, in the future p will direct more of its requests to 

t. Second, p integrates the list of super-peers kept by the 

weak peer q with its own super-peer cache       (line 16). 

We exploit here a simple, yet powerful principle 

called interest-based locality, which postulates that if p and q 

are interested in the same file, it is very likely that more of 

their requests will overlap. It is thus beneficial for both p and 

q to use the same set of super-peers. The algorithm of the 

super_peer_local_search is straightforward. The search 

succeeds only if a pointer to file f is present in the file cache 

of super-peer s (line 19). Before returning the peer q that 

possesses file f (line 21), the priority of the corresponding 
cache item is increased (line 20). The function super-

peer_search performs the search in the super-peer network 

(line 25). Upon receipt of the search results, a pointer to the 

requested file f and to the peer q holding file f are added to 

the file cache of s (line 27). The return value of the function 

(line 28) contains not only the peer q, but also the super-peer 

t that has a pointer to f in its file cache. The last function 

presented in Figure 2, merge_super-peer_caches, takes two 

parameters representing two peers p and q. The super-peer 

cache of peer p is updated with the content of q's super-peer 

cache (lines 32 and 33). The functionality of merging the 
super-peer caches is not crucial for the system operation, but 

it accelerates the process of grouping weak peers under the 

same super-peers which improves the search performance. 

1 peer_search(p : peer, f : file_name): 

2     for s in p.S ordered according to decreasing   

       priorities do 

3    q       super-peer local search(s,f) 
4    if super-peer local search succeeded then 

5        t          s 

6        break 

7    if f was not found until now then 

8         s        super-peer in p.S selected randomly with 

           probability proportional to its priority in p:S 

9         < q; t >       super-peer search(s,f) 

10        if super-peer search did not succeed then 

11            return ERROR "File f not found" 

12  if p.S contains t then 

13      increase the priority of t in p.S 

14 else 
15      insert t into p.S 

16  merge super-peer caches (p, q): 

17  return q 

 

18 super-peer_local_search(s:super-peer,f: filename): 
19 if an entry < f; q > exists in cache s.F then 

20       increase the priority of < f; q > in s.F 

21       return q 

22 else 

23       return ERROR "File f not found" 

 

24 super-peer_search(s, f): 
25     perform a search in the super-peer network to 

         locate a super-peer t which has an entry < f; q > 

         in its cache 

26     if search succeeded then 

27         insert < f; q > into s.F 

28         return < q; t > 

29    else 

30        return ERROR "File f not found" 

 

31 merge_super-peer_caches(p : peer, q : peer): 
32     for s in q.S do 
33        if p.S contains s then 

34             increase priority of s in p.S 

35       else 

36             insert s into p.S 

Fig. 2. Pseudocode  of Search Protocol in SPNA 

 

4.1. Topic Based Search Optimization 
Mere participation in a peer-to-peer protocol by 

deploying a super-peer infrastructure is likely not sufficient 

to exert any control over client behavior. To fully realize the 

benefits of being able to control and manipulate the peer-to-
peer protocol, it is essential for the super peers to ensure that 
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a large fraction of the queries are routed through the super-

peer infrastructure. It follows that some incentive mechanism 

is required to encourage individual peers to preferentially 

connect through these super-peers. By giving end users a 

superior search experience, both in terms of the ability to find 

what is being searched for as well as faster downloads, super 
peers 

provide a strong incentive for end users to remain connected 

to them. Newer versions of some peer-to peer applications 

give the end user the ability to choose to which super-peer its 

client software connects [3]. Alternatively, the application 

logic itself may make this decision by choosing peers that 

return better results. In either case, the superior quality and 

performance of searches increases the likelihood that 

individual peers will connect to a super-peer infrastructure in 

preference to other peers in the system. Super-peers therefore 

require specific mechanisms to improve search performance 

for end-user queries. Accordingly, we introduce a new 
paradigm for query routing in our super-peers, which we call 

topic-based search optimization. Our strategy tries to exploit 

the following observations: 

• There is likely to be significant locality in the type 
of content requested by individual peers, i.e., peers 

are likely to be able to respond to queries similar to 

queries they themselves have made in the past. 
• Super-peers are in a unique position to generate 

aggregated views of the content in the network by 

observing the queries that are routed through them. 

