

 Semantic Web-Marketing 3.0: Advertisement Transformation By Modeling.
Lamlili El Mazoui Nadori Yasser

1

, Mohammed Erramdani
2

, Mimoun Moussaoui
3

1,3

MATSI Laboratory, Mohammed First University, EST

Oujda, Morocco
2

Department of Management, Mohammed First University, EST

Oujda, Morocco

 Abstract

In this paper we have focused on the evolution of the Web-

marketing meaning the passage of the Web-marketing 2.0

to 3.0, baptized " Semantic Web-marketing ", the main

idea being to make easier to the Internet user to use a huge

and disrupting stream of information and make it

organized and easily accessible.

As so, we have chosen to use the N-tiers applications and

the MDA (Model Driving Architecture) transformation. In

this paper we are going to present a model-driven

approach to the development of N-tiers web applications

based on the UML class diagram. The transformation

language is the MOF 2.0 QVT (Meta-Object Facility 2.0

Query-View-Transformation) standard which defines the

meta-model for the development of model transformation.

The transformation rules defined in this paper can

generate, from the class diagram, an XML file containing

the layers of N-tiers web application respecting a MVC2

(Model-View-Controller), DI (Dependency Injection) and

DAO (Data Access Object) patterns. This file can be used

to generate the end-to-end necessary code of a web

application.

1. Introduction

In the years following the arrival of internet, many

organizations begun to consider MDA (Model-Driven

Architecture) as an approach to design and implement

enterprise applications. As result, many new trends have

appeared under the frameworks, changing the development

of classical web applications.

These changes are present in MDA, and help transform a

CIM (Computation Independent Model) into a PIM

(Platform Independent Model) or to obtain a PSM

(Platform Specific Model) from a PIM.

N-tiers (multi-tier) architecture provides a model for

developers to create a flexible and reusable application. By

breaking up an application into tiers, developers have to

modify or add a specific layer only, rather than rewriting

the entire application all over again. There should be a

presentation tier, a business or data access tier, and a data

tier.

In this work we are going to transform an UML Model

concerning an advertisement in a social network to

generate a source code.

In a recent work [21], the authors have developed a source

and a target meta-models. The first was a PIM meta-model

specific to class diagrams. The second was a PSM meta-

model for MVC2 (Model-View-Controller) web

applications (particularly Struts), then they have elaborated

a transformation rules using the approach by

programming. The purpose of our contribution is to

produce and generate an N-tiers PSM model,

implementing MVC2, DI (Dependency Injection) and

DAO (Data Access Object) patterns, from the class

diagram. In this case, we elaborate a number of

transformation rules using the approach by modeling and

MOF 2.0 QVT, as transformation language, to permit the

generation of an XML file that can be used to produce the

required code of the target application. The advantage of

this approach is the bidirectional execution of

transformation rules.

This paper is organized as follows: We begin in the first

section with an introduction. Related works are presented

in the second section. The third section permits to develop

MDA as architecture. The fourth section presents the N-

tiers architecture, the MVC2, DI and DAO patterns and its

implementation as frameworks. The approach by modeling

and the transformation language MOF 2.0 QVT are the

subject of the fifth section. In the sixth section, we have

elaborated the UML and N-tiers meta-models. The

transformation rules of UML source model to the N-tiers

target model, the transformation algorithm and the results

of this transformation are presented in the seventh section.

The final section concludes this paper and presents some

perspectives.

2. Related work

Many researches on MDA and generation of code have

been conducted in recent years. The most relevant are

[7][8][4][10][11][13][16][17][18][20][21][22][26][27]

[34].

The authors of the work [18], show how to generate JSPs

and JavaBeans using the UWE [17], and the ATL

transformation language [16]. Among future works cited,

the authors considered the integration of AJAX into the

engineering process of UWE.

2194

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

Bezivin et al. [8] propose to use ATL transformation to

transform PIMs defined by Enterprise Distributed Object

Computing into PSMs for different web services

platforms.

Billing et al. [7] define PIM to PSM transformation in the

context of EJB by using QVT.

The authors of the work [27] show that the MDA can be

considered as a software industrialization pattern (or a

software factory). They propose an MDA Engine based on

a real case study in an IT services company. It is a

proposal for a framework to create custom MDA tools,

based on XMI, XSLT and the Visitor Pattern.

