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Abstract- In the framework of quasi-static approach the
shear wave propagation is considered in functionally graded
transversally isotropic hexagonal 6mm symmetry
magnetoelectroelastic media (MEE). Assuming that in
functionally graded MEE material elastic and electromagnetic
properties vary in the same proportion in direction
perpendicular to the MEE polling direction, special classes of
inhomogeneity functions were found, admitting exact solutions
for the coupled wave field and allowing to estimate the effects of
inhomogeneity on the wave behavior. Exact solutions defining
the coupled shear wave field in MEE can be used in many
problems, e.g. shear surface waves propagation along the
surface of a semi-infinite space, interfacial waves in a
multilayered and periodic structure, Love type waves in a layer
overlying a half-space, guided waves in an inhomogeneous
waveguide, etc. Based on exact solutions, the localized wave
propagation is studied for MEE layer with quadratic and
inverse quadratic inhomogeneity profiles of material parameters
varying continuously along the layer thickness direction.
Dispersion equations are deduced analytically and for the
BaTiO3-CoFe204 MEE crystal the numerical results estimating
effects of inhomogeneity are presented.

Keywords- piezomagnetic, piezoelectric, shear wave,
waveguide, inhomogeneity

. INTRODUCTION

Recently, the propagation of coupled electromagnetic and
elastic waves in magneto-electro-elastic (MEE) structures
attracted much attention due to the wide range of application
of these materials in smart structures. MEE materials are a
class of new artificial composites that consist of simultaneous
piezoelectric and piezomagnetic phases. The magnetoelectric
effect of piezoelectric—piezomagnetic composites was first
reported in [1]. Such materials rarely occur in nature and
demonstrate weak magneto-electro-elastic effects. However in
artificial composite materials the magneto-electro-elastic
effect is notable, which makes such materials highly valuable
in technological usage. Magneto-electro-elastic composites
are built up by combining piezoelectric and piezomagnetic
phases [2] to obtain a smart composite that presents not only
the electro-mechanical and magneto-mechanical coupling,
characteristic of constituent phases, but also a strong
magnetoelectric coupling. In [2] the theoretical estimates are
shown to be in agreement with available experimental results,
and also show the interesting magnetoelectric behaviour of the
composites. Review of the physics of such materials is given
in [3], which begins with a brief summary of the historical
perspective of the magnetoelectric composites since their
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appearance in 1972. The review concludes with an outlook of
the exciting future possibilities and scientific challenges in the
field of multiferroic magnetoelectric composites.

A new method for the synthesis of artificial crystal with a
strong electro-magneto-elastic interaction by combining
electro-elastic BaTiO; and magneto-elastic CoFe,O, in a
single crystal is presented in [4].

Quasi-static approximation was used to research surface
and bulk wave propagation in such materials [5-12]. The
propagation of Bleustein-Gulyaev surface wave is investigated
in [5] for transversely isotropic MEE materials. In [6] the
existence of a new surface SH wave is stated for a cubic
anisotropic MEE material. An analytical approach was used to
investigate Love wave propagation in a layered MEE structure
[7], where a solution of dispersion relations was obtained for
magnetoelectrically open and short boundary conditions. In
[8] Rayleigh waves are investigated in MEE half plane, the
material of which is assumed to possess hexagonal 6 mm
symmetry. In [9] it is shown that shear surface waves with
twelve different velocities in cases of different magneto-
electrical boundary conditions can be guided by the interface
of two identical MEE half-spaces. The existence of shear
surface wave travelling along the interface of two half spaces
of different MEE materials is studied in [10]. The study of SH
waves in a hetero-structure made from three different MEE
materials with 6mm symmetry is given in [11]. In [12] the
dispersion relation of the MEE three-dimensional, anisotropic
and multi-layered thick plate vibration frequency has been
derived. Applied problems of MEE beam and plate behaviour
are studied in [13-17]. In [13-14] based on Timoshenko's
beam theory an analytical model for MEE bimorph beam [13]
is employed, to study its response to mechanical and electro-
magnetic time varying loads. In [14] it was shown that the
effect of shear deformation has a great influence on piezo-
electro-elastic beam’s natural frequencies and mode shapes.
The pyroelectric and pyromagnetic effects on magneto-
electro-elastic plate with different boundary conditions under
uniform temperature rise is studied in [15]. Based on
Kirchhoff thin-plate theory, a closed form expressions for
bending problem of MEE rectangular thin plates are derived in
[16] and the exact solutions for the deformation behaviours of
the fiber-reinforced the BaTiO;-CoFe,O, composites
subjected to certain types of surface loads are analytically
obtained. In [17] exact solutions are derived for anisotropic,
simply-supported, multi-layered rectangular MEE plates under
static loadings.
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In [18] functionally graded materials, whose properties
vary continuously in space were used to improve the
efficiency of Bleustein—-Gulyaev waves for a hexagonal 6 mm
piezoelectric crystal. Assuming that the elastic stiffness, the
piezoelectric constant, the dielectric constant, the mass density
of MEE material vary in the same proportion with a single
space variable special classes of the inhomogeneity functions
were founded allowing the exact solution of surface wave
propagation problem.

