
 Shielding Android Application Against Reverse Engineering

Sudipta Ghosh

MTech Scholar

S. R. Tandan

Assistant Professor

Kamlesh Lahre

Assistant Professor

Department of Computer Science & Engineering

Dr.C.V.Raman University, Bilaspur, India

Abstract

Abstract: In this growing market of smart phones, Android is an open source platform of Google that has

become one of the most popular operating system. As a result, protecting applications running on Android

becomes of interest. Currently, Reverse engineering of Android applications is much easier than on other

architectures, due to the high level but simple byte code language used. Hence, the goal is to minimize and

manage risks of software flaws. Anti-Reverse engineering techniques can be used to prevent reverse

engineering. This paper discusses the possible code obfuscation techniques on the android platform. Our

approach aims at increasing the complexity of the control flow of the application so that it becomes tough for

a reverse engineer to get the business logic performed by an android application.

Keywords: android; reverse engineering; code obfuscation; anti-reverse engineering; proguard

1. Introduction
Reverse Engineering is the process of discovering the technical principles of a device, object or system

through analysis of its structure, function and operation. Software Reverse Engineering is a process of
analyzing the software structure, its behavior and to know more about how it works and operates. Reverse
engineering can be used as learning purpose to learn how a software works. It can also be used for creating
a new competitive software in a low price by understanding the behavior, structure of an existing software.
Programs are written in a language, say C++ or Java, that's understandable by other programmers. But to
run on a computer, they have to be translated by another program, called a compiler, into the ones and zeros
of machine language. By decompiling that byte code one can get the source code of a program. By software
reverse engineering one can know the technology working behind a software and can design a new software
by taking some ideas from the existing software. Software reverse engineering is often an important part of
the scientific method and technological development. The ideal result of a reverse engineering process for an
Android application would be to reconstruct the original Java source code out of the distributed binary form.
Obfuscation cannot prevent reverse engineering but can make it harder and more time consuming. We will
discuss which obfuscation and code protection methods are applicable under Android.

“To reverse engineer a software application it is first necessary to gain physical access to it” (Low, 1998). The

process of reverse engineering consists of three steps: (i) Parsing and semantic analysis of code, (ii)

2635

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

Extracting information from the code, and (iii) Dividing the product into components, as indicated by Figure.1.

 Figure.1 Process of Reverse Engineering

The Android [4] platform developed by the "Android Open Source Project" is one of the most popular systems
for mobile devices in the recent years. This platform is designed in a way that the user can download and
install new applications easily. Due to the popularity of the platform, the market for Android applications has
grown massively both in variety and financial volume. This results in an increasing interest to protect program
code of Android applications. This protection shall help against software piracy and serve as a method to
guard intellectual property. On the Android platform there is a further motivation to protect the program code.
It is not unlikely for a malware developer to abuse existing applications by injection of malicious functionalities
and consequent redistribution of the trojanized versions [5]. Application developers are interested in
protecting their applications. Protection in this case means that it should be hard to understand what an
application is doing and how its functionalities are implemented.

Figure 2. APK- Android Package

An Android application needs many steps and tools until the Android Application Package (APK) is build and
ready to be deployed. The first step of the build process, as shown in figure 3 step 1, starts with the Java files
which will be compiled into ".class" files by a Java compiler. The next step is the transformation from Java
bytecode into Dalvik bytecode. For this, the "dx" program is used in step 2. It is included in the Android
Software Development Kit (SDK) due to it is necessity for building an application for the Android platform.
The output of dx will be saved into a single dex file "classes.dex". This file will be included in an APK in a later
step. The last step of the build process is packing and signing the APK. The ApkBuilder constructs an apk file
out of the "classes.dex" file and adds further resources like images and ".so" files. ".so" files are shared
objects which contains native functions that can be called from within the DVM. The "jarsigner" just adds the
developer signature to the APK, which can now be installed on an Android device.