The work [10] has proposed a model-driven development

approach for E-Learning platform. The authors established

the domain model (CIM) through the analysis of business

logic, and then they established robustness diagram of the

system after the robustness analysis. Then, they stratified

on the PIM under the J2EE framework, and proposed the

method of transformation from PIM to PSM layer by layer.

The objective of the work [34] is to introduce a new

framework for the design of secure Data Warehouses

based on MDA and QVT, which covers all the design

phases (conceptual, logical and physical) and specifies

security measures in all of them.

One approach which has gained much attention in the

web-based MDA community is the AndroMDA MDA

generator [4]. This framework provides a PIM schemes to

model and integrate a wide variety of scenarios and comes

with a set of plugins, called cartridges.

Two other works follow the same logic and have been the

subject of two articles [11] [13]. A metamodel of AJAX

has been defined using the AndroMDA tool. The

generation of AJAX code was made and illustrated by an

application that manages CRUD operations of person. The

meta-model is very important and we can join it to our

meta-models for modeling AJAX user interfaces.

The objective of the work of Nasir et al. [26] is to generate

the code of a DotNet application “Student Appointment

Management System”. The method used is WebML. The

code is generated, applying the MDA approach.

Recently, the work [22] was conducted to model Web

MVC2 generation using the ATL transformation language.

This paper aims to rethink and to complete the work

presented in the articles [20][21], by applying the standard

MOF 2.0 QVT to develop the transformation rules aiming

at generating the N-tiers web according to our target

model. Actually, it is the only work for reaching this goal.

3. Model Driven Architecture (MDA)

In November 2000, OMG, a consortium of over 1 000

companies, initiated the MDA approach. The key principle

of MDA is the use of models at different phases of

application development. Specifically, MDA advocates the

development of requirements models (CIM), analysis and

design (PIM) and (PSM) code [6].

The MDA architecture is divided into four layers. In the

first layer, we find the standard UML (Unified Modeling

Language), MOF (Meta-Object Facility) and CWM

(Common Warehouse Meta-model). In the second layer,

we find a standard XMI (XML Metadata Interchange),

which enables the dialogue between middlewares (Java,

CORBA, .NET and web services). The third layer contains

the services that manage events, security, directories and

transactions. The last layer provides frameworks which are

adaptable to different types of applications namely

Finance, Telecommunications, Transport, medicine, E-

commerce and Manufacture, etc.).

The major objective of MDA is to develop sustainable

models, those models are independent from the technical

details of platforms implementation (J2EE, DotNet, PHP

or other), in order to enable the automatic generation of all

codes and applications leading to a significant gain in

productivity. MDA includes the definition of several

standards, including UML [39], MOF [23] and XMI [40].

4. N-tiers architecture

N-tiers application architecture provides a model for

developers to create a flexible and reusable application and

provides some advantages that are vital to the business

continuity of the enterprise. Typical features of a real life

N-tiers may include the Security, Availability, Scalability,

Manageability, Easy Maintenance and Data Abstraction.

To most people, an N-tiers application is anything that is

divided into discrete logical parts. The most common

choice is a three-part breakdown presentation, business

logic, and data access although other possibilities exist.

In this paper, we are using the following layers:

Fig.1 N-tiers Layers

Each Layer can be developed independently of the other

provided that it adheres to the standards and communicates

with the other layers.

4.1 The presentation Layer with MVC2 pattern

The presentation layer of most applications is often critical

to the application's success. After all, the presentation

layer represents the interface between the user and the

application back-end.

Along time ago, web applications were very simple and

the technology that was used to develop them was

Common Gateway Interface (CGI). As applications

became more complex, the defects and limits of this

technology have emerged. Slowness and considerable

2195

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

consumption of memory. Therefore, the J2EE platform

applies the architecture MVC2 [3]. In this paradigm, the

model represents the information system consisting of

javaBeans. The view represents the HTML pages returned

to the user, and consists of JavaServerPage (JSP). The

Controller is the glue between the two and it is composed

of servlets. In short, during the early 80‟s with smalltalk,

MVC was widespread in the field of object development.

