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Abstract- In the framework of quasi-static approach the 

shear wave propagation is considered in functionally graded 

transversally isotropic hexagonal 6mm symmetry 

magnetoelectroelastic media (MEE). Assuming that in 

functionally graded MEE material elastic and electromagnetic 

properties vary in the same proportion in direction 

perpendicular to the MEE polling direction, special classes of 

inhomogeneity functions were found, admitting exact solutions 

for the coupled wave field  and allowing to estimate the effects of 

inhomogeneity on the wave behavior. Exact solutions defining 

the coupled shear wave field in MEE can be used in many 

problems, e.g. shear surface waves propagation along the 

surface of a semi-infinite space, interfacial  waves in a 

multilayered and periodic structure, Love type waves in a layer 

overlying a half-space, guided waves in an  inhomogeneous 

waveguide, etc. Based on exact solutions, the localized wave 

propagation is studied for MEE layer with quadratic and 

inverse quadratic inhomogeneity profiles of material parameters 

varying continuously along the layer thickness direction. 

Dispersion equations are deduced analytically and for the 

BaTiO3–CoFe2O4 MEE crystal the numerical results estimating 

effects of inhomogeneity are presented.  

Keywords- piezomagnetic, piezoelectric, shear wave, 

waveguide, inhomogeneity 

I.  INTRODUCTION 

Recently, the propagation of coupled electromagnetic and 
elastic waves in magneto-electro-elastic (MEE) structures 
attracted much attention due to the wide range of application 
of these materials in smart structures. MEE materials are a 
class of new artificial composites that consist of simultaneous 
piezoelectric and piezomagnetic phases. The magnetoelectric 
effect of piezoelectric–piezomagnetic composites was first 
reported in [1]. Such materials rarely occur in nature and 
demonstrate weak magneto-electro-elastic effects. However in 
artificial composite materials the magneto-electro-elastic 
effect is notable, which makes such materials highly valuable 
in technological usage. Magneto-electro-elastic composites 
are built up by combining piezoelectric and piezomagnetic 
phases [2] to obtain a smart composite that presents not only 
the electro-mechanical and magneto-mechanical coupling, 
characteristic of constituent phases, but also a strong 
magnetoelectric coupling. In [2] the theoretical estimates are 
shown to be in agreement with available experimental results, 
and also show the interesting magnetoelectric behaviour of the 
composites. Review of the physics of such materials is given 
in [3], which begins with a brief summary of the historical 
perspective of the magnetoelectric composites since their 

appearance in 1972. The review concludes with an outlook of 
the exciting future possibilities and scientific challenges in the 
field of multiferroic magnetoelectric composites.  

A new method for the synthesis of artificial crystal with a 
strong electro-magneto-elastic interaction by combining 
electro-elastic BaTiO3 and magneto-elastic CoFe2O4 in a 
single crystal is presented in [4]. 

Quasi-static approximation was used to research surface 
and bulk wave propagation in such materials [5-12]. The 
propagation of Bleustein-Gulyaev surface wave is investigated 
in [5] for transversely isotropic MEE materials. In [6] the 
existence of a new surface SH wave is stated for a cubic 
anisotropic MEE material. An analytical approach was used to 
investigate Love wave propagation in a layered MEE structure 
[7], where a solution of dispersion relations was obtained for 
magnetoelectrically open and short boundary conditions. In 
[8] Rayleigh waves are investigated in MEE half plane, the 
material of which is assumed to possess hexagonal 6 mm 
symmetry. In [9] it is shown that shear surface waves with 
twelve different velocities in cases of different magneto-
electrical boundary conditions can be guided by the interface 
of two identical MEE half-spaces. The existence of shear 
surface wave travelling along the interface of two half spaces 
of different MEE materials is studied in [10]. The study of SH 
waves in a hetero-structure made from three different MEE 
materials with 6mm symmetry is given in [11]. In [12] the 
dispersion relation of the MEE three-dimensional, anisotropic 
and multi-layered thick plate vibration frequency has been 
derived. Applied problems of MEE beam and plate behaviour 
are studied in [13-17]. In [13-14] based on Timoshenko's 
beam theory an analytical model for MEE bimorph beam [13] 
is employed, to study its response to mechanical and electro-
magnetic time varying loads. In [14] it was shown that the 
effect of shear deformation has a great influence on piezo-
electro-elastic beam’s natural frequencies and mode shapes. 
The pyroelectric and pyromagnetic effects on magneto-
electro-elastic plate with different boundary conditions under 
uniform temperature rise is studied in [15]. Based on 
Kirchhoff thin-plate theory, a closed form expressions for 
bending problem of MEE rectangular thin plates are derived in 
[16] and the exact solutions for the deformation behaviours of 
the fiber-reinforced the BaTiO3–CoFe2O4 composites 
subjected to certain types of surface loads are analytically 
obtained. In [17] exact solutions are derived for anisotropic, 
simply-supported, multi-layered rectangular MEE plates under 
static loadings. 
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In [18] functionally graded materials, whose properties 
vary continuously in space were used to improve the 
efficiency of Bleustein–Gulyaev waves for a hexagonal 6 mm 
piezoelectric crystal. Assuming that the elastic stiffness, the 
piezoelectric constant, the dielectric constant, the mass density 
of MEE material vary in the same proportion with a single 
space variable special classes of the inhomogeneity functions 
were founded allowing the exact solution of surface wave  
propagation problem. 

