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Abstract  
 

We consider the problem of estimating R=P(Y<X) 

where X and Y have independent Weibull distributions 

with shape parameter β, but with different scale 

parameters θ1 and θ2 respectively. Assuming that there 

is a prior guess or estimate R0, we develop various 

shrinkage estimators of R that incorporate this prior 

information. The performance of the new estimators is 

investigated and compared with the maximum 

likelihood estimator using Monte Carlo methods. It is 

found that some of these estimators are very successful 

in taking advantage of the prior estimate available. 

Recommendations concerning the use of these 

estimators are presented. 

 

1. Introduction  

 
The problem of making inference about R=P(Y<X) has 

received a considerable attention in literature. This 

problem arises naturally in the context of mechanical 

reliability of a system with strength X and stress Y. The 

system fails any time its strength is exceeded by the 

stress applied to it. 

Another interpretation of R is that it measures the effect 

of the treatment when X is the response for a control 

group and Y is for the treatment group. Various 

versions of this problem have been discussed in 

literature: Enis and Geisser(1971) discussed Bayesian 

estimation of R when X and Y are exponential. Awad 

et al. (1981), proposed three estimators of R when X 

and Y have a bivariate exponential distribution. Tong 

(1974) derived the MVUE of R where X and Y are 

exponential. Johnson (1975) gave a correction to the 

results in Tong (1974). Some other aspects of inference 

about R are given in AL-Hussaini et al. (1997). In some 

applications, an experimenter often possesses some 

knowledge of the experimental conditions based on the 

behaviour of the system under consideration, or from 

past experience or some extraneous source, and is thus 

in position to give an educated guess or an initial 

estimate of the parameter of interest. Given a prior 

estimate R0 of R, we are looking for an estimator that 

incorporates this information. Those estimators are then 

called ‘‘shrinkage estimators’’ as introduced by 

Thompson (1968). Balkizi and Dayyeh (2003) 

discussed different shrinkage estimators of R when X 

and Y are exponential. 

     In this article, we shall propose some shrinkage 

estimators for R when X and Y follows Weibull 

distribution, in Sec. 2. A Monte Carlo study to 

investigate the behaviour of these estimators is 

described in Sec. 3. Results and conclusions are given 

in the final section. 

 

2. Shrinkage Estimation Procedures 

 
    In this study, X and Y have independent Weibull 

distributions with shape parameter β, but with different 

scale parameters θ1 and θ2 respectively, that is 

 𝑓𝑋 𝑥,𝜃1 =
𝛽

𝜃1
𝑥(𝛽−1)exp⁡(−

𝑥𝛽

𝜃1
), x>0; 

        𝑓𝑋 𝑦,𝜃2 =
𝛽

𝜃2
𝑦(𝛽−1) exp  −

𝑦𝛽

𝜃2
 , 𝑦 > 0.                      

 Here we assumed the shape parameter to be known. 

Let X1, . . . ,Xn1  be a random sample for X and Y1, . . . 

,Yn2 be a random sample for Y. The parameter R we 

want to estimate is R = P [ Y < X] = 
θ1

θ1+θ2
. The 

maximum likelihood estimator of R can be shown to be 

𝑅 =
𝜃 1

𝜃 1+𝜃 2
 , where 𝜃 1 =

 𝑥𝑖
𝛽𝑛1

𝑖=1

𝑛1
 and 𝜃 2 =

 𝑦𝑗
𝛽𝑛2

𝑗=1

𝑛2
. Now 

we will develop several shrinkage estimators of R that 

incorporates the experimenters of guess which is R0.  

The suggested estimators are of the form 𝑅 = 𝑐𝑅 +
(1 − 𝑐)R0, 0 ≤ 𝑐 ≤ 1. We will determine the value of c 

in the following ways; 

 

2.1. Shrinkage towards a Pre-specified R 
 

Here we are looking for c1 in the estimator 𝑅 =
𝑐1𝑅 + (1 − 𝑐1)𝑅0 that minimizes its mean square error 

𝑀𝑆𝐸  𝑅 1 = 𝐸( 𝑅 1 − 𝑅)2 = 𝐸[(𝑐1𝑅 + (1 − 𝑐1)𝑅0) −

𝑅]2. The value of c1 that minimizes this MSE can be 

shown to be 

𝑐1 =
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[ 𝑅 − 𝑅0  𝐸 𝑅  − 𝑅0 ] [𝐸 𝑅 2 − 2𝑅0𝐸 𝑅  + 𝑅0
2] , 

subject to 0 ≤ 𝑐1 ≤ 1. However this value of c1 

depends on the unknown parameter R. Substituting 𝑅  

instead of R we get 

𝑐 1 = [ 𝑅 − 𝑅0  𝐸 𝑅  − 𝑅0 ] [𝐸 𝑅 2 − 2𝑅0𝐸 𝑅  + 𝑅0
2] 

. Hence, our shrinkage estimator is 𝑅 1 = 𝑐 1𝑅 1 + (1 −
𝑐 1)𝑅0. 