Many frameworks that implements MVC2 pattern have

emerged, among them: Struts [1], PureMVC [29], Gwittir

[14], SpringMVC [35], Zend [38], ASP.NET MVC2 [5].

Struts remains the most mature solution that has earned the

trust of most developers, that is why we have taken it into

account in our source meta-model.

4.2 The Business layer with Data Transfer Object and

Dependency Injection patterns

Business logic layer is the Layer of abstraction between

the presentation layer and persistence layer to avoid a

strong coupling between these two layers and hide the

complexity of the implementation of business processing

to presentation layer. All business treatments will be

implemented by this layer. The implementation of this

layer is produced by the DTO pattern to render the result

of running the service and the DI pattern to ensure a

decoupling between objects.

In an article written in early 2004, Martin Fowler asked

what aspect of control is being inverted. He concluded that

it is the acquisition of dependent objects that is being

inverted. Based on that revelation, he coined a better name

for inversion of control: dependency injection [19].

In other words, Dependency Injection is a worthwhile

concept used within applications that we develop. Not only

can it reduce coupling between components, but it also

saves us from writing boilerplate factory creation code

over and over again. Many frameworks that implements

DI pattern have emerged, among them: Spring [35],

Symfony dependency injection [37], Spring.NET [36],

EJB [30], PicoContainer [31]. (We have used some Spring

classes in our source meta-model).

Recently, with the development of mapping o/r tools, it

becomes easier to transfer a model object on the client

layer (UI), and the distribution of the service layer, other

advantage of the DTOs, is privileged in N-tiers modern

architectures, that is why we have taken it into account in

our work.

4.3 The persistence Layer with DAO pattern

This layer is the entry point to the database. All operations

required to create, retrieve, update, and delete data in the

database are implemented in the components of this layer.

The Data Access Object (DAO) pattern is now a widely

accepted mechanism to abstract the details of persistence

in an application. In practice, it is not always easy to make

our DAO's fully hidden in the underlying persistence layer.

The advantage of this abstraction is that we can change
the persistence mechanism without affecting the logic
domain. All we need to change is the DAO layer which, if
designed properly, is a lot easier to do than changing the

entire logic domain. In fact we might be able to cleanly
swap in a new data access layer for our new database or
alternate persistence mechanism. Many frameworks that
implements DAO pattern have emerged, among them:
SpringDao [35], JPA [32], Hibernate [15], iBatis [2],
NHibernate [28], EJB [30]. We have used Hibernate in our
work because it is the most used solution within the java
community.

5. The transformation of MDA models

MDA establishes the links of traceability between the

CIM, PIM and PSM models due to the execution of the

models‟ transformations.

The models‟ transformations recommended by MDA are

essentially the CIM transformations to PIM and PIM

transformations to PSM. In our work, we perform the

second transformation PIM to PSM devoted to N-tires web

applications.

5.1 Approach by modeling

Currently the transformations of models can be written

according to three approaches: Approach by Programming,

approach by Template and approach by Modeling.

The approach by Modeling is the one used in the present

paper. It consists of applying concepts from model

engineering to models‟ transformations themselves. The

objective is modeling a transformation, to reach perennial

and productive transformation models, and to express their

independence towards the platforms of execution.

Consequently, OMG elaborated a standard transformation

language called MOF 2. 0 QVT [24]. The advantage of the

approach by modeling is the bidirectional execution of

transformation rules. This aspect is useful for the

synchronization, the consistency and the models reverse

engineering [9].

Figure 2 illustrates the approach by modeling. Models’
transformation is defined as a model structured according
to MOF2.0 QVT meta-model. The MOF 2 0 QVT meta-
model express some structural correspondence rules
between the source and target meta-model of a
transformation. This model is a perennial and productive
model that is necessary to transform in order to execute
the transformation on an execution platform.

2196

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

5.2 MOF 2.0 QVT

Transformations‟ models are at the heart of MDA, a

standard known as MOF 2.0 QVT being established to

model these changes. This standard defines the meta-

model for the development of transformation model. The

QVT standard has a hybrid character (declarative /

imperative) in the sense that it is composed of three

different transformation languages.