2636

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

Figure 3. Android application build process

 Obfuscation[1] is the paradigm of hiding program semantics through choosing semantically equivalent but
complex and ambiguous representations in order to aggravate analysis. In order to achieve this protection,
obfuscation transforms program code of an application in a way that it is "hard to reverse engineer" but
without changing the behaviour of this application. Hard to reverse engineer means that automated programs
cannot produce good abstractions of the analyzed program and the results of the analysis become harder to
understand for a human analyst.

Anti-reversing techniques [3] are defence techniques implemented in software in order to protect it from

malicious attacks. It has become a challenge for the software community to protect software from attackers
and to prevent its misuse. The patent system is not quite as effective with software as it is with traditionally
engineered tangible artifacts. While a patent mandates Intellectual Property (IP) protection – it is next to
impossible to prove or even suspect any IP theft in a software product that might have been the result of a
malicious reverse engineering attack on a patented competitor. A lot of research is being done in the software
field in order to find out successful ways of protecting software from reverse engineering attacks. The
techniques proposed to make reverse engineering difficult include obfuscating the code protecting the
computing platform physically, encryption of executables, and watermarking.
The mentioned tool can be used within the deployment process of an application to obfuscate program code
and protect the application against analysis.

1.1 ProGuard
 ProGuard [11] is an open source tool which is also integrated in the Android SDK [4]. It can be easily

used within the development process. ProGuard is basically a Java obfuscator but can also be used for
Android applications because they are usually written in Java. The feature set includes identifier obfuscation
for packages, classes, methods. Besides these protection mechanisms it can also identify and highlight dead
code so it can be removed in a second, manual step. Unused classes can be removed automatically by
ProGuard.

2. Related Work
 Researchers have proposed various anti-reversing techniques to prevent reverse engineering.
Currently there are so many techniques available but none of them provides 100% protection against
reverse engineering. “Code Protection in Android by Patrick Schulz”[1] discusses the possible code
obfuscation methods on the Android platform using Identifier mangling ,String obfuscation , Dynamic
code loading , dead code, Self modifying code.

Identifier mangling
Identifiers are names for packages, classes, methods, and fields. They are represented as strings. In
figure.4, a snippet of Java source code with highlighted identifiers is shown.

2637

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

Figure 4. Java source code example with highlighted identifiers.

In the example it is easy to get an idea of what this class is about and that it is almost certain that
some kind of encryption is involved. From the example it is obvious, that original identifiers give
information about interesting parts of a program. Reverse engineering methods can use these
information to reduce the amount of program code that has to be manually analyzed. Identifier
mangling aims to neutralizing these information in order to prevent this reduction.

Figure 5. Java source code example with obfuscated identifiers.

String obfuscation.
Strings are arrays of characters which are frequently used within a program e.g. for enabling user
interaction or printing messages. The original content of a string must be available at runtime
because a user cannot understand an obfuscated or encrypted message dialog. In figure 6 an
example of string usage is shown.

Figure 6. Java source code example with highlighted string

String obfuscation can be achieved by any injective function F which is invertible and transforms an
arbitrary string into another string.

Dynamic code loading
The obfuscator has to generate two components, the encrypted application and a decrypter stub. In
Android, the encrypted application would be an encrypted dex file. This is rather easy to generate
compared to the decrypter stub. The decrypter stub has to implement four main functionalities as
shown in figure 7.
At first the encrypted application has to be fetched into memory fetched. This can be done by

downloading a dex file from a remote server or extracting it from an internal data structure. In Android

we can simple add

arbitrary files to an APK and access them at runtime.

 The second step in figure 7 is the decryption of the encrypted dex file, yielding the original dex file.

The cryptographic function can be chosen freely, due to its application is completely independent

2638

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

from the content of the dex file. After the unpacking stub has generated the original dex file, it can be

loaded into the DVM and executed, as shown in steps 3 and 4 in figure 7.

Figure 7.The steps of an decryption stub in case of a packed application.

To circumvent the restriction we can use the provided "Java Native Interface" (JNI) of the DVM, see
figure 8.
JNI is intended to allow execution of native code, which is located in shared objects, out of the DVM.
This is useful e.g. for computationally complex algorithms like graphic processing.

Figure 8. Possible control flows to load a further dex file into a running process.

