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Abstract 
 

It is required for the autopilot controller design of a 

fixed wing Unmanned Aerial Vehicle (UAV) to track a 

predetermined path and to be robust with respect to 

environmental disturbances especially wind, since its 

magnitude is comparable to the UAV speed. In this 

paper self-tuned PID is designed as an autopilot 

controller of the Aerosonde fixed wing UAV. Online 

fuzzy inference is used as a self tuning mechanism of 

PID parameters.  This controller is compared with two 

other controllers. The first is the genetically tuned PID, 

and the second is the fuzzy logic controller. The 

simulation results based on the Aerosonde UAV model 

confirm the effectiveness and robustness of the 

proposed controller.    

 

1. Introduction  
Unmanned Aerial Vehicles (UAVs) play important 

roles in critical missions. Nowadays; they are used in a 

growing number of civil applications beside their use 

within military applications. They are used for damage 

inspection after disasters, observation of volcanoes and 

also for reconnaissance. This is because of its low cost 

and also to protect human crew in such dangerous 

missions [1,2]. An autopilot is used for flight control to 

track a reference path [3].  The autonomous controller 

has to guarantee the accuracy of the tracking path, and 

the robustness with respect to environmental 

disturbances and especially wind. Small UAVs are 

significantly sensitive to wind disturbance since its 

magnitude may be comparable to the UAVs speed [4].  

The fixed-wing classification of UAV, in contrast to 

rotary wing or flapping wings, is similar to the typical 

aircraft design for manned operations. The flight 

performance of this aircraft is affected by the 

aerodynamic parameters as well as physical external 

conditions like altitude, wind, payload variation and 

limited resources. The fixed-wing UAV dynamical 

model is nonlinear and strongly coupled. It is also 

affected by external disturbances like wind gusts. The 

controller must be robust against model uncertainties 

and external disturbances which is considered as a great 

challenge [3]. 

In recent years, considerable control design 

algorithms for UAV autopilots using modern control 

theory have been established. A large number of 

researches have been developed for onboard navigation 

and control systems. These have been achieved using 

nonlinear control, evolutionary algorithms, or 

optimization techniques. Despite their success, only a 

small number of implementations of these systems 

have been reported. It appears that there is not much 

enthusiasm to use them due to their complexity, 

nonlinear nature, and computation cost. On the other 

hand, PID autopilots have been successfully integrated 

as real-time control and online navigation systems for 

UAVs. This is not only due to their simple structure 

and easy implementation, but also because of their 

acceptable performances. However, for successful 

implementation of such controllers, and without 

requiring complex mathematical developments, 

parameters adjustment or tuning procedures are needed 

to achieve enhanced performance through the operating 

envelope [5]. 

In this paper; an autopilot is designed to control the 

longitudinal motion (altitude, and speed), and lateral 

motion (heading angle) of Aerosonde UAV. In aircraft 

modeling phase, the aerodynamic forces (lift and drag) 

as well as the aircraft inertia are taken into account. A 

self-tuned PID is used to design the controller of the 

autopilot. Two other controllers are designed to be 

compared with the self-tuned PID controller. The first 

controller is genetically tuned PID and the second is the 

fuzzy logic controller. The autopilot performances have 

been studied with respect to each controller. A 

comparative study using simulation model of the 

Aerosonde UAV is held to decide which controller is 

the best in terms of performance analysis and 

robustness to external disturbances.  

 

2. Aerosonde UAV model 
The Aerosonde UAV system is modeled by 

simulating a number of test flights, using the standard 

configuration of MATLAB and the Aerosim 
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Aeronautical Simulation Block Set [6], which provides 

a complete set of tools for rapid development of 

detailed six-degree-of-freedom nonlinear generic 

manned/unmanned aerial vehicle models. A model 

which is called Aerosonde UAV is used as a test air 

vehicle [7]. The basic characteristics of Aerosonde 

UAV shown in Figure 1 are listed in Table 1[8]. The 

great flexibility of the Aerosonde, combined with a 

sophisticated command and control system, enables 

deployment command from virtually any location. 

 
Table 1: Aerosonde UAV Specifications. 

