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Abstract 

 

In this paper, we present a new two-

microphone approach that improves speech 

recognition accuracy when speech is masked by 

other speech. The algorithm improves on previous 

systems that have been successful in separating 

signals based on differences in arrival time of 

signal components from two microphones. The 

present algorithm differs from these efforts in that 

the signal selection takes place in the frequency 

domain. We observe that additional smoothing of 

the phase estimates over time and frequency is 

needed to support adequate speech recognition 

performance. We demonstrate that the algorithm 

described in this paper provides better recognition 

accuracy than time-domain-based signal 

separation algorithms, and at less than 10 percent 

of the computation cost. Index Terms: Robust 

speech recognition, signal separation, 

 

time delay analysis, phase difference analysis 

Speech recognition systems have significantly 

improved in the past decades but noise robustness 

and computational complexity remain critical 

issues. A number of algorithms have shown 

improvements for stationary noise (e.g. [1, 2]). 

Nevertheless, improvement in non-stationary noise 

remains a difficult issue (e.g. [3]). In these 

environments, auditory processing [4] and 

missing-feature-based approaches [5] are 

promising. An alternative approach is signal 

separation based on analysis of differences in 

arrival time (e.g. [6, 7, 8]). It is well documented 

that the human binaural system bears remarkable 

ability in speech separation (e.g. [8]). Many 

models have been developed that describe various 

binaural phenomena (e.g. [9, 10]), typically based 

on interaural time difference (ITD), interaural 

phase difference (IPD), interaural intensity 

difference (IID), or changes of interaural 

correlation. 

     The Zero Crossing Amplitude Estimation 

(ZCAE) algorithm was recently introduced by 

Park [7] which is similar in some respects to work 

by Srinivasan et al. [6]. These algorithms (and 

similar ones by other researchers) typically 

analyze incoming speech in bandpass channels and 

attempt to identify the subset of time-frequency 

components for which the ITD is close to the 

nominal ITD of the desired sound source (which is 

presumed to be known a priori). The signal to be 

recognized is reconstructed from only the subset 
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of “good” time-frequency components. This 

selection of “good” components is frequently 

treated in the computational auditory scene 

analysis (CASA) literature as a multiplication of 

all components by a binary mask that is nonzero 

for only the desired signal components. Although 

ZCAE provides impressive performance even at 

low SNRs, it is very computationally intensive, 

which makes it unsuitable for hand-held devices.  

     The goals of this work are twofold. First, we 

would like to obtain improvements in word error 

rate (WER) for speech recognition systems that 

operate in real world environments that include 

noise and reverberation. We also would like to 

develop a computationally efficient algorithm than 

can run in real time in embedded systems. In the 

present ZCAE algorithm much of the computation 

is taken up in the bandpass filtering operations. 

We found that computational cost could be 

significantly reduced by estimating the ITD 

through examination of the phase difference 

between the two sensors in the frequency domain. 

We describe in the sections below how the binary 

mask is obtained using frequency information. We 

also discuss the duration and shape of the analysis 

windows, which can contribute to further 

improvements in WER. 

     The rest of the paper is organized as follows: 

Sec. 3 describes our algorithm at a general level. 

We propose our time-frequency weighting scheme 

in Sec. 3. Experimental results are discussed in 

Sec.4, and we summarize our work in Sec. 5. 

 

2. Phase-difference-based binary 

time-frequency mask estimation 

Our work on signal separation is motivated by 

binaural speech processing. Sound sources are 

localized and separated by the human binaural 

system primarily through the use of ITD 

information at low frequencies and IID 

information at higher frequencies, with the 

crossover point between these two mechanisms 

considered to be based on the physical distance 

between the two ears and the need to avoid spatial 

aliasing (which would occur when the ITD 

between two signals exceeds half a wave length). 

In our work we focus on the use of ITD cues and 

avoid spatial aliasing by placing the two 

microphones closer together than occurs 

anatomically. When multiple sound sources are 

presented, it is generally assumed that humans 

attend to the desired signal by attending only to 

information at the ITD corresponding to the 

desired sound source. 