  We now obtain approximate values of 𝐸(𝑅 ) and 

var(𝑅 ). Notice that 𝑅 =
𝜃 1

(𝜃 1+𝜃 2)
=

1

1+(θ 2 θ 1 )
, and hence 

(𝜃 2 𝜃 1) =  1 𝑅   − 1 . Thus 

(𝜃1 𝜃2 )(𝜃 2 𝜃 1) =  𝜃1 𝜃2  [ 1 𝑅   − 1] . It is shown in 

the next section that 𝑉 = (𝜃1 𝜃2) (𝜃 2 𝜃 1)~𝐹2𝑛2,2𝑛1
  . 

Following Lindley (1969), Balkizi (2003),we get 

𝐸 𝑅  =

(1 +  𝜃2 𝜃1  𝐸 𝑉 )−1 + 𝑣𝑎𝑟 𝑉  𝜃2 𝜃1  2(1 +
𝜃2𝜃1𝐸𝑉)−3, 𝑣𝑎𝑟𝑅= 𝑣𝑎𝑟𝑉𝜃2𝜃12(1+𝜃2𝜃1𝐸𝑉)−2 

where 𝐸 𝑉 = 𝑛1 (𝑛1 − 1) , 

𝑣𝑎𝑟 𝑉 = [𝑛1
2(𝑛1+𝑛2 − 1)] [𝑛2(𝑛1 − 1)(𝑛1 − 2)] ; in 

these formulas θ1 andθ2 are further replaced by 𝜃 1 and 

𝜃 2respectively, for numerical computation. 

 

2.2. Shrinkage Using the p-value of the LRT 

 
For testing 𝐻0:𝑅 = 𝑅0 vs. 𝐻1:𝑅 ≠ 𝑅0, the likelihood 

ratio test is the form: reject 𝐻0 when (𝜃 2 𝜃 1) < 𝛼1  or 

  𝜃 2 𝜃 1  > 𝛼2. his follows by noticing that 𝐻0:𝑅 =

𝑅0 vs. 𝐻1 :𝑅 ≠ 𝑅0is equivalent to 𝐻0: 𝜃1 =
𝑅0𝜃2  1 − 𝑅0   vs.  𝐻1: 𝜃1 ≠ 𝑅0𝜃2  1 − 𝑅0  . The 

MLEs of θ1 and θ2 are 𝜃 1and 𝜃 2 respectively, while the 

restricted MLEs of θ1 and θ2 are given by 

 1  𝑛1 + 𝑛2    𝑛1𝜃 1 +  𝑅0  1 − 𝑅0   𝑛2𝜃 2  and 

 1  𝑛1 + 𝑛2     𝑅0  1 − 𝑅0   𝑛1𝜃 1 + 𝑛2𝜃2 , 

respectively. Application of the likelihood criterion 

leads directly to the result. Notice that 

(2𝑛1𝜃 1 𝜃1)~ > Ӽ 2𝑛1 
2  and (2𝑛2𝜃 2 𝜃2)~ > Ӽ 2𝑛2 

2 ; 

therefore [(2𝑛2𝜃 2 𝜃2) 2𝑛2 ] [(2𝑛1𝜃 1 𝜃1) 2𝑛1  ] =

(𝜃1𝜃 2) (𝜃2𝜃 1 )~𝐹2𝑛2 ,2𝑛1
. Under 

𝐻0 , W=(𝑅0 (1 − 𝑅0 ))(𝜃 2 𝜃 1)~𝐹2𝑛2.2𝑛1
 . 

    The p-value for this test is 𝑧 = 2 min 𝑃𝐻0
 𝑊 >

𝑤,𝑃𝐻0𝑊<𝑤=2min⁡[[1−𝐹𝑤],𝐹(𝑤)], where w is the 

observed value of test statistic W, and F is the 

distribution of W under H0. The p-value of this test 

indicates how strongly H0 is supported by the data. A 

large p-value indicates that R is close to prior estimate 

R0 (Tse and Tso, 1996). Thus we use this p-value to 

form the shrinkage estimator  𝑅 2 = 𝑐2𝑅 1 + (1 − 𝑐2)𝑅0, 

where (1 − 𝑐2) is the p-value of the test. 

 

 

 

 

3. Performance of the estimators 

 
A simulation study is conducted to investigate the 

performance of the estimators 𝑅 1 and 𝑅 2. The 

nomenclature of our simulations is as follows. 