Aerosonde UAV Specifications 

Weight 27-30 lb 

Wing span 2.9 m 

Engine 24 cc, 1.2 Kw 

Flight Fully autonomous 

Maximum Speed 30- 40 m/s 

Cruise Speed 20-30 m/s 

Altitude range Up to 20,000 ft 

Payload 1 kg 

 

The Aerosonde UAV's flight dynamics model 

available in the AeroSim® toolbox Figure 2, a 6-DOF 

dynamics model, was used in this study.  The model 

provides a representation of the Aerosonde 

characteristics.  

The model receives three types of inputs; aircraft 

controls, background wind velocities, and the reset 

integrator. The aircraft controls are the flaps (the 

Aerosonde has no flaps so this value is set to zero), 

elevator, aileron, rudder positions, throttle, mixture, 

and ignition initial values. Based on these input values, 

the model outputs the aircrafts states, sensor readings, 

velocities, positions (Euler angles), body roll rates as 

well as other important data regarding the aircraft state. 

 

3. Autopilot Design 
In this section we briefly describe the autopilot 

design. As shown in Figure 3, the inputs to the 

longitudinal autopilot are commanded altitude, h
c
 and 

commanded velocity, V
c
 [12]. The outputs are the 

elevator deflection, δe, and the throttle command, δt. 

The Altitude Hold autopilot converts altitude error into 

a commanded pitch angle θ
c
. The Pitch Attitude Hold 

autopilot converts pitch attitude error into a 

commanded pitch rate q
c
. The Pitch Rate Hold 

autopilot converts pitch rate error to elevator command 

δe. The Velocity Hold autopilot converts velocity error 

to throttle command δt.  

The lateral autopilot is shown in Figure 4. The input 

command to the lateral autopilot is the commanded 

heading,ψ
c
. The output is the aileron command δa. The 

Heading Hold autopilot converts heading error to roll 

attitude command, ϕ
c
. The Roll Attitude Hold autopilot 

converts roll angle error to roll rate command, p
c
. The 

Roll Rate Hold autopilot converts the roll rate error to 

aileron command, δa.  

The longitudinal autopilot is realized using two 

control loops (altitude and velocity), whereas the lateral 

autopilot is realized using only one control loop 

(heading angle). Each control loop is realized with 

three different controllers. The First controller is PID 

with fixed gains tuned using Genetic Algorithm (GA). 

The second one is the fuzzy logic controller. The third 

one uses online fuzzy inference mechanist to tune the 

PID parameters.  

 

4. Control design 
The main control objective is to obtain directional 

control in order to follow a desired trajectory even in 

the presence of unknown crosswind. Self-tuned PID 

using online fuzzy inference mechanism is designed for 

the autopilot. This controller is compared with 

genetically tuned PID and Fuzzy Logic Controller 

(FLC). The simulation results are studied from 

performance and robustness points of view to show the 

effectiveness of each controller. 

Due to their simple structure, robust performance, 

reliability, and ease of understanding, PID controllers 

are the most commonly used controllers in industrial 

process control [9]. The transfer function of a PID 

controller has the form given in (1). 

( )   I
P D

K
G s K K s

s
  (1) 

where: 
PK , 

IK , and 
DK  are the proportional, 

integral, and derivative gains respectively. The 

parameters of the PID controller can be manipulated to 

produce various response curves from a given process. 

Finding optimum adjustments of a controller for a 

given process is not trivial. The most well-known 

tuning method is Ziegler-Nichols tuning method.  

Ziegler-Nichols tuning method produces rules or 

determining values of the PID parameters based on the 

transient response characteristics of a given plant. To 

enhance the capabilities of traditional PID tuning 
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techniques, several methods have been developed. In 

this paper the fuzzy self tuning method is used for PID 

parameters calculations. To show its effectiveness it is 

compared with genetically tuned PID, and FLC. 

For genetically tuned PID, a multi objective 

function is used to minimize the mean square value of 

the error between the desired input and the system 

output, minimize the overshoot, and also minimize the 

coupling between the system outputs. 

Figure 5 show the block diagram of self tuning PID, 

where the controller Parameters are initially set to 

certain values by any tuning method. Then the FLC is 

used for fine tuning. An online calculated value by FLC 

is added to each initial value of the control parameters 

to give the final value used for the PID controller. 