Some other obfuscation technique[3] are mention below.

Insert Dead or Irrelevant Code
The insertion of dead code or junk code confuses the attacker. You insert code that will never be
executed and/or will never contribute to the functionality of the program.“This code can include extra
methods or simply a few lines of irrelevant code” [6]. It is important to note here that this dead code is
to confuse the decompiler and the attacker.

Extend Loop Condition
Complicating the loop conditions introduces obfuscation in the code. This can be done by extending
the loop condition with a second or third condition that doesn‟t do anything [6]. For example, in the
following example we have a simple if condition.

2639

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

Add Redundant Operands
Adding some insignificant terms to the code, in the basic calculations confuses the reverse engineer.
For example, let‟s assume that there is an integer variable, „p‟ that stores the product of two integer
variables – „a‟ and „b‟. The code below shows we can make the calculations look complex to the
attacker [6].

Clone Methods
It is important for a reverse engineer to understand the purpose of a function and it is equally
important to understand the different conditions under which the function is called [10]. We can
create clones of a function and make calls to these functions under identical circumstances. We can
call the function depending on any external factor, which appears to be a deciding factor but is
actually not. One good example would be to call a different function based on the day of the week[6].

Reducible to Nonreducible“
The Holy Grail of obfuscation is to create obfuscated code that cannot be converted back into its
original format” [6]. We can devise some transformations that make the code nonreducible to its
original form. For example, the Java bytecode has goto instruction while no equivalent statement
exists in the Jav language. So, the flow graphs produced from Java programs are always reducible,
while those from Java bytecode may express non-reducible flow graphs. Expressing non-reducible
flow graphs is inconvenient in Java due to unavailability of goto statements, so we need to do some
transformation for converting the reducible flow graph into a non-reducible one. We can achieve this
by converting a structured loop into a loop with multiple headers[10]. For example, see the code
below.

2640

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

In this example, we had a simple while condition. We split the statement to make it appear more complicated than it

actually is.

3. Proposed Work

The problems that a developer is facing today because of reverse engineering are listed below.
(a) Remove Restriction - A software developer generally release their products as evaluation

version with some limitation. By Software Reverse Engineering (SRE) one can remove this restriction
and can use it as full version. For ex- Microsoft releases their operating system for evaluation
purpose/trial purpose. But by reverse engineering this products one can create patches to remove
trial restriction.
(b) Cheat code of Games - Cheat code for games can be made by using SRE.

(c) Crack & Patch of software/games - By SRE one can make crack & patch of a software/games.

However it‟s not an easy job but expert can do this.
(d) Cloning a software - One can make exact replica of existing software with the help of SRE as
reverse engineering is not an illegal process as per US & Europeans laws.
In this paper we are adding few more logic on android source code to make it more complex to

understand. This will make a software more secure against reverse engineering.

We are using try-catch blocks to change the flow of application at runtime. Normally the try-catch
block are used to deal with exception. Try block contains the business logic and if that logic throws
any exception then it can be handled in catch block. The catch block contains code to deal with
exception. As per approach of this paper all the business logic will be written in catch block and the
try block will have unnecessary dead code, meaningless loop, and senseless if-else condition. Also
there will be one line which will always cause exception at runtime. So in runtime when dalvik virtual
machine will execute the code of try block then that particular line will throw error and the flow will go
to catch block and here in catch block our business logic is already written so it will get executed.
While on viewing the code by reverse engineering one will focus to understand the try block and as
the try has lots of senseless, meaningless code this will definitely irritate the reverse engineer.

try

{

Public Class A()

{

 // UselessCode();

}

Public Class B()

{

 // AnotherUselessCode();

}

2641

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

AobjA;

B objB=new B();

objA=(A)objB; ---- This will lead to NullReferenceException and rest of the code

FewMoreLinesOfUseLessCode(); --- Will not execute at runtime. It’s just to confuse

-------;

-------;

Catch(exception ex)

{

ActualBusinessLogic();

}

Figure 9.Example of proposed try-catch block approach

To make things more complex to understand we can use the existing prevention technique like code
obfuscation (Renaming Class, Method, variable name to meaningless letter/word). Also few more
confusing existing logic like if-else, for loop can be put in the catch block to secure our actual
business logic.