The imperative style languages are better suited for

complex transformations including a significant algorithm

component. Compared to the declarative style, they have

the advantage of optional case management in a

transformation. For this reason, we chose to use an

imperative style language in this paper.

The imperative QVT component is supported by

Operational Mappings language. The vision requires an

explicit imperative navigation as well as an explicit

creation of target model elements. The Operational

Mappings language extends the two declarative languages

of QVT, adding imperative constructs (sequence,

selection, repetition, etc.) and constructs in OCL edge

effect.

This work uses the QVT-Operational mappings language

implemented by SmartQVT [33]. SmartQVT is the first

open source implementation of the QVT-Operational

language. The tool comes as an Eclipse plugin under EPL

license running on top of EMF framework. This tool is

developed by France Telecom R & D project and partially

funded by the European IST Model Ware.

SmartQVT is composed of 3 components:

QVT Editor: helps end users to write QVT

specifications.

QVT Parser: converts the QVT concrete textual

syntax into its corresponding representation in terms of

the QVT meta-model.

QVT Compiler: produces, from a QVT model, a Java

program on top of EMF generated APIs for executing

the transformation. The format of the input is a QVT

specification provided in XMI 2.0 in conformance with

the QVT meta-model.

6. UML and N-tiers architecture meta-models

To develop the transformation algorithm between source

and target model, we present in this section, the various

meta-classes forming the meta-model UML source and the

meta-model N-tiers target.

6.1 Meta-model UML source

The source meta-model structures a simplified UML

model based on packages containing data types and

classes. Those classes contain typed properties and they

are characterized by multiplicities (upper and lower).

The classes are composed of operations with typed

parameters. Figure 3 illustrates the source meta-model.

UmlPackage: is the concept of UML package. This

meta-class is connected to the meta-class Classifier.

Classifier: This is an abstract meta-class representing

both the concept of UML class and the concept of data

type.

Class: is the concept of UML class.

DataType: represents UML data type.

Operation: is used to express the concept of

operations of a UML class.

Parameter: expresses the concept of parameters of an

operation. These are of two types, Class or DataType. It

explains the link between Parameter meta-class and

Classifier meta-class.

Property: expresses the concept of properties of a

UML class. These properties are represented by the

multiplicity and meta-attributes upper and lower.

6.2 Meta-model N-tiers target

Our target meta-model is composed of three essential part.

Figure 4 illustrates the first part of the target meta-model.

This meta-model represents a simplified version of the

DAO pattern. It presents the different meta-classes to

express the concept of DAO contained in the DaoPackage:

2197

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

CrudProjectPackage: represents the project package.

This meta-class is connected to the meta-class

DaoPackage, BusinessPackage and UIPackage.

DaoPackage: represents package which contains the

different meta-classes to express the concept of DAO.

HibernateDaoSupport: expresses the concept of

generic class for DAOs, defining template methods for

DAO initialization.

Interface: is the concept of UML interface.

IDao: represents the concept of Dao interface

containing the methods definition to create, retrieve,

update, and delete data in the database.

DaoImpl: expresses the concept of Dao

implementation, all methods to create, retrieve, update,

and delete data in the database are implemented in this

meta-class.

Pojo: represents the concept of pojo. The latter extends

the meta-class Class. The pojos represents objects in the

area of application. These objects communicate with the

tables of relational database, which explains the meta-

association with meta-class Table.

Table: is the concept of table in the relational

databases. It contains a meta-attribute name which

represents the table name in the database. The meta-class

is connected by a meta-association to the meta-class

Column. Figure 5 illustrates the second part of target

meta-model. This meta-model is the business model of

the application to be processed. In our case, we opted for

 components such as DTO and DI pattern. Here, we

present the different meta-classes to express the concept

of DI contained in the Business Package.

This meta-model structures the models representing the

business logic of the target application. This logic is

essentially made up of DTO components.

BusinessPackage: represents the package which

contains the different meta-classes to express the

concept of the business logic of target application.

Interface: (already seen at the DaoPackage meta-

model)

IService: represents the concept of service interface

containing the methods definition.

ServiceImpl: expresses the concept of service

implementation containing the methods representing in

IDao meta-class and declared in IService meta-class.