In this paper, the initial values of PID parameters 

are set using GA and the added values are obtained 

using online FLC. The final tuned parameters of the 

self-tuned PID controller can be calculated from the 

next set of equations given in (2). 

1 2

1 2

1 2

 

 

 

P P P

I I I

D D D

K K K

K K K

K K K

   (2) 

where: 
PK , 

IK , and 
DK  are the proportional, 

integral, and derivative final gains; respectively. 

1PK , 
1IK , and 

1DK  are the proportional, integral, and 

derivative initial gains calculated from GA; 

respectively. 

2PK , 
2IK , and 

2DK  are the proportional, integral, and 

derivative gains calculated using online fuzzy inference 

mechanism; respectively. 

The obtained values from (2) are the PID Controller 

parameters used in (1). 

FLC is designed as a second controller to be 

compared with the self tuning PID. FLC is one of the 

artificial intelligence methods for control that has a 

nonlinear and rule-based nature.  The fuzzy logic 

controller provides an algorithm, which converts the 

linguistic control based on expert knowledge into an 

automatic control strategy. Therefore, the fuzzy logic 

algorithm is much closer in spirit to human thinking 

than traditional logical systems [10]. 

In this paper, the fuzzy like PID is designed with 

seven triangular membership functions for each input 

(the error, rate of error, and integrated error). The if-

then rules are established based on expert knowledge. 

The three controllers (self-tuned PID, genetically 

tuned PID, fuzzy like PID) are compared based on 

simulation results obtained from Aerosonde UAV 

model. The performance and robustness to external 

wind disturbance are considered for each controller in 

the next section. 

 

5. Simulation results 
Self tuned PID controller is designed for the 

Aerosonde UAV autopilot. To show its effectiveness; 

self tuned PID is compared with both genetically tuned 

PID, and FLC. The simulation results for the three 

different controllers based on the full nonlinear model 

are studied from performance and robustness points of 

view. This nonlinear model takes into consideration the 

complexity of the aerodynamic forces/torques. 

Furthermore, the controllers and observers were 

developed in Matlab/Simulink with a sampling time of 

0.02s, using the Runge-Kutta solver. Finally, 

disturbances represented by wind in the X-Y plane are 

taken into consideration to verifying robustness of each 

controller. 

  

5.1. Autopilot for longitudinal motion without 

external wind disturbances 
In this subsection, two control loops are considered 

as in Figure 3. One is for the altitude, and the other is 

for the speed. There is a coupling between them should 

be taken into consideration. 

A desired altitude and speed have to be tracked by 

the Aerosonde UAV autopilot. The response of the 

autopilot of the longitudinal motion of the UAV is 

plotted in Figure 6. The figure shows similar response 

for the three types of controllers. The UAV reaches the 

desired altitude and speed with constant pitch angle. 

A reference altitude with fixed speed is tracked as 

shown in Figure 7. The three autopilot controllers show 

approximately identical responses for altitude tracking 

with constant speed. In each step up or down the speed 

is affected instantaneously because of the coupling 

effect.  

A reference speed with fixed altitude is tracked as in 

Figure 8. The three autopilot controllers show 

approximately identical responses for speed tracking 

with constant altitude. The altitude is slightly affected 

by speed change due to coupling effect. 

 

5.2. Autopilot for lateral motion without 

external wind disturbances 
In this subsection, one control loop is considered as 

in Figure 4. This control loop is concerned with the 

heading angle. 

A desired heading angle has to be tracked by the 

Aerosonde UAV autopilot. Figure 9 shows the 

autopilot response in this case. It can be seen that the 

three autopilot controllers show approximately similar 

responses. The bank angle reaches the zero value and 
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remains constant at that value. When a reference 

heading angle has to be tracked, the autopilot response 

of the Aerosonde UAV is shown in Figure 10. The 

three autopilot controllers show approximately 

identical responses for heading angle tracking. In each 

step up or down the bank angle are affected 

instantaneously and then return back to zero position. 