Topic-based search optimization involves generating a profile 

of the content currently available in the network by 

categorizing it into distinct topics. The topics are created 
dynamically by analyzing the meta data contained in Query 

Response messages routed via the super-peer. Since most 

queries are routed through a super-peer, it is in a unique 

position to be able to generate this topic based view of the 

content and its location in the network. Meta data associated 

with an object typically contains a set of key-value pairs 

pertinent to the type of the object. For example, in the case of 

an audio file the meta data may contain one or more values in 

the following fields: title, artist, album, category, release 

year, bit rate, length, description, and keywords. In addition 

to meta data the Query Response message also provides a 
unique signature for every item returned in the form of a 

SHA digest. 

Figure 3 shows meta-data information gathered from real 

Query Hit responses, and Figure 2 shows a view of this 

information in a multi-dimensional name space. Topics can 

be created by considering the type of objects, the category, 

the artist, or any representative combination of the fields that 

can be gathered from the meta data. Associated with each 

topic is a list of peers who are likely to be interested in that 

particular topic based on their past query history. This list 

provides the super peer with a wide selection of candidate 

peers who are likely to have related content. Topic-based 

search optimization improves upon two simpler potential 

strategies for improving search performance: The content 

itself could be cached at the super-peer, requiring large 

amounts of space and possibly incurring legal liability. 

Alternatively, the super-peer could maintain an index for 
each individual piece of content, rather than aggregating 

based on topics. We believe that, given the huge amounts of 

content available as well as the large number of peers we 

expect to connect to a single super-peer (a few thousand in 

our traces), these strategies are inefficient. Furthermore, we 

believe they might not even be necessary given sufficient 

effectiveness of topic-based search optimization. Also, unlike 

several previous schemes that exploit the locality of client 

interests, topic-based search optimization operates 

transparently to the end user. 

4.2 Balancing the load among Super-Peers 
Load balancing is critical to the availability, accessibility, 
scalability, and throughput of a P2P system. Poor load 

balancing may gradually transform the super-peer network 

into a backbone network as was observed for Gnutella [11]. 

The idea here is to avoid overloading individual super-peers, 

which is the case when some super-peers are getting 

significantly more queries than others. Before describing the 

load-balancing mechanism of SPNet, we first define the 

requirements of load balancing for a super-peer network in 

general. A minimal requirement is to prevent situations in 

which the load imposed on some super-peers exceeds their 

capacity limits. A more advanced load-balancing solution can 
further guarantee that the load assigned to each super-peer is 

proportional to its capacity. Finally, the performance 

overhead and implementation burden incurred by adding the 

load-balancing extensions should be low. In the remainder of 

this section we show how the above goals can be easily 

achieved by exploiting the properties of the self-organizing 

super-peer network. 

At first sight the load-balancing problem that we 

face in the SPNet design seems to be more difficult than in 

other super-peer networks because the SPNet super-peers do 

not explicitly know their weak peers. Furthermore, in the 

SPNet architecture, the assignment of weak peers to super-
peers is not fixed. As a consequence, the super-peers cannot 

transfer the weak peers between each other without the active 

Cooperation of the weak-peer layer. Being aware of these 

limitations, we have built into the search protocol a 

mechanism that indirectly influences the set of super-peers 

contacted by the weak peers by discouraging directing 

requests to overloaded super-peers. The basic idea behind the 

load-balancing mechanism of SPNet relies on the observation 

that a super-peer may control the number of received requests 

by affecting its priority in the super-peer caches of weak 

peers. An overloaded super-peer can simply start dropping 
some of the requests, effectively decreasing its priority in the 
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super-peer caches of the requesting peers. As the priority of a 

super-peer has a direct impact on the probability of that 

super-peer being selected as a request target, the load 

exercised on the overloaded super-peer will gradually 

decrease. Note that if a super-peer s refuses to service a 

request then eventually the client peer will ask another super-
peer t to search for the file and to subsequently store a 

reference in its file cache. In other words, t will eventually 

take over some of the file references that were cached by s. 