Functionally graded materials (FGM) are inhomogeneous
elastic bodies whose properties vary continuously with space.
The FGM structure has attracted wide and increased attentions
of scientists and engineers. FGM plays an essential role in the
most advanced integrated systems for vibration control and
health monitoring. The progress in the characterization,
modelling, analysis and principal developments of FGM was
reviewed in [19, 20].

In pure elastic FGM materials surface wave propagation
was discussed in [21-26].

In [27, 28] the propagation of shear electroelastic
monochromatic localized waves in functionally graded
piezoelectric layer is studied, where the influence of
inhomogeneity function on dispersion of shear wave is
analysed and numerical comparison between wave speeds of
homogeneous and inhomogeneous layers is carried out.
Surface Love waves are considered in [29] for a layered
structure with inhomogeneous piezoelectric layer. The
behaviour of Lamb waves in the functionally graded
piezoelectric—piezomagnetic plate with material parameters
varying continuously along the thickness direction is
investigated in [30], where the power series technique is
employed to find dispersion curves numerically. In [31] the
Bleustein—Gulyaev waves are studied by analytical technique
in a functionally graded transversely isotropic MEE half-
space, in which all parameters change exponentially along the
depth direction. All the above mentioned solutions were based
on quasi-static approximation of a problem [32], where the
derivatives of time in Maxwell’s electro-dynamic equations
were ignored. Such approximation allows high precision
solutions regarding the influence of the electro-magnetic field
on the properties of elastic fields, however is limited in
finding out the coupled wave processes in magneto-electro-
elastic materials. More specifically, quasi-static definition
cannot be used to describe the reflection and refraction of
electro-magnetic waves [33], coupling effects of electro-
magnetic and elastic fields which causes polariton interaction
in MEE periodic structure [34]. Based on the full complete set
of electrodynamics dynamics equations and the elasticity
theory equations in [35] the two-dimensional equations are
derived describing coupled wave process in MEE medium of
hexagonal symmetry, where it was stated that contrary to the
quasi-static approximation under dynamic approach the plane
and anti-plane deformations are coupled.

Il.  STATEMENT OF THE PROBLEM

For a transversely isotropic magneto-electro-elastic
hexagonal symmetry 6 mm medium with z-axis normal to the
plane of isotropy, polling direction of which coincides with z-
axis direction, the anti-plane equations in Cartesian coordinate

system (X, y,z) can be written as

IJERTV31S100676

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

0,D,+9,D,=0
0,8,+0,B,=0 (1)
aXO-XZ +ayayZ zwmw

o, =GoW +ed ¢+ 0 ¢
D,=e0 W —&0 p—0ad ¢ 2)
B, = OW —ad ¢ — 1o ¢

o, =GOW +eo,p+ £0,¢
D, =edW — ¢ — ad, 4 3)
Bx = ﬂaxw - aax(D - luax¢

Here the W(x,y,t) is the elastic displacement directed

along z -direction, , UXZ(X, y,t),ayz(X, y,t) are mechanical
stresses, the D, (xY,t),D,(xy.t), B, (X Y,t),B (X y.t),
o=p(X, Y1), d=9¢(x,y,t) are electric displacements, the
magnetic inductions, the electric potential and the magnetic
potential, correspondingly, p,G=c,,e=¢e,,f=0d;,a are

the. bulk density, elastic, piezoelectric, piezomagnetic and
magneto-elastic modulus respectively, ¢ and u are the

dielectric permittivity and magnetic permeability coefficients,
while o, =o/ox;0, =0/dy;0, =0°/0% .

To exemplify the problem and provide insights of shear
waves propagation in functionally graded piezo-electro-
magneto-elastic media the following model is considered.

The material parameters in the MEE medium gradually
change along y-direction having the same function variation
properties

G(Y) =G, f(y):B=5T(y)re=ef(y) @
a=a,f(y)ie=ef(y)u=uwty)p=pT)
Here f(y)is the inhomogeneity function which will be
specified later.
Equations (1) and (2) can be considered as a set of first
order six differential equations with six  sought
functionso,,D,,B,\W,,¢.

yz?