  

5.3. Autopilot for longitudinal motion affected 

by external wind disturbances 
The effect of cross wind disturbance in X-Y plane is 

studied in this subsection. The UAV is subjected to 

crosswind disturbance in the X-Y plane from the 

beginning of normal operation. A desired altitude and 

speed have to be tracked by the Aerosonde UAV 

autopilot. It should be noted that; when the wind speed 

is low, the three controllers for the autopilot behave in 

similar way and the disturbance rejection is achieved. 

As the wind speed increases, the autopilot response 

differs according to the controller robustness.  

If the wind speed exceeds certain limit, the FLC 

becomes unstable but the two other controllers remain 

of identical performance. Figure 11 shows the autopilot 

response when the X component of the wind speed is 

12.4m/s and the Y component is 18m/s. it is clear that, 

at this speed value the FLC fails to control the autopilot 

of the longitudinal motion, whereas the performance of 

two other controllers are identical and robust. It can be 

seen from the altitude curve that, the altitude of the 

UAV controlled by FLC reaches zero which means 

crash. That is why the simulation is stopped for the 

FLC.  

From robust stability point of view, the FLC is 

robustly unstable at this value of wind speed but the 

two other controllers are robustly stable. From robust 

performance point of view, the best autopilot controller 

is the self-tuned PID. This can be verified from the 

speed curve because it has lower steady state error than 

the genetically tuned PID. Also it can be seen from the 

bank angle curve, the oscillations are lower than the 

genetically tuned PID 

 

5.4. Autopilot for lateral motion affected by 

external wind disturbances 
In this subsection, the Aerosonde UAV is subjected 

to cross wind disturbance in the X-Y plane from the 

beginning of normal operation.  A desired heading 

angle has to be tracked by the Aerosonde UAV 

autopilot. When the wind speed is low, the three 

controllers for the autopilot behave in similar way and 

the disturbance rejection is achieved. As the wind speed 

increases, the autopilot response differs according to 

the controller robustness. 

If the wind speed exceeds certain limit, the FLC and 

the genetically tuned PID become unstable but the self-

tuned-PID controller shows robust performance. Figure 

12 shows the autopilot response when the X component 

of the wind speed is 4m/s and the Y component is 8m/s. 

It is clear that, at this wind speed value the FLC and the 

genetically tuned PID fails to control the autopilot of 

lateral motion. The self-tuned PID controller shows 

robust performance and robust stability in this case. 

It can be seen from the altitude curve that the, 

altitude of the UAV controlled by FLC and genetically 

tuned PID reaches zero which means crash. That is why 

the simulations in banking and heading angles are 

stopped for the FLC and genetically tuned PID. 

 

6. Conclusion  
A self-tuned PID is designed for Aerosonde 

autopilot as a fixed wing UAV. Online fuzzy inference 

is used as the fine tuning mechanism for PID controller. 

The initial controller parameters are calculated using 

GA. This controller is compared with genetically tuned 

PID controller whose parameters are the initial 

parameters of the self-tuned PID. It is also compared 

with fuzzy like PID. The comparison based on 

simulation results obtained from Aerosonde UAV 

model. The tracking performance of a predetermined 

path and the robustness to external disturbances are 

taken into consideration as criteria for comparison. 

Two autopilots for longitudinal and lateral motions 

are considered. The longitudinal autopilot has two 

control loops one for the altitude and the other for the 

speed. The lateral autopilot has one control loop for 

heading angle. The three controllers for the two 

autopilots are designed using the controller techniques 

discussed previously. 

The simulation results show approximately similar 

autopilot performances when the UAV is not subjected 

to any external disturbances. This is for both 

longitudinal and lateral autopilot.  

The external disturbances and especially the wind 

affect the autopilot controller. This is confirmed by the 

simulation results. For longitudinal autopilot, 

disturbance rejection is achieved for all controllers 

when the UAV is subjected to relatively small speed 

values. When the external wind speed increases, the 

self tuned PID and the genetically tuned PID show 

robust performance. The fuzzy like PID fails to cope 

with this external wind speed after certain speed limit. 

For lateral autopilot, disturbance rejection is achieved 

for all controllers when the UAV is subjected to 

relatively small speed values. When the external wind 

speed increases, the self-tuned PID shows robust 

performance. The fuzzy like PID and the genetically 
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tuned PID fail to control the lateral autopilot after 

certain speed limit.  