Functionally graded materials (FGM) are inhomogeneous 
elastic bodies whose properties vary continuously with space. 
The FGM structure has attracted wide and increased attentions 
of scientists and engineers. FGM plays an essential role in the 
most advanced integrated systems for vibration control and 
health monitoring. The progress in the characterization, 
modelling, analysis and principal developments of FGM was 
reviewed in [19, 20]. 

In pure elastic FGM materials surface wave propagation 
was discussed in [21-26].  

In [27, 28] the propagation of shear electroelastic 
monochromatic localized waves in functionally graded 
piezoelectric layer is studied, where the influence of 
inhomogeneity function on dispersion of shear wave is 
analysed and numerical comparison between wave speeds of 
homogeneous and inhomogeneous layers is carried out.  
Surface Love waves are considered in [29] for a layered 
structure with inhomogeneous piezoelectric layer. The 
behaviour of Lamb waves in the functionally graded 
piezoelectric–piezomagnetic plate with material parameters 
varying continuously along the thickness direction is 
investigated in [30], where the power series technique is 
employed to find dispersion curves numerically. In [31] the 
Bleustein–Gulyaev waves are studied by analytical technique 
in a functionally graded transversely isotropic MEE half-
space, in which all parameters change exponentially along the 
depth direction. All the above mentioned solutions were based 
on quasi-static approximation of a problem [32], where the 
derivatives of time in Maxwell’s electro-dynamic equations 
were ignored. Such approximation allows high precision 
solutions regarding the influence of the electro-magnetic field 
on the properties of elastic fields, however is limited in 
finding out the coupled wave processes in magneto-electro-
elastic materials. More specifically, quasi-static definition 
cannot be used to describe the reflection and refraction of 
electro-magnetic waves [33], coupling effects of electro-
magnetic and elastic fields which causes polariton interaction 
in MEE periodic structure [34]. Based on the full complete set 
of electrodynamics dynamics equations and the elasticity 
theory equations in [35] the two-dimensional equations are 
derived describing coupled wave process in MEE medium of 
hexagonal symmetry, where it was stated that contrary to the 
quasi-static approximation under dynamic approach the plane 
and anti-plane deformations are coupled. 

II. STATEMENT OF THE PROBLEM  

For a transversely isotropic magneto-electro-elastic 
hexagonal symmetry 6 mm medium with z-axis normal to the 
plane of isotropy, polling direction of which coincides with z-
axis direction, the anti-plane equations in Cartesian coordinate 

system  , ,x y z  can be written as 



0

0

x x y y

x x y y

x xz y yz t,t

D D

B B

W  

   

   

    

     



yz y y y

y y y y
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xz x x x

x x x x
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B W

   

   

    

     

     

     

     

Here the  , ,W x y t  is the elastic displacement directed 

along z -direction, ,  , ,xz x y t ,  , ,yz x y t   are mechanical 

stresses, the    , , , , , ,x yD x y t D x y t    , , , , ,x yB x y t B x y t , 

( , , )x y t  , ( , , )x y t   are electric displacements, the 

magnetic inductions, the electric potential and the magnetic 

potential, correspondingly, 
44 15 15, , , ,G c e e d      are 

the bulk density, elastic, piezoelectric, piezomagnetic and 
magneto-elastic modulus respectively,   and   are  the 

dielectric permittivity and magnetic permeability coefficients, 

while 2 2; ;x y tt ttx y            . 