     Our processing approach, which we refer to as 

Phase Difference Channel Weighting (PDCW), 

crudely emulates human binaural processing, and 

is summarized in Fig. 1. Briefly, the system first 

performs a short-time Fourier transform (STFT) 

which decomposes the two input signals in time 

and in frequency. ITD is estimated indirectly by 

comparing the phase information from the two 

microphones at each frequency, and the time-

frequency mask identifying the subset of ITDs that 

are “close” to the ITD of the target speaker is 

identified. A set of channels is developed by 
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weighting this subset of time 

 

frequency components using a series of Gamma 

tone functions, and the time domain signal is 

obtained by the overlap-add method. As noted 

above, the principal novel feature in this paper is 

the use of intramural phase information in the 

frequency domain rather than ITD, IPD, or IID 

information in the time domain to obtain the 

binary mask.     

 Consider the two signals that are input to 

the system which we refer to as xL [n] and xR [n]. 

We assume that the location of the desired target 

signal is known a priori and without loss of 

generality we assume its ITD to be equal to zero. 

For mathematical convenience, we refer to the 

number of interfering sources as L, with δ(l) being 

their respective ITDs. Note that both L and δ(l) are 

unknown. With the above formulations, the 

signals are the microphones are 

 

with x0 [n] representing the target signal, xl (l = 0) 

representing interfering signals, xL and xR , 

respectively, representing the signals at the left 

and right microphones. The corresponding short-

time Fourier transforms can be represented as 

 

where w[n] is a finite-duration Hamming window, 

k indicates one of N frequency bins, with positive 

frequency samples corresponding to wk = 2πk/N 

for 0 ≤ wk ≤ N/2 − 1. In our work N equals 512 

for 26.5-ms windows and 2048 for 75-ms 

windows. Note that even though (1) indicates that 

signals at the microphones are identical except for 

a time delay, it is more appropriate that we 

consider the time delays associated with each 

frequency component of the signal. 

Correspondingly, we replace the frequency-

independent ITD parameter δ in (1) by the 

frequency-dependent ITD parameter d(k, m) in 

(4). Next, we assume that a specific time-

frequency bin (k0 , m0 ), is dominated by a single 

sound source l. This leads to  

 

where the source l dominates the time-frequency 

bin (k0 , m0 ). This leads to a simple binary 
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decision concerning whether the time-frequency 

bin (k0 , m0 ) belongs to the target speaker or not. 

The frequency-dependent ITD d(k, m) for a 

particular time-frequency bin (k0 , m0 )  

 

In other words, only time-frequency bins for 

which |d(k0 , m0 )| < τ are presumed to belong to 

the target speaker. We are presently using a value 

of 0.01 for the floor constant η. The mask µ(k, m) 

in (8) is applied to X(k, m), the averaged signal 

spectrogram from the two channels, and   ˜ speech 

is reconstructed from the X(k, m) where  

 

 

 

3. Smoothed phase-difference-based 

binary mask estimation 

 

While the basic procedure described in 

Sec. 2 provides signals that are audibly separated, 

the phase estimates are generally too noisy to 

provide useful speech recognition accuracy. In this 

section we discuss the implementation of two 

methods that smooth the estimates over frequency 

and time. 

3.1. Gammatone channel weighting 

As noted above, the estimates produced by Eq. (8) 

are generally noisy and must be smoothed. To 

achieve smoothing along frequency, we use a 

gammatone weighting that functions in a similar 

fashion to that of the familiar triangular weighting 

in MFCC features. Specifically, we obtain the 

gammatone channel weighting coefficients w(i, m) 

according to the equation 

 

 

where µ(k, m) is the original binary mask that is 

obtained using (8). With this weghting we 

effectively map the ITD for each of the 256 

original frequencies to an ITD for what we refer to 

as one of I = 40 channels. Each of these channels 

is associated with Hi , the frequency response of 

one of a set of gammatone filters with center 

frequencies distributed according to the 
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Figure 2: Sample spectrograms illustrating the 

effects of PDCW processing. (a) original clean 

speech, (b) noise-corrupted speech, (c) 

reconstructed (enhanced) speech (d) the time-

frequency mask obtained with (8) (e) gammatone 

channel weighting obtained from the time-

frequency mask in (11) (e) final frequency 

weighting shown in (12) (f) enhanced speech 

spectrogram using the entire PDCW algorithm 

Equivalent Rectangular Bandwidth (ERB) scale 

[11]. The final spectrum weighting is obtained 

using the gammatone mask µg 

 

 

3.2. The effect of the window length 

In conventional speech coding and speech 

recognition systems, we generally use a length of 

approximately 20 to 30 ms for the Hamming 

window w[n] in order to capture effectively the 

temporal fluctuations of speech signals. 