IDao: (already seen at the DaoPackage meta-model)

Dto: represents the concept of business object that

needs to be transferred across a process or network

boundary. These objects contain all/some attributes of

the pojos, which explains the meta-association with

meta-class Pojo.

Pojo: (already seen at the DaoPackage meta-model)

Figure 6 illustrates the third part of the target meta-model.

This meta-model represents a concept of MVC2

implementation in the user interface.

2198

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

UIPackage: represents the different meta-classes to

express the concept of MVC2. This meta-class is

connected to the meta-class ViewPackage and

ControllePackage which represents respectively View

and Controller package.

ActionMapping: Represents the concept of

ActionMapping classes. An ActionMapping class

contains information to deploy of a class Action. This

explains the connection with the meta-class Action.

Action: is the concept of action. Class Action contains

its own processing of the application; hence it should be

linked to the various beans.

DelagatingActionProxy: represents the concept of

Proxy for a Spring-managed Struts

WebApplicationContext. The proxy is defined in the

Struts-config file, specifying this class as the action

class. This class will delegate to a Struts Action that is

defined in Action bean in the ContextLoaderPlugIn

context.

ActionForm: represents the concept of ActionForm

classes. An ActionForm represents a form containing the

parameters of the request from the view (ViewPackage).

This object is used by Action Class (This is particularly

one of the four parameters of the operation execute()),

which explains the link with the metaclass Action.

JspPage: represents a Jsp page. An action class may

be called from a hyperlink in a Jsp. This explains the

link between the Jsp page and Action class. The link

between ActionForward and Jsp page is trivial.

ActionForm is linked to Jsp page because it contains the

information that would be transmitted in the request and

then filled in the actionForm. The link between Jsp page

and HttpRequest expresses the fact that the Jsp page can

use the information contained in an HttpRequest object.

HttpRequest: is the concept of HttpServletRequest

classes.

HttpResponse: represents the concept of HttpServlet-

Response classes.

ApplicationContext: represents the concept of Central

interface to provide configuration for an application, An

ApplicationContext provides a Bean factory methods for

accessing application components and Inheritance from

a parent context. Definitions in a descendant context will

always take priority. This means, for example, that a

single parent context can be used by an entire web

application, while each servlet has its own child context

that is independent of other servlets.

ServiceLocator: expresses the concept of Service

lookup and creation involves complex interfaces and

network operations.

This meta-model structures the models representing the

view application. In this model, the Servlet invokes the

execute() method on the instance of the action class. This

method completes its processing and then calls the

mapping.findforward() method with a return to a specified

Jsp page.

Annexe 1 shows the global view of our meta-model target.

7. Transformation process from UML to N-tiers

implementation

CRUD operations (Create, Remove, Update, and Display)

are most commonly implemented in all systems. That is

why we have taken into account in our transformation

rules these types of transactions.

We first developed EMOF models corresponding to our

source and target meta-models, and then we implemented

the algorithm using the transformation language QVT

Operational Mappings. To validate our transformation

rules, we conducted several tests. For example, we

considered the class diagram (see Figure 7). After applying

the transformation on the UML model, composed by the

classes User and advertissment, we generated the target

model (see Figure 9).

Fig. 7 UML instance model

7.1 Transformation rules

By source model, we mean model containing the various

classes of our business model. The elements of this model

are primarily classes.

Main algorithm:

input umlModel:UmlPackage

output crudModel:CrudProjectPackage

begin

create CrudProjectPackage crud

create DaoPackage daoPackage

for each e ∈ source model
x = transformationRuleOnePojo(e)

link x to dp

x = transformationRuleOneIDao(e)

link x to dp

x = transformationRuleOneDaoImpl(e)

link x dp

end for

create BusinessPackage bp;

for each pojo ∈ target model
x = transformationRuleTwoDto(pojo)

link x to bp

end for

for each e ∈ source model
x = transformationRuleTwoIService(e)

link x to bp

x = transformationRuleTwoSrviceImpl(e)

link x to bp

end for

create UIPackage uip;

create ViewPackage vp

vp = transformationRuleThreeView(e)

create ControllerPackage cp

cp = transformationRuleThreeController(e)