From the simulation results obtained based on the 

Aerosonde UAV simulation model, the autopilot 

controlled using any of the discussed controllers show 

acceptable results when the UAV is not subjected to 

any external wind disturbance. 

The autopilot controlled by self-tuned PID achieves 

an excellent performance when dealing with external 

wind disturbances. The other two controllers fail to 

cope with this external wind disturbance beyond certain 

wind speed limit.   
 

10. References  
[1] Y. Sato, T. Yamasaki, H. Takano, and Y. Baba, “ 

Trajectory Guidance and Control for a small UAV”, KSAS 

International Journal, Vol. 7, No 2, pp. 137-144, November 

2006. 

[2] A. Topalov, D. Seyzinski, S. Nikolova, N. Shakev, and O. 

Kaynak, “Neuro-Adaptive Trajectory Control of Unmanned 

Aerial Vehicles”, 4th international conference with 

international participation Space, Ecology, Nanotechnology, 

Safety, June 2008,Varna, Bulgaria. 

[3] H. Castaneda, J. Morales, E. Diaz, “Quasi-Continuous 

Sliding Mode Flight Control for a Fixed-Wing UAV”, 

Congreso Nacional de Control Automatico, Ensenada,Baja 

California, Mexico, October 2013. 

[4] A. Brezoescu, T. Espinoza, P. Castillo, and R. Lozano, 

“Adaptive Trajectory Following for a Fixed-Wing UAV in 

Presence of Crosswind”, Journal of intelligent and robotic 

systems, Vol 69, Issue1-4, pp. 257-271, January 2013. 

[5] B. Kada, Y. ghazzawi, “Robust PID Controller Design for 

an UAV Flight Control System”, Proceeding of World 

Congress on Engineering and Computer Science Vol. 2, San 

Francisco, USA, October 2011.   

[6] “Unmanned Dynamics, AerosimAeronautical Simulation 

Block Set”, User’s Guide Version 1.2, http://www.u-

dynamics.com/aerosim/default.htm, [Last reached 

27/12/2009]. 

[7] “Global Robotic Observation System, Definition Of 

Aerosonde UAV Specifications”, 

http://www.aerosonde.com/aircraft/, [Last reached 

27/12/2009]. 

[8] M. Niculescu, “Lateral Track control Law for Aerosonde 

UAV”, 39th AIAA Aerospace Sciences Meeting and Exhibit, 

January 2001, Reno, Nevada, USA. 

[9] K. Passino and S. Yurkovich, “Fuzzy Control”, Addison 

Wesley Longman, California, 1998. 

[10] Jan Jantzen, “Foundations of fuzzy Control”, John Wiley 

and Sons ltd., England, 2007. 

[11] Y. Isik, and H. Korul, “Comparison of Classical PD and 

Fuzzy PD Controller performances of an Aircraft Pitch Angle 

Control System”, Gazi University Journal of science, Vol. 24, 

No 4, pp.781-785, October 2011.  

 

 

 

[12] R. Beard, D. Kingston, M. Quigley, D. snyder, R. 

Christiansen, W. Johnson, T. McLain, and M. Goodrich, 

“Autonomous Vehicles Technologies for Small Fixed Wing 

UAVs”, AIAA Journal of aerospace computing, information, 

and Communication, Vol. 2, No. 1, pp. 92-108, January 2005. 

3333

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121151



  

  

 

 

  
 

 
 

Figure 1: Aerosonde UAV. 
 
 
 

Figure 2: Aerosonde UAV MATLAB simulation model. 
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Figure 3: Autopilot for longitudinal motion. 
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Figure 4: Autopilot for lateral motion. 
 
 

 

 

Figure 5: Block diagram of self-tuned PID 
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Figure 6: The response of the autopilot for the longitudinal motion of the UAV. 
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Figure 7: Altitude track with fixed speed. 
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Figure 8: Speed track with fixed altitude. 
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Figure 9: The response of the autopilot for the lateral motion of the UAV. 
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Figure 10: Heading angle track. 
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Figure11: The response of the autopilot for the longitudinal motion when the UAV is subjected 

to external wind disturbances. 
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Figure 12: The response of the autopilot for the lateral motion when the UAV is subjected to 

external wind disturbances. 
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