Nevertheless, longer observation durations are 

usually better for estimating environmental 

parameters. Using the procedures described below 

in Sec. 4,we considered the effect of window 

length on recognition accuracy. These results 

obtained with PDCW described Subsection 3 and 

3.1 are summarized in Fig. 3, which indicate that 

best performance is achieved with window length 

of about 75 ms.In the experiments described 

below we Hamming windows of duration 75 ms 

with 37.5 ms between successive frames. 

 

Figure 3: The dependence of word recognition 

accuracy (100% − W ER) on the window length, 

using an SIR of 10dB and various reverberation 

times. The filled symbols at 0 ms represent 

baseline results obtained with a single 

microphone. 

4. Experimental Results 

In this section, we present experimental 

results for two different environmental conditions. 

In the first condition, we simulate different 

reverberant environments, where the target is 

masked by an interfering speaker. We used the 

Room Impulse Response (RIR) software [12] for 

simulating the effects of room reverberation. We 
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assumed a room of dimensions 5×4×3 m, a 

distance between the microphone and the speaker 

of 2 m, with the microphone located at the center 

of the room. We assumed that the target source is 

located along the perpendicular bisector of the line 

between two microphones, and that the masker is 

45 degrees to one side. The target and noise 

signals are digitally added after simulating the 

reverberation effects. The two microphones are 

placed 4 cm apart from one another. We used 

sphinx fe included in Sphinxbase 0.4.1 for speech 

feature extraction, SphinxTrain 1.0 for speech 

recognition training, and Sphinx3.8 for decoding, 

all of which are readily available in Open Source 

form. We used subsets of 1600 utterances and 600 

utterances, respectively, from the DARPA 

Resource Management (RM1) database for 

training and testing. 

     Fig. 4 compares word recognition accuracy for 

several of the algorithms discussed in the paper. 

ZCAE refers to the timedomain algorithm 

described in [7] with binary masking, as the better-

performing continuous-masking does not work in 

environments with reverberation or more than one 

masking source.PD refers to the algorithm 

described in Secs. 2 and 3 of this paper with the 

75-ms analysis window but without the 

gammatone frequency weighting, and PDCW 

refers to the complete algorithm including the 

gammatone channel weighting (CW) described in 

Sec. 3.1 with the 75-ms analysis window. To see 

the effects of the window length, we also present 

the PD results with the conventional 25-ms 

analysis window as well. As can be seen, the 

PDCW (and to a lesser extent the PD) algorithm 

provides lower WER than ZCAE, and the 

superiority of PDCW over ZCAE increases as the 

amount of reverberation increases. 

     In our second set of experiments, we still 

assume that the distance between the two 

microphones is the same, but we added noise 

recorded in real environments with real two 

microphone hardware in locations such as a public 

market, a food court, a city street and a bus stop 

with background speech. 

Fig. 4(d) illustrates these experimental results. 

Again we observe that PDCW (and to a lesser 

extent PD) provides much better performance than 

ZCAE for all conditions. 

     We also profiled the run times of 

implementations in C of the PDCW and ZCAE 

algorithms on two machines. The PDCW 

algorithms ran in only 9.03% of the time required 

to run the ZCAE algorithm on an 8-CPU Xeon 

E5450 3-GHz system, and in only 9.68% of the 

time to run the ZCAE. 
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Figure 4: Speech recognition accuracy using 

different algorithms (a) in the presence of an 

interfering speech source as a function of SNR in 

the absence of reverberation, (b,c) in the presence 

of reverberation and speech interference, as 

indicated, and (d) in the presence of natural real-

world noise.algorithm on an embedded system 

with an ARM11 667-Mhz processor using a vector 

floating point unit. The major reason for the 

speedup is that in ZCAE the signal must be passed 

through a bank of 40 filters while PDCW requires 

only two FFTs and one IFFT for each feature 

frame. A MATLAB version of PDCW with 

sample audio files is available at 

http://www.cs.cmu.edu/˜robust/archive/algorithms

/PDCW IS2009.The code in this directory was 

used to obtain the results described in this paper. 

5. Conclusions 

In this work, we present a speech separation 

algorithm, PDCW,based on ITD that is inferred 

from phase information. The algorithm uses 

gammatone weighting and longer analysis 

windows.This algorithm is quite computationally 

efficient and shows significant improvement in 

recognition accuracy under practical 

environmental conditions of noise and 

reverberation. 
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