The functions o,,D,,B,_ can be defined from (3) via the
sought functions.

Considering a wave with the circular frequency @ and

wave number k we present all functions in the form of plane
harmonic wave travelling along the x - direction
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{Uyz’Dy’By’W,(o,gﬁ}(x, y,t)=

— {0 (¥):Dy (1), Bay (Y)W (). 04 (). (¥)]

-expi (kx— at)

Introducing vectors

O-(y) = (O-D)/Z’ Doy' Boy )T
U= (W0’§00’¢0)T

we can rewrite the anti-plane equations as the set of first order
differential equations in a matrix form

9,0(y)=MU(y)

o,U(y)=No(y) ©)

Here M, S are the following matrixes

(G B e)
M=|p-u-«a
e —a —¢
N=T"
(G_pk_az)zﬂ e\
T =k? p —u-«a
e -a —¢

13

Defining new functions &,,(y),
auxiliary potentials S(y),F(y) as

(6)

where
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_ 2
Yo =&ty — &y

a +p =% PR (1)
Ty = €ty — Oy By

and substituting (6) into (5) it is straightforward to derive the
following matrix equations
U, =ML, (7)

®)

with respect to the new unknown vector functions

70 (¥) =G (¥). B0y (¥)B (1)) o
Uy(3)=(Wo(y):S(v)F (3)

Here

Lmy5" 6o

1
M,=———|0 1 0
E p’k’
P00 0 1
(Eo 57 _60701\

p=y1-¢*
E, =G, +(80770 +ﬂ090)761
¢= \/a)zpo/Eokz

Now by substituting the vector U, from (7) into (8) and the

vector o, from (8) into (7) we come to the two decoupled sets
of equations
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0 1 L, D, |=
0 0 1 LL B
q—p oy (10)
foyz
=k?| D,
B,
p? 0 o)L qNO V\70
0 1 0| LLS |=k*|S (11)
0 01 L,L,F F
Noting that

we come to the following two ways of finding the exact
solutions if we assume that

[3—5—#} =b 12)
or
[‘;—';+ PZJ =b (13)

where b is a constant.

Since
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Case (ii)

f(y) (15

o +

:LAf?fh( )(ﬁ)f Smh(ﬂ)}

Depending on whether b is positive, negative, or equal to
zero several kind of functions can be found. Assumptions
(14,15) are obviously somewhat artificial and narrow the class
of functions characterizing the inhomogeneity. Nevertheless it
allows solving the problem for functionally graded MEE
materials and estimating the effect of inhomogeneity on the
wave dispersion relations of waves. Let us note that these
inhomogeneity functions profiles do not depend on material
properties and can be used for both piezomagnetic,
piezoelectric and pure elastic materials. For piezoelectric
materials these inhomogeneity functions (14,15) were derived
also in [18]. Some types of these functions have been used
also in [17, 25, 26, 28] where shear wave prorogation in
elastic and piezoelectric media was studied.

I11.  GOVERNING EQUATIONS AND SOLUTIONS

The equations for the first type of inhomogeneity functions
can be cast as:

Case (i):
d’s
LA
2 2
U 0) S 9 d Bo 5
+(l— 2)|:_0[ ;. ZV _bDDy]+_O[ y ZY _ OYJ:|_
7o\ dy 7\ dy (16)
d’D, . d’B, .
dyzy_ ‘ o =0 zy_qZBoy:O

r=yJb+ p*k?;q=b+k?

Now the solutions of this system of second order
differential equations with constants coefficient can be easily
found:

(dP PZJE 1 d2fve D,, (v)=C,exp(ay)+A, exp(-ay)
dy S B,, (y)=C,exp(ay)+A, exp(-ay)

2 dP)_ 1 d\/_ 1, (C,exp(qy)+ A, exp(-qy

[P j \/— v G,(y)=- 0( Lexp(ay)+ A, exp( ))_ 17
%o
we get the two types of inhomogeneity functions admitting the 6, (C,exp(ay)+A, exp(-ay)) .
exact solutions of (10) and (11) B Yo
Case (i) +C, exp(ry)+C, exp(-ry)
2 Solutions for W, (y),e,(y).4, () follow from (6, 7)
f(y)={Acosh(ﬁ)+£sinh(ﬁy)} (14)
%

or
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_ e"C,|r+P e"A|-r+P
i ()= E[kz )], e AlrPy)]
oK P Ek’p
2 (y)=
quEopz(yocl—aOCZ)[q+P(y)]—e’ynOC3[r+P(y)]_
- Ek*p,
P (A-aA) 0+ P)]-e A [ +P(y]
EkZ 2
P (18)
¢o(y)=
Wy 2 y
e E,p*(a,C Cz)(q+F’(y))+e 00C3(r+P(y))+
Ek*p7,
e "E,p’ (%A A )(-a+P(y))+e "GA (-r+P(y))
Ek*p*,
Here C,C,,C,,A, A, A are arbitrary constants.