link vp to uip

link cp to uip

link dp to crud

link bp to crud

link uip to crud

return crud

end

2199

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

function

transformationRuleOnePojo(e:Class):Pojo

begin

create Pojo pj

pj.name = e.name

pj.attributes = e.properties

return pj

end

function

transformationRuleOneIDao(e:Class):IDao

begin

create IDao idao

idao.name = 'I'+e.name+ 'Dao'

idao.methods = declaration of e.methods

return idao

end

function

transformationRuleOneDaoImpl(e:Class):DaoImpl

begin

create DaoImpl daoImpl

daoImpl.name = e.name+ 'DaoImpl'

for each e1 ∈ DaoPackage
if e1.name = 'I'+e.name+ 'Dao'

put e1 in interfaces

end if

end for

link interfaces to daoImpl

return daoImpl

end

function

transformationRuleTwoDto(p:pojo):Dto

begin

create Dto dto

dto.name = p.name

dto.attributes = p.attributes

return dto

end

function

transformationRuleTwoIService(e:Class):IService

begin

create IService iservice

iservice.name = 'I'+e.name+ 'Service'

iservice.methods = declaration of e.methods

return iservice

end

function

transformationRuleTwoServiceImpl(e:Class):Service

Impl

begin

create ServiceImpl serviceImpl

serviceImpl.name = e.name+ 'ServiceImpl'

for each e1 ∈ BusinessPackage
if e1.name = 'I'+e.name+ 'Service'

put e1 in interfaces

end if

end for

link interfaces to ServiceImpl

return ServiceImpl

end

function

transformationRuleThreeView(e:Class):ViewPackage

begin

create ViewPackage vp

for each e ∈ source model
if e.methods.name ≠ 'remove'

create JspPage page

link page to vp

end if

end for

return vp

end

function

transformationRuleThreeController(e:Class):Contro

llerPackage

begin

create ControllerPackage cp

create ActionMapping am

for each page viewPackage

link page to actionForward

create actionForm

create Action action

create ActionForward actionForward

actionForm.input=page

actionForm.attribute=action

link page to actionForward

link actionForward to action

put action in am

end for

link am to cp

return cp

end

Figure 8 represents the first part of the code of the
transformation of UML model source to N-tiers target
model.

The transformation uses, in entry, a model of the UML

type named umlModel, and in output a model of the N-

tiers named crudModel.

The entry point of the transformation is the method „main‟.

This method makes the correspondence between all the

elements of the UMLPackage type of the input model and

the element of the CrudProjectPackage type of the output

model. The objective of the second part of this code is to

transform a UML package into N-tiers package, by

creating the elements of type package „Dao‟, „Business‟

and „Presentation. It is a question of transforming each

class of package UML to Jsp page and Action in the View

package, to DTO, IService and ServiceImpl in the

Business package, and to Pojo, IDao and DaoImpl in the

Dao package, without forgetting to give names to the

different packages.

2200

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

7.2 Result:

Fig. 9 Generated PSM N-tiers Web model

The first element in the generated PSM model is

UIPackage which includes viewPackage that contains the

JSPs, namely DisplayUserPage.jsp, Display-

AdvertissmentPage.jsp,CreateUserPage.jsp,

CreateAdvertissmentPage.jsp, UpdateUserPage.jsp, and

UpdateAdvertissmentPage.jsp. Since the operation of the

removal requires any form, we'll go to the

controllerPackage element, which contains a single

element ActionMapping. The latter contains eighteen

delegating action proxy whose names are respectively

DisplayXAction, CreateXAction, UpdateXAction,

RemoveXAction, CreateXEndAction, UpdateXEnd-

Action, where X should be replaced by User, and

Advertissment. Operations for creation and update, add

forms to enter new values. For this reason, we add

CreateXEndAction and UpdateXEndAction.

The second element in the generated PSM model is

businessPackage which includes three services‟ interfaces,

three services‟ implementations and three Dtos‟ objects

correspond to the two objects „User‟ and „Advertissment.

The last element in the generated PSM model is

DaoPackage which contains three Pojos‟ objects that

contains their attributes, three Daos‟ interfaces that

contains methods with their parameters and their

implementations.

 Fig. 10 Sample of the generated Web site

8. Conclusion

In this paper, we applied the MDA approach to generate

the N-tiers web application based on UML class diagram

to generate a skeleton of a social network and create

appropriate advertisements to the users in function of them

profiles.