The requirement that the load experienced by a super-peer is 

proportional to its capacity involves relating the effective 

load of that super-peer to the loads of other super-peers in the 

system. To avoid introducing an independent load-

information exchange protocol, we let super-peers gather 

load values of other nodes while performing the search. In 

one specific case the behavior of the load-balancing 

algorithm can be confusing. Let's assume that super-peer s is 

overloaded and that it has in its cache the pointer < f; q > to 
file f requested by p. The request will be forwarded to another 

super-peer, say t. Super-peer t will then perform a super-peer 

search, find s, store pointer to f in its own cache, but return   

< q; s > to p. As a consequence, peer p will increase the 

priority of s in its super-peer cache. This behavior is 

counterintuitive as p should be discouraged to contact s in the 

near future. However, the increase of the priority of s should 

be interpreted as a one-time tradeoff. If a different peer sends 

subsequently a request for file f to t, super-peer t will satisfy 

the request from its local file cache.  

Our load-balancing algorithm has thus the highly 
desired property of replicating file pointers cached by the 

overloaded super-peers at lighter-loaded peers. The load-

balancing scheme that we presented here is simple yet 

powerful and extremely flexible. While many state-of-the-art 

load-balancing algorithms assume that all peers have equal 

capacities, our self-organizing architecture can deal with 

arbitrary capacity values and even allows these values to be 

changed during system operation. The load imbalance caused 

by a change of the parameters of the super-peers is 

automatically taken into account, and the system gradually 

adapts to the new circumstances. Because neither the weak 

peers nor the file pointers have to be explicitly reassigned 
from one super-peer to another, no complex overlay 

infrastructure such as virtual servers or buckets of file 

identifiers needs to be introduced. 

4.3 Ordinary Peer Entry in P2P Networks 
1. When a node x enters the system, it immediately becomes 

its own group Gx. Gx forms a list of credentials, including its 

bandwidth capabilities and its number of public files. 

2. Node x contacts a well-known location, called a “node 

cacher”, to find other nodes S in the system (similar to 

Gnutella and Mojo Nation). This bootstrapping component 

only keeps a list of other nodes that have recently contacted 
it, also trying to find other nodes in the system. Because this 

list is the only state it contains, it can be easily replicated, and 

can pop in and out of existence. 

3. Using the nodes S that the new node learns about from the 

“node cacher,” Gx forwards its credentials to the groups 

containing s € S, by sending messages to each _, which then 

forward this information to their roots. 
4. Each root that considers Gx valid for entry respond to Gx 

with its credentials. Gx chooses which group to join by 

picking the one with the best credentials. If this group agrees, 

Gx then merges with this group. If it refuses, Gx tries another 

group. 

4.4 Ordinary Peer Exit 
We have experimented with two designs for keeping 

the descendants of a node part of a group when a node exits. 

In one mechanism, nodes try to maintain knowledge of their 

siblings and grandparents. This information is sufficient to 

elect a new leader to take the place of the missing parent and 

then contact the grandparent to inform it of the new topology, 
including the summary filter change. The other, lazy 

mechanism just drops children from a group when their 

parent dies. This expends fewer topology messages and is the 

one we use in the simulation. 

5. EXPERIMENTAL SETUP   
 

We evaluate our proposal through trace-based 

simulation. For the purposes of data collection we 

implemented a Gnutella client based on the publicly available 

Mutella [4] source code. When running, the client actively 

participates in the public Gnutella network as a super-peer. 
Our data-collection super-peers do not introduce any traffic 

into the network; they only gather the data that is being 

routed through them. Each super peer allows between 20 and 

200 leaf-nodes to connect to  it. We have not yet compared 

the results of our study— which uses version 0.6 of the 

Gnutella protocol [5]—to those of a previous study using an 

earlier version [6]. We are interested in comparing the 

effectiveness of our scheme against a naive caching approach 

that simply 

stores a copy of all requested data.  