The equations and solutions for the second type of
inhomogeneity functions: Case (ii):

dis

dZV\ZO -r’W,=0; —-g°S=0
o a (19)
L
dy?
W, (y)=c,exp(ry)+a exp(-ry)
S(y)=c,exp(ay)+a,exp(-ay) (20)
F(y)=c,exp(qy)+a,exp(-ay)

Solutions for &,,(y).D,, (¥).B,, (¥).¢(¥).4(y) follow

from (6, 8)
B, (v)=ce”[a-P(y)]-ae[a+P(y)]
B, (v)=ce”[a-P(y)]-ae®[a+P(y)]
6,(y)=—e"(cm+¢,0,)7 [d-P(y)]+

+C3eryE0|:r— y ]+
+e ® (a'lﬂo + azeo)yglliq + P(y):| N
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Here c,,c,,c;,a,,a,,8, are arbitrary constants.

All these solutions can be useful in tackling the problems
of shear surface wave propagation over the semi-infinite space
surface, interfacial wave in multilayer and periodic structures,
Love type waves in a layer overlying a half-space, guided
waves in waveguides , etc.

IV. SHEAR LOCALIZED WAVES IN WAVEGUIDE

Here we shall limit ourselves by considering the localized
wave propagation in  waveguideO<y<h,—o< X <00,

when¢ <1(p>0).

The quadratic and the inverse quadratic inhomogeneity
profiles will be considered according to case b=0 (14, 15),
a>0

Case (i): f(y)=(1+ ay/h)f2
Case (ii): f(y)=(1+ ay/h)2

The following magneto-electro-elastic contact conditions
are within our interest:

Symmetric conditions

0, =0,p=0,¢=0,y=0;y=h (22)
0,=0¢=0,D, =0;y=0;y=h (23)
0,=0p=0B,=0,y=0;y=h (24)
Asymmetric conditions
W =0,0=0,¢=0;y=0 25)
0,=0,p=0,¢=0;y=h

Substituting the solutions (17, 18, 20, 21) into the
boundary conditions (22-25), the homogeneous systems of
equations with respect to the constants will be obtained.
Equating the determinants of simultaneous sets of equations to
zero we can obtain dispersion equations.

Introducing dimensionless parameters

KorK-2y [K.K,
(t-7)

» 21
7—a3e Eo[r+P )] M ;Kﬁ:ﬁ_j
8 (y)= ;/ol[e'yeoc3 —e¥ (—a,C, +£,,) ]+ G,&, G, 4,
+7, [ 6708, e (- +53,) | y= -d = kh
2 (Y)=7" [ewnoc3 —e¥(-a,, + ,uocl)] + o _ 80#0_ _
wileaet sl e s o sy
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Case (i):

2d’p’ (1+a) K (1+K)[1-sech(d)sech(dp)]+
+a2dp[p2 -K(1- pz)][Ktanh(d)—(l+ K) ptanh(dp) |-
2 27 (
_[d2p2(1+a)(K2+(l+ K)' p?) -2 (p? - K (L- p?)) }
-tanh (dp) tanh(d) =0

26)

Case (ii):

2d”p(1+a)K (1+K)[1-sech(d)sech (dp)] -
—a’d[(1+ K)ptanh(d)—-K tanh (dp)] -
_[dz (1+ a)((1+ K) p*+ KZ)—atha”h(dp)tanh(d) =0

@7

The dispersion equations according to the boundary
condition (24) for Case (ii) have the form

2(1+a) pd® (1+ K )(K - K ; )[sech (d )sech (dp ) -1] +
+a’d (1+ Kﬂ)[(l-r K) ptanh(d)-(K - Kﬂ)tanh(dp)]-

-[a"’ (1+K,) -d2(1+a)((1+ K) p*+(K -Kﬁ)z)]

-tanh (dp)tanh(d)=0

(28)

The dispersion equation according to the boundary
condition (24) can be obtained by replacing K, — K, in (28).