This involves developing all meta-classes needed to be

able to generate an N-tiers application respecting a MVC2,

DI and DAO patterns, then we applied the approach by

modeling and used the MOF 2.0 QVT standard as a

transformation language. The transformation rules defined

allow browsing the source model instance class diagram,

and generating, through these rules, an XML file

containing layers of N-tiers architecture according to our

target model. This file can be used to produce the

necessary code of the target application. The algorithm of

transformation manages all CRUD operations. Moreover,

it can be re-used with any kind of methods represented in

the UML class diagram. In the future, this work should be

extended to allow the generation of other components of

Web application besides the configuration files. For

instance, we will be able to provide part of user interface.

Afterward we can consider integrating other execution

platforms like PHP and DotNET.

References
[1] Apache Software Foundation: The Apache Struts Web

Application Software Framework (http://struts.apache.org).

[2] Apache Software Foundation: The Apache iBatis Framework

(http://ibatis.apache.org/).

[3] Alur, D., Crupi, J., Malks, D., Core J2EE Patterns: Best

Practices and Design Strategies (Prentice Hall, 2003).

[4] AndroMDA. http://www.andromda.org/.

[5] ASP.NET MVC site http://www.asp.net/mvc/

2201

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

[6] Blanc, X., MDA en action : Ingénierie logicielle guidée par

les modèles (Eyrolles, 2005).

[7] Bezivin, J., Busse, S., Leicher, A., Suss, J.G, Platform

Independent Model Transformation Based on TRIPLE. In

Middleware‟04: Proceedings of the 5th ACM/IFIP/USENIX

International Conference on Middleware, pages 493- 511,2004.

[8] Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F., Applying

MDA approach for web service platform. In EDOC‟04

preceedings of the 8th IEEE International Entreprise Distributed

Object Computing Conference, pages 58-70, 2004.

[9] Czarnecki, K., Helsen, S., Classification of Model

Transformation Approaches, in online proceedings of the 2nd

OOPSLA‟03 Workshop on Generative Techniques in the Context

of MDA. Anaheim, October, 2003.

[10] Cong, X., Zhang, H., Zhou, D., Lu, P., Qin, L., A Model-

Driven Architecture Approach for Developing E-Learning

Platform , Entertainment for Education. Digital Techniques and

Systems Lecture Notes in Computer Science, Volume 6249/2010,

111-122, DOI: 10.1007/978-3-642-14533-9_12, 2010.

[11] Distante, D., Rossi, G., Canfora, G., Modeling Business

Processes in Web Applications: An Analysis Framework. In

Proceedings of the The 22nd Annual ACM Symposium on

Applied Computing (Page: 1677, Year of publication: 2007,

ISBN: 1-59593-480-4).

[12] Eclipse.org. ATLAS Transformation Language (ATL).

http://www.eclipse.org/m2m/atl/.

[13] Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and

Generating AJAX Applications: A Model-Driven Approach.

Proceeding of the7th International Workshop on Web- Oriented

Software Technologies, New York, USA (Page: 38, Year of

publication: 2008, ISBN: 978-80-227-2899-7)

[14] Gwittir Source Web Site http://code.google.com/p/gwittir/

[15] Hibernate Framework (http://www.hibernate.org/)

[16] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., ATL: A

model transformation tool. Science of Computer Programming-

Elsevier Vol. 72, n. 1-2: pp. 31-39, 2008.

[17] Koch, N., Transformations Techniques in the Model-Driven

Development Process of UWE, Proceeding of the 2
nd

International

Workshop Model-Driven Web Engineering, Palo Alto (Page: 3

Year of publication: 2006 ISBN: 1-59593- 435-9).

 [18] Kraus, A., Knapp, A., Koch N., Model-Driven Generation of

Web Applications in UWE. Proceeding of the 3rd International

Workshop on Model-Driven Web Engineering, CEUR-WS, Vol.

261, 2007

[19] Fowler, M., Inversion of Control Containers and the

Dependency Injection pattern (http://martinfowler.

com/articles/injection.html)

[20] Mbarki, S., Erramdani, M., Toward automatic generation of

mvc2 web applications, InfoComp - Journal of Computer

Science, Vol.7 n.4, pp. 84-91, December 2008, ISSN: 1807-

4545.