To exemplify the problem and provide insights of shear 
waves propagation in functionally graded piezo-electro-
magneto-elastic media the following model is considered.  

The material parameters in the MEE medium gradually 
change along y-direction having the same function variation 
properties 


0 0 0

0 0 0

( ) ( ); ( ); ( )

( ); ( ); ( ); ( )o

G y G f y f y e e f y

f y f y f y f y

 

       

  

   
     

Here ( )f y is the inhomogeneity function which will be 

specified later. 

Equations (1) and (2) can be considered as a set of first 
order six differential equations with six sought 

functions ,D ,B , , ,yz y y W   . 

The functions ,D ,B
xz x x

  can be defined from (3) via the 

sought functions. 

Considering a wave with the circular frequency   and 

wave number k  we present all functions in the form of plane 

harmonic wave travelling along the x - direction 
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0 0 0

,D ,B , , , , ,

,D ,B , , ,

expi

yz y y

oyz oy oy

W x y t

y y y W y y y

kx t

  

  





 

 

     

Introducing vectors 


   

 0 0 0

,D ,B

, ,

T

oyz oy oy

T

y

U W

 

 




     

we can rewrite the anti-plane equations as the set of first order 
differential equations in a matrix form 


   

   
y

y

y MU y

U y N y












     

Here ,M S are the following matrixes 

 1

2

2

2
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M
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Defining new functions      ,D ,Boyz oy oyy y y    and new 

auxiliary potentials     ,S y F y   as  



     

     

     

     

 
     

 

 
     

 

0 0

0 0 0 0

0

0

0 0 0 0
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where 



2

0 0 0 0

0 0 0 0 0

0 0 0 0 0

e

e

   

   

   

 

 

 

     

and substituting (6) into (5) it is straightforward to derive the 
following matrix equations  


0 0 0

ˆ
p

U M L       


0 0 0

ˆ
q

N L U       

 with respect to the new unknown vector functions 


        

        

0

0 0

,D B

,

T

oyz oy oy

T

y y y y

U y W y S y F y

 



 


     

Here 



1 1
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E p k
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0
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ˆ

ˆ

1

2

p

q

d
L P y

dy

d
L P y

dy
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P y
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2

1

0 0 0 0 0 0 0

2 2

0 0

1p

E G e

E k



   

  



 

  



     

Now by substituting the vector 
0

U  from (7) into (8) and the 

vector 
0

  from (8) into (7) we come to the two decoupled sets 

of equations 
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2
0 0

2

ˆ ˆ
0 0

ˆ ˆ0 1 0

ˆ ˆ0 0 1

p q

p q

p q

L L Wp W

L L S k S

FL L F

     
    

    
         

 

     

Noting that  



2
2

2

2
2

2

ˆ ˆ

ˆ ˆ

p q

q p

d dP
L L P

dy dy

d y dP
L L P

dy dy

 
   

 

 
   

 

     

we come to the following two ways of finding the exact 
solutions if we assume that 

 2dP
P b

dy

 
   

     

or 

 2dP
P b

dy

 
   

     

where b   is a constant.  

Since 



2 1 2
2

1 2 2

2

2

2

1

1

dP d f
P

dy f dx

d fdP
P

dy dxf





 
  

 

 
  

 

     

we get the two types of inhomogeneity functions admitting the 
exact solutions of (10) and (11) 

Case (i) 

    
2

( ) cosh sinh
B

f y A b by
b



 
  
 

     

or 

Case (ii) 

    
2

( ) cosh sinh
B

f y A b by
b

 
  
 

     

Depending on whether b  is positive, negative, or equal to 

zero several kind of functions can be found. Assumptions 
(14,15) are obviously somewhat artificial and narrow the class 
of functions characterizing the inhomogeneity. Nevertheless it 
allows solving the problem for functionally graded MEE 
materials and estimating the effect of inhomogeneity on the 
wave dispersion relations of waves. Let us note that these 
inhomogeneity functions profiles do not depend on material 
properties and can be used for both piezomagnetic, 
piezoelectric and pure elastic materials. For piezoelectric 
materials these inhomogeneity functions (14,15) were derived 
also in [18]. Some types of these functions have been used 
also in [17, 25, 26, 28] where shear wave prorogation in 
elastic and piezoelectric media was studied. 