4. Future Scope

To achieve 100% anti reverse engineering technique one will have to go through the complete logic
how a decompiler identifies the dex file from the apk package and how it interprets the code of dex
file. If the actual working of decompiler is recognized, with the implementation of suitable approach
on the dex file, decompilation of dex file can be controlled. Since decompiler cannot identify dex file
from apk package. Hence the application is secured from the reverse engineering.

5. Conclusion

Android is basically built on top of the Java and Linux platform. Both are open source so obviously reversing
the app is easy compare to other platform based application. By applying proposed approach we are making
the code & flow more confusing for a reverse engineer. This will make the reverse code even more harder to
understand as we are changing the dynamic view of the code as well as static view together to confuse the
reverse engineer. Only experts reverse engineer can break this complex structure, so we can at least prevent
our application to be reverse engineered from the normal reverse engineer.
Still if application is dealing with highly secure system like banking system, reservation or some payment
gateway then it would be better to put all the business logic on the server side. This will be best practice to
prevent source code from the reversing.

Acknowledgment
We would like to thank Mr Ishan Malhotra and Miss Ashima Sahu for their valuable support during research
work.

References
[1] Patrick Schulz “Code Protection in Android ” 2012-Schulz-Code_Protection_in_Android.pdf .
[2] Manjunath,Vibha “ Reverse Engineering Of Malware On

Android”(2011).[https://docs.google.com/viewer?a=v&q=cache:rm7KrxkEYgsJ:www.sans.org/reading_room/whitepapers/pda/revers

e-engineering-malware-android_33769+research].
[3] Kundu, Deepti, "JShield: A Java Anti-Reversing Tool" (2011).Master's Projects. Paper 161.
[4] Android Open Source Project. Android sources. Visited: May,2012. [Online]. Available: http://source.android.com
[5] Venkatesan, Ashwini, "Code Obfuscation and Virus Detection" (2008).Master's Projects.
[6] Nolan, G. (2004). Decompiling Java. Chapter 4 – Protecting Your Source: Strategies for Defeating Decompilers, pages 79 – 210.

New York, USA: Springer-Verlag New York.
[7] “Code Obfuscation against Static and Dynamic Reverse Engineering” Sebastian Schrittwieser and Stefan Katzenbeisser.
[8] android-apktool project [Online]. Available at: http://code.google.com/p/android-apktool/ (July 2011)

2642

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

[9] smali project [Online]. Available at: http://code.google.com/p/smali/ (July 2011).
[10] Collberg, C., Low, D., & Thomborson C. (1997). A Taxonomy of Obfuscating Transformations. Technical Report. Department

of Computer Science, University
of Auckland, New Zealand. Retrieved October 21, 2010 from
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborson
Low97a/A4.pdf
[11] Pro Guard [Online]. Available at: http://proguard.sourceforge.net/
[12] Gartner. Worldwide smartphone sales soared in fourth quarter of 2011 with 47 percent growth. Visited: May, 2012.

[Online].Available:http:www.gartner.com/it/page.jsp?id=1924314

Sudipta Ghosh is currently pursuing M.Tech .from Dr C V Raman Institute of Science & Technology, Bilaspur.

She received her B.E.(IT) from Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India. Her interest

area includes Software Engineering, Android Application and Machine Learning.

S.R. Tandan is Currently Assistant Professor in the department of CSE, and Pursuing Ph.D from Dr. C.V. Raman

University, Bilaspur, Chhattisgarh, India. He received his M.Tech.(CS) form BITs Mesra and BE(CSE) from NIT, Raipur,

His interest area includes Soft Computing, Information Retrieval System and Mobile Robot Navigation, and Cyber Crime.

Kamlesh Lahre is Currently Assistant Professor in the department of CSE. He received his M.Tech(CSE) form

NIT,Raipur and BE(IT) from GEC, Bilaspur, His interest area includes Application of Soft Computing.

2643

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60941