[21] Mbarki, S., Erramdani, M., Model-Driven Transformations:

From Analysis to MVC 2 Web Model, International Review on

Computers and Software (I.RE.CO.S.), Vol. 4. n. 5, pp. 612-620,

September 2009.

[22] Mbarki, S., Rahmouni, M., Erramdani, M., Transformation

ATL pour la génération de modèles Web MVC 2, 10e Colloque

Africain sur la Recherche en Informatique et en Mathématiques

Appliquées, Theme5:Information Systems, CARI 2010.

[23] Meta Object Facility (MOF), version 2.0, January 2006,

http://www.omg.org/spec/MOF/2.0/PDF/

[24] Meta Object Facility (MOF) 2.0 Query/View/Transform-

ation (QVT), Version 1.1, December 2009.

http://www.omg.org/spec/QVT/1.1/Beta2/PDF/

[25] Miller, J., Mukerji, J., al. MDA Guide Version 1.0.1, 2003.

http://www.omg.org/docs/omg/03-06-01.pdf.

[26] Nasir, M.H.N.M., Hamid, S.H., Hassan, H., WebML and

.NET Architecture for Developing Students Appointment

Management System, Journal of applied science, Vol. 9, n. 8, pp.

1432-1440, 2009.

[27] Ndie, T. D., Tangha1, C., Ekwoge, F. E., MDA (Model-

Driven Architecture) as a Software Industrialization Pattern: An

Approach for a Pragmatic Software Factories. J. Software

Engineering & Applications, pages 561-571, 2010

[28] NHibernate Framework home site (http://nhforge.org/)

[29] Puremvc framework (http://puremvc.org/).

[30] Panda, D., Rahman, R., Lane, D., EJB3 in action (Manning

co., 2007).

[31] PicoContainer. http://www.picocontainer.org/

[32] Schincariol, M., Keith, M., Pro JPA 2: Mastering the Java

Persistence API (Apress, 2009)

[33] SmartQVT documentation Copyright © 2007, Copyright(c)

France Telecom. http://smartqvt.elibel.tm.fr/doc/index.html [34]

Soler, E., Trujillo, J., Blanco, C., Fernandez-Medina, E.,

Designing Secure Data Warehouses by Using MDA and QVT.

Journal of Universal Computer Science, vol. 15, no. 8 pages

1607-1641, 2009.

[35] Spring Source Web Site (http://www.springsource.org/).

[36] SpringNet Web Site(http://www.springframework.net/).

[37] Symfony open-Source PHP Web Framework Site

(http://www.symfony-project.org/

[38] Zend Framework (http://framework.zend.com/).

[39] UML Infrastructure Final Adopted Specifcation, version 2.0,

September 2003, http://www.omg.org/cgi-bin/doc?ptc/03-09-

15.pdf

[40] XML Metadata Interchange (XMI), version 2.1.1, December

2007, http://www.omg.org/spec/XMI/

Lamlili el Mazoui Nadori Yasser is pursuing his Ph.D at
Mohammed First University in the Faculty of Sciences. He got a
degree of an engineer in Computer Sciences from the National
School of Applied Sciences at Oujda. He received his M.Sc.
degree in New Information and Communication Technologies from
the faculty of sciences and Techniques at Sidi Mohamed Ben
Abdellah University. His research activities at the MATSI
Laboratory (Applied Mathematics, Signal Processing and
Computer Science) have focused on WebMarketing in social
networks using MDA (Model Driven Architecture) approach.

Mohammed Erramdani teaches the concept of Information
System at Mohammed First University. He got his thesis of
national doctorate in 2001. His activities of research in the MATSI
Laboratory (Applied Mathematics, Signal Processing and
Computer Science) focusing on MDA (Model Driven Architecture)
integrating new technologies XML, EJB, MVC, Web Services, etc.

Mimoun Moussaoui is a Professor, Vice-Director of High School
of Technology and Responsible of the MATSI Laboratory (Applied
Mathematics, Signal Processing and Computer Science) at
Mohammed First University, Oujda, Morocco.

2202

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80855