III. GOVERNING EQUATIONS AND SOLUTIONS 

The equations for the first type of inhomogeneity functions 
can be cast as:  

Case (i): 


 

2

2

2

2 2

2 0 0

2 2

0 0

2 2

2 2

2 2

2 2 2

B
1 B 0

D B
D 0; B 0

;

oyz

oyz

oy oy

oy oy

oy oy

oy oy

d
r

dy

d D d
p bD b

dy dy

d d
q q

dy dy

r b p k q b k




 

 

 

     

   

   

    
    
    




 
 

 
 

     

Now the solutions of this system of second order 
differential equations with constants coefficient can be easily 
found: 



     

     

 
    

    

   

1 1

2 2

0 1 1

0

0

0 2 2

0

3 4

exp A exp

exp A exp

exp A exp

exp A exp

exp exp
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oy

D y C qy qy

B y C qy qy

C qy qy
y

C qy qy

C ry C ry










  

  

 
  

 
 

  





      

Solutions for      0 0 0
, ,W y y y  follow from (6, 7)  
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Here 
1 2 3 1 2 3
, , , , ,C C C A A A are arbitrary constants. 

The equations and solutions for the second type of 
inhomogeneity functions: Case (ii): 



2 2
2 20

02 2

2
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Solutions for          0 0
,D ,B , ,

oyz oy oy
y y y y y     follow 

from (6, 8) 
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0 3 0 1 0 2

1

0 0 0 3 0 2 0 1

1

0 0 3 0 2 0 1

e

e e

e e

ry qy

ry qy

ry qy

a a a

y c c c

a a a

  

    

   

 



  

    

      

     

     

Here 
1 2 3 1 2 3, , , , ,c c c a a a are arbitrary constants. 

All these solutions can be useful in tackling the problems  
of shear surface wave propagation over the semi-infinite space 
surface, interfacial wave in multilayer and periodic structures, 
Love type waves in a layer overlying a half-space, guided 
waves in waveguides , etc.  

IV. SHEAR LOCALIZED WAVES IN WAVEGUIDE 

Here we shall limit ourselves by considering the localized 

wave propagation in waveguide 0 , xy h    , 

when 1   0p  .  

The quadratic and the inverse quadratic inhomogeneity 

profiles will be considered according to case 0b   (14, 15), 
0a   

Case (i):    
2

1f y ay h


   

Case (ii):    
2

1f y ay h   

The following magneto-electro-elastic contact conditions 
are within our interest: 

Symmetric conditions 

 0; 0; 0; 0;yz y y h            

 0; 0; 0; 0;yz yD y y h           

 0; 0; 0; 0;yz yB y y h           

Asymmetric conditions 


0; 0; 0; 0

0; 0; 0;yz

W y

y h

 

  

   


   
     

Substituting the solutions (17, 18, 20, 21) into the 
boundary conditions (22-25), the homogeneous systems of 
equations with respect to the constants will be obtained. 
Equating the determinants of simultaneous sets of equations to 
zero we can obtain dispersion equations. 

Introducing dimensionless parameters 



 2

2 2

0 0

0 0 0 0

0

0 0

2

1

;

;

e e

e

K K
K

e
K K

G G

d kh

K K 









 




 

 




 

 

     

the dispersion equations according to a symmetric boundary 
condition (22, 23) can be written as  
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Case (i): 



        

       

       
   

2 3

2 2 2

222 2 2 2 2 2 2

1 sech sech

tanh tan

1 1

h

2

1 tanh 1 tanh

1

0

1 1

d p a K K

a

d dp

dp

d

d

p p K p K K pd

d p a K K p a p

d

K

p

p

 











        

       
 





    

Case (ii): 



        

      

        

2

2

22 2 2 2

2 1 1 1 sech sech

1 p tanh tanh

1 1 tanh tanh 0

d a K K d dp

a d K d K dp

d a K p K a dp d

p   

 

     



 

 
 

    

The dispersion equations according to the boundary 
condition (24) for Case (ii) have the form   



         

         

        
   

2

2

22 22 2 2

2 1 1 - sech sech -1

1 1 tanh - - tanh -

1 - 1 1 -

tanh tanh 0

-

a pd K K K d dp

a d K K p d K K dp

a K d a K p K K

dp d





 



  

  

   

 

  

 
 


     

The dispersion equation according to the boundary 

condition (24) can be obtained by replacing eK K   in (28). 