Figure 3 presents the query activity of a randomly 

selected two-hour period from our trace files. The absolute 
number of queries per minute is labeled QR. As a base line, 

we simulate the optimal caching strategy by checking the 

signatures contained in all Query Responses against all 

previously received response signatures (recall that this is a 

two hour section from the middle of our trace, so the cache is 

already warm). Hence, the line SC represents an optimistic 

upper bound for the performance of proposed caching based 

schemes. It is problematic to compare the performance of our 

scheme, as we return related search results that might not 

have been returned in the original network. Instead, we 

attempt to provide a rough estimate of the likelihood that 
topic-based search would return useful responses. The curve 
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labeled TC represents the number of queries which had 

overlapping interest with at least one cached topic group. 

 
Fig. 3. The Curve QR represents the number of queries, the 
curve SC represents the cache hit rate for objects matching 

exactly, and the curve TC represents the hit rate for the 

queries matching a topic of interest 

Although the number of queries that match this criteria is 

much higher than the number of queries that match the 

cached objects, we cannot directly compare the two. Recall 

the topic-based cache is built by aggregating the client’s 

query requests and responses— thus we have no way to 

know what they actually store. Therefore there are no 

guarantees that clients will find the data they are looking for 

in any of the peers querying for content related to the topic. 
The likelihood of success is tied directly to the locality of 

clients’ interest; that is, the chance that clients actually share 

data related to the topics of their queries. We quantify the 

locality of client interest using a, 

 

Fig. 4. This graphs compares the number of neighboring 

hosts making queries (Hosts), to the number of these hosts 

(RHosts) responding with useful results when sent a query  

 

separate study. We wrote a second crawler based on the 

Gnutella protocol that connects to a large number of peers. 
Upon receiving a query from a neighboring peer, it extracts 

the first two words from the query, and creates a new query 

from these words and sends them to the neighbor the query 

had originated at. Even though this does not precisely capture 

the users interest topic, as many times the first two words 

signify nothing in particular, we believe they represent a 

crude notion of a search topic. The results of the crawler 

represented in Figure 4 seem promising: It is clear from the 

figure that approximately 15% of the peers do indeed respond 

to the queries that we are sending to them.  

 

 
Fig. 5. This graph shows a comparison between the number 

of active groups in the topic-based cache (GIGC), and the 

expected number of files in the file cache (FIFC). 

Combing the results of the previous two studies, we can 

deduce a very rough approximation of the effectiveness of 

topic-based search optimization. If we consider the 15% hit 

rate from above as representative of the response rate for 

peers in a given topic then we can infer from Figure 3 that 
topic-based search optimization is likely to out perform an 

infinitely large cache, since 15% of the TC curve is still 

substantially above the SC line. Furthermore, the storage 

requirements are substantially less. Figure 5 shows the 

number cached objects in our simulated cache as compared to 

the number of groups. Keeping in mind that the average size 

of each object is over 5 Megabytes, it’s clear that topic-based 

search optimization is far more practical to implement. 

A major concern with our approach, and, indeed any 

approach that only caches pointers to peers storing data as 

opposed to the data itself, is that the peers will not be 
available when subsequent queries arrive. Figure 6 attempts 

to quell that fear by plotting the uptime of all peers that 
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connected to our super-peers during the duration of the trace. 

Note that a large number of peers remain connected for a 

substantial period of time.  

 

 
Fig. 6. The duration of peer relationships 

 
6. CONCLUSION 

We have introduced a self-organizing super-peer network 

architecture called SPANet built on top of an unstructured 

topology with semantic correlations between peers and files. 

Starting with random sets of neighbors, peers are always able 

to find super-peers which guarantee the highest performance 

of their searches. All decisions in our system are made 

locally by each peer based on the information collected 

during previous searches. We have also proposed a novel 

performance model of a P2P network where peer requests 

exhibit semantic patterns. Through simulations with real-

world trace-based data, we have shown that in SPANet not 
only very popular files, but also less popular content can be 

located very efficiently. Further, we have demonstrated that a 

new peer that joins the system can very quickly find the set 

of super-peers that guarantee the highest performance. To 

that end, we described a novel mechanism called topic based 

search that improves search performance for client nodes by 

caching meta data at super-peers. Exploiting locality in user 

interests to improve search is a promising approach that has 

been pursued previously. Our approach is unique, however, 

in that information is collated at the super-nodes 

transparently to the end users. 
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