The dispersion equations according to an asymmetric
boundary condition (25) can be written as

Case (i):

a’d’p[-K+ p® (1+K) |+
+dp[(—a +d*+ad? ) 2(1+K aaK}tanh d)+
+d[a3p2+(a2+(

)-
-(1+a) dz)
+a[( a’+(1+a)d 2

p
o -a(-

-tanh (dp)tanh(d) =0

Z)K}tanh dp)+ (29)
1+ p?)K |
Case (ii):

(1+a)d[ p(1+K)tanh(d)- K tanh(dp) |-

(30)
—atanh(dp)tanh(d)=0
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V. NUMERICAL ANALYSIS OF DISPERSION EQUATIONS AND

DISCUSSION OF RESULTS

A. Symmetric boundary conditions

Dispersion equations (26-30) impose a relationship
between dimensionless phase speed of localized wave ¢ <1

(p —J1-¢% > O) and wave number k (d =kh).

All numerical calculations will be carried out for the MEE
crystal BaTiOs-CoFe,O, with electro-magneto-elastic
coupling coefficient K =0.612 [16].

For fixed h in the long wave approximation d <<1 from
(26) and (27) it follows that¢, =(1+K)™* =0.790, in the
short wave approximation d>>1

have ¢, = [(L1+2K) /(1+ K ) =027.

In short wave approximation the localized wave speed ¢
coincides with the speed of the Bleustein—-Gulyaev surface
wave for electrically shorted and traction free interface of
MEE half-space [5]. Let us note that the inhomogeneity does
not affect the phase speeds of both short and long waves and
that for the pure elastic layer (K,=K,=0) all dispersion

equations (26-30) have no solutions corresponding to
localized wave.

we

For any value of the inhomogeneity parameter a , equation
(26) has one root in the interval d <d, and two roots in the

interval d Zdo (see Tab.l). The corresponding dispersion

curves ¢ (d) diagrammatically shown on Fig.1.

1 ~— Case(i) | Case(ii)
L R —— beuenne o a
/_\ d > do
5 0 | 527 527
i 0.5 | 5.35 5.93
1 5.47 7.22
2 568 9.62
& a 5 6.12 14.22
Fig.1 Structure of dispersion curves Tabl.1

In Tabl.1 the data for the function d, (a) are presented for

several values of inhomogeneity parameter. As it follows
from the data of Tabl.1 the inhomogeneity in the case of
inverse quadratic inhomogeneity profile sufficiently affects at
the location structure of the roots and extends the interval
where the one localised wave exist. In the case of quadratic
inhomogeneity profile the effect of inhomogeneity factor is
very weak.

B. Asymmetrical boundary conditions

Contrary to the results of symmetrical boundary
conditions, the results corresponding to asymmetrical
boundary conditions are qualitatively different in Case (i) and
Case (ii).
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For short waves, equations (29, 30) have no solutions
corresponding to localized waves and may have only one
solution corresponding to localized waves for certain values of

parametersd, a .

In Fig.2 and Fig.3 in the phase plane of parameters d, a
the curves of functions do(a) are presented defining the
regions where equations (29, 30) have no solutions
corresponding to localized waves. In Fig. 2, 3 shaded regions
correspond to the regions of parameters d,a where the

equations have no solutions (a localized wave does not exist).
Outside of shaded regions the solutions corresponding to
localized waves do exist for any values of d,a including the

points of curvesd, (a).

d

6

5

.

—-

i 2 1 [} 8 10

Fig.2 Localized wave existence region for Case (i )

Fig.3 Localized wave existence region for Case (ii)

As it follows from the analysis of Fig.2 and Fig.3 the
inhomogeneity factor plays an important role in the localized
wave propagation behavior. Increasing the parameter a in
Case(i) leads to the elimination of localized shear wave for
any value of d €(2.64,6.31), while in Case(ii) results in the

appearance of localized wave for any value of
d (0.79,2.64).

VI. CONCLUSIONS

Two classes of inhomogeneity functions are defined
providing the exact solution of shear wave propagation in
6mm symmetry magneto-electro elastic functionally graded
media. Solutions of the wave field are derived, which can be
used in the problems of shear surface wave propagation over
the semi-infinite space surface, interfacial wave in multilayer
and periodic structures, Love type waves in a layer overlying a
half-space, guided waves in waveguides, etc. The quadratic
and inverse quadratic inhomogeneity profiles were considered
in the several boundary problems of shear guided localized
wave propagation in MEE waveguide. The dispersion
equations are deduced analytically and by means of the
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numerical analysis for the BaTiO3-CoFe204 MEE crystal the
effects of the inhomogeneity are discussed in detail.
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