The dispersion equations according to an asymmetric 
boundary condition (25) can be written as 

Case (i): 



 

     

     

    
   

2 2 2

2 2 2 2 3

3 2 2 3 2 2

2 2 2 2 2

tanh

anh

anh anh

1

1

1 t

1 1

t t 0

d

dp

dp d

a d p K p K

dp a d ad p K a K

d a p a a a d p K

a a a d p a p K

     

        

     
 

        











     

Case (ii): 


       

   tanh tanh

1 tanh ta1 nh

0dp

a

a d

d d dpp K K 



   


     

V. NUMERICAL ANALYSIS OF DISPERSION EQUATIONS AND 

DISCUSSION OF RESULTS 

A. Symmetric boundary conditions 

Dispersion equations (26-30) impose a relationship 
between dimensionless phase speed of localized wave 1   

 21 0p     and wave number k  ( )d kh . 

All numerical calculations will be carried out for the MEE 
crystal BaTiO3–CoFe2O4 with electro-magneto-elastic 
coupling coefficient 0.612K   [16].  

For fixed h  in the long wave approximation 1d   from 

(26) and (27) it follows that  
1 2

1 0.7901 K


   , in the 

short wave approximation 1d   we 

have    2 0.9271 2 1K K     .  

In short wave approximation the localized wave speed   

coincides with the speed of the Bleustein–Gulyaev surface 
wave for electrically shorted and traction free interface of 
MEE half-space [5]. Let us note that the inhomogeneity does 
not affect the phase speeds of both short and long waves and 

that for the pure elastic layer ( 0)eK K    all dispersion 

equations (26-30) have no solutions corresponding to 
localized wave. 

For any value of the inhomogeneity parameter a , equation 

(26) has one root in the interval 0d d  and two roots in the 

interval 0d d  (see Tab.1). The corresponding dispersion 

curves  d  diagrammatically shown on Fig.1. 

 

Fig.1 Structure of dispersion curves                       Tabl.1   

 In Tabl.1  the data for  the function  0
d a   are presented for 

several values of inhomogeneity parameter.  As it follows 

from the data of Tabl.1 the inhomogeneity in the case of 

inverse quadratic inhomogeneity profile sufficiently affects at  

the location structure  of the roots and extends the interval 

where the  one  localised wave exist. In the case of quadratic 

inhomogeneity profile the effect of inhomogeneity factor is 

very weak. 

B. Asymmetrical boundary conditions 

Contrary to the results of symmetrical boundary 
conditions, the results corresponding to asymmetrical 
boundary conditions are qualitatively different in Case (i) and 
Case (ii). 

a  
Case(i) Case(ii) 

0
d  

0
d  

0 5.27 5.27 

0.5 5.35 5.93 

1 5.47 7.22 

2 568 9.62 

5 6.12 14.22 
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For short waves, equations (29, 30) have no solutions 
corresponding to localized waves and may have only one 
solution corresponding to localized waves for certain values of 

parameters ,d a . 

In Fig.2 and Fig.3 in the phase plane of parameters ,d a  

the curves of functions  0d a  are presented defining the 

regions where equations (29, 30) have no solutions 
corresponding to localized waves. In Fig. 2, 3 shaded regions 

correspond to the regions of parameters ,d a  where the 

equations have no solutions (a localized wave does not exist). 
Outside of shaded regions the solutions corresponding to 

localized waves do exist for any values of ,d a including the 

points of curves  0d a .  

 

Fig.2  Localized  wave existence region  for Case (i ) 

 

 

Fig.3 Localized  wave existence region  for Case (ii) 

As it follows from the analysis of Fig.2 and Fig.3 the 
inhomogeneity factor plays an important role in the localized 
wave propagation behavior. Increasing the parameter a  in 

Case(i) leads to the elimination of localized shear wave for 

any value of  2.64,6.31d , while in Case(ii) results in the 

appearance of localized wave for any value of 

 0.79,2.64d . 

VI. CONCLUSIONS 

Two classes of inhomogeneity functions are defined 
providing the exact solution of shear wave propagation in 
6mm symmetry magneto-electro elastic functionally graded 
media. Solutions of the wave field are derived, which can  be 
used in the problems of shear surface wave propagation over 
the semi-infinite space surface, interfacial wave in multilayer 
and periodic structures, Love type waves in a layer overlying a 
half-space, guided waves in waveguides, etc. The quadratic 
and inverse quadratic inhomogeneity profiles were considered 
in the several boundary problems of shear guided localized 
wave propagation in MEE waveguide. The dispersion 
equations are deduced analytically and by means of the 

numerical analysis for the BaTiO3–CoFe2O4 MEE crystal the 
effects of the inhomogeneity are discussed in detail. 
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