   

n1: number of X observations and is taken to be        

    10 and 30 

n2: number of Y observations and is taken to be        

    10 and 30 

R: the true value of R=p[Y<X] and is taken to  

     be 0.5, 0.6,and 0.8 

R0: The initial estimate of R and is taken to be 

     0.3,0.4,0.5,0.6,0.7 when R=0.5 

     0.4,0.5,0.6,0.7,0.8 when R=0.6 

     0.6,0.7,0.8,0.85,0.9 when R=0.8 

 

Fixing β=2, for each combination of n1,n2, R, R0, 1000 

samples were generated for X taking θ=2 and for Y 

with θ2=(1/R2)-1.  The estimators are calculated and the 

efficiencies of shrinkage estimators relative to the 

maximum likelihood estimator are obtained. The 

relative efficiency is calculated as the ratio of mean 

square error of the MLE to the mean square error of the 

shrinkage estimator. 

 

4. Results and Conclusions 

 
From the following table it is observed that shrinkage 

estimators are more efficient than the maximum 

likelihood estimator. But the estimator 𝑅 1 performs 

better than the estimator 𝑅 2. In terms of sample sizes, 

the shrinkage estimators seems to perform better for 

small sample sizes than the large sample sizes. This is 

expected, as sample size increases, the precision of ML 

estimator increases, whereas the shrinkage estimators 

are still affected by the prior guess R0 which may be 

poorly made. our simulation show that the shrinkage 

estimators, are successful in taking advantage of prior 

guess. The use of shrinkage estimator is worth 

considering if available sample size is small. 
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Table 1. Relative efficiencies of the estimators where 

R=0.5 

n1 n2 R0 RE1 RE2 

10 10 0.3 2.8879 1.0017 

10 10 0.4 8.0272 1.0296 

10 10 0.5 16.0253 1.1737 

10 10 0.6 2.7767 1.1835 

10 10 0.7 0.8433 1.0002 

10 30 0.3 4.8745 0.9996 

10 30 0.4 11.968 1.0055 

10 30 0.5 16.2556 1.1617 

10 30 0.6 2.5643 1.1229 

10 30 0.7 0.7598 0.9604 

30 10 0.3 2.4962 1.0013 

30 10 0.4 5.3945 1.0211 

30 10 0.5 8.0272 1.1209 

30 10 0.6 2.5432 1.0967 

30 10 0.7 0.8718 0.9980 

30 30 0.3 3.0269 0.9986 

30 30 0.4 6.2861 1.0009 

30 30 0.5 9.1161 1.0259 

30 30 0.6 2.3367 1.0043 

30 30 0.7 0.7413 0.9595 

 
Table:2 Relative efficiencies of the estimators where 

R=0.6 

n1 n2 R0 RE1 RE2 

10 10 0.4 2.8502 1.0022 

10 10 0.5 6.7174 1.0243 

10 10 0.6 10.5170 1.1651 

10 10 0.7 2.2350 1.1770 

10 10 0.8 0.6983 0.9446 

10 30 0.4 4.4554 1.0000 

10 30 0.5 9.8900 1.0012 

10 30 0.6 11.4739 1.0734 

10 30 0.7 2.0730 1.1108 

10 30 0.8 0.6103 0.9271 

30 10 0.4 2.2647 0.9980 

30 10 0.5 4.1654 1.0328 

30 10 0.6 5.6120 1.1319 

30 10 0.7 2.0312 1.1103 

30 10 0.8 0.6928 0.9445 

30 30 0.4 2.6305 0.9988 

30 30 0.5 4.8015 1.0080 

30 30 0.6 6.5371 1.0057 

30 30 0.7 1.9830 1.0249 

30 30 0.8 0.6145 0.8944 

 
 

 

 

 

 

 

Table:3 Relative efficiencies of the estimators where 

R=0.8 

n1 n2 R0 RE1 RE2 

10 10 0.6 1.7065 1.0008 

10 10 0.7 3.2715 1.0159 

10 10 0.8 7.2788 1.1690 

10 10 0.85 2.5709 1.1778 

10 10 0.9 0.8517 1.0037 

10 30 0.6 3.1512 0.9978 

10 30 0.7 4.7595 1.0002 

10 30 0.8 7.2358 1.0996 

10 30 0.85 2.4804 1.1184 

10 30 0.9 0.8188 0.9725 

30 10 0.6 1.3380 0.9931 

30 10 0.7 2.1688 1.0134 

30 10 0.8 4.1213 1.1670 

30 10 0.85 2.2215 1.1193 

30 10 0.9 0.8462 1.0011 

30 30 0.6 1.6695 0.9909 

30 30 0.7 2.4007 0.9998 

30 30 0.8 4.2925 1.0712 

30 30 0.85 2.2277 1.0370 

30 30 0.9 0.8453 0.9551 
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