
Signing Message Using Fast MD5 Hashing Digital

Signature Algorithm

N Kishore (M.Tech) Dr K Venkata Rao PhD

Vignan’s Institute OF Information Technology, Vignan’s Institute OF Information Technology,

 Visakhapatnam Visakhapatnam

Abstract: Applications such as banking, stock

trading, and the sale and purchase of merchandise

are increasingly emphasizing electronic

transactions to minimize operational costs and

provide enhanced services. This has led to

phenomenal increase in the amounts of electronic

documents that are generated, processed, and stored

in computers and transmitted over networks. This

electronic information handled in these applications

is valuable and sensitive and must be protected

against tampering by malicious third parties (who

are neither the senders nor the recipients of the

information). Sometimes, there is a need to prevent

the information or items related to it (such as

date/time it was created, sent, and received) from

being tampered with by the sender (originator)

and/or the recipient. For e-documents, a

mechanism of signature is necessary. Digital

signatures, which are nothing but a string of ones

and zeroes generated by using a digital signature

algorithm, serve the purpose of validation and

authentication of electronic documents. In this

paper we use an algorithm called Fast MD5 is used

to provide integrity to e-documents.
Key Words: digital signatures, integrity, validation and

authentication

I Introduction

The era of electronic mail" [2] may soon be upon

us; we must ensure that two important properties of

the current \paper mail" system are preserved: (a)

messages are private, and (b) messages can be

signed. We demonstrate in this paper how to build

these capabilities into an electronic mail system.

Validation refers to the process of certifying the

contents of the document, while authentication

refers to the process of certifying the sender of the

document. In this paper, the terms document and

message are used interchangeably.

 A Traditional signature has the following

salient characteristics: relative ease of establishing

-

that the signature is authentic, the difficulty of

forging a signature, the no transferability of the

signature, the difficulty of altering the signature,

and the non-repudiation of signature to ensure that

the signer cannot later deny signing. A digital

signature should have all the aforementioned

e-mail and credit card transactions over the

Internet. Since a digital signature is just a sequence

of zeroes and ones, it is desirable for it to have the

following properties:

 The signature must be a bit pattern that depends on

the message being signed (thus, for the same

originator, the digital signature is different for

different documents); the signature must use some

information that is unique to the sender to prevent

both forgery and denial; it must be relatively easy

to produce; it must be relatively easy to recognize

and verify the authenticity of digital signature; it

must be computationally infeasible to forge a

digital signature either by constructing a new

message for an existing digital signature or

constructing a fraudulent digital signature for a

given message; and it must be practical to recopies

of the digital signatures in storage for arbitrating

possible disputes later. To verify that the received

document is indeed from the claimed sender and

that the contents have not been altered, several

procedures, called authentication techniques, have

been developed. However, message authentication

techniques cannot be directly used as digital

signatures due to inadequacies of authentication

techniques. For example, although message

authentication protects the two parties exchanging

messages from a third party, it does not protect the

two parties against each other. In addition,

elementary authentication schemes produce

signatures that are as long as the message

themselves.

 In Basic terminology Digital signatures [3]

are computed based on the documents (message/

information) that need to be signed and on some

private information held only by the sender. In

practice, instead of using the whole message, a

hash function [4] is applied to the message to

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

obtain the message digest. A hash function, in this

context, takes an arbitrary- sized message as input

and produces a fixed-size message digest as output.

Among the commonly used hash functions in

practice are MD-5 (message digest 5) and SHA

(secure hash algorithm). These algorithms are fairly

sophisticated and ensure that it is highly

improbable for two different messages to be

mapped to the same hash value. There are two

broad techniques used in digital signature

computation

Symmetric key cryptosystem and public-key

cryptosystem (cryptosystem broadly refers to an

Fig 1: Creating digital signatures

encryption technique). In the symmetric key

system, a secret key known only to the sender and

the legitimate receiver is used. However, there

must be a unique key between any two pairs of

users. Thus, as the number of user pairs increases,

it becomes extremely difficult to generate,

distribute, and keep track of the secret keys. A

public key cryptosystem, on the other hand, uses a

pair of keys: a private key, known only to its

owner, and a public key, known to everyone who

wishes to communicate with the owner. For

confidentiality of the message to be sent to the

owner, it would be encrypted with the owner’s

public key, which now could only be decrypted by

the owner, the person with the corresponding

private key. For purposes of authentication, a

message would be encrypted with the private key

of the originator or sender, who we will refer to as

A. This message could be decrypted by anyone

using the public key of A. If this yields the proper

message, then it is evident that the message was

indeed encrypted by the private key of A, and thus

only A could have sent it.

 A simple generic scheme for creating

and verifying a digital signature is shown in Figs. 1

and 2, respectively. A hash function is applied to

the message that yields a fixed-size message digest.

The signature function uses the message digest and

the sender’s private key to generate the digital

signature. A very simple form of the digital

signature is obtained by encrypting the message

digest using the sender’s private key. The message

and the signature can now be sent to the recipient.

Fig 2: Verifying a Digital Signature

However, the signature ensures authenticity of the

sender (something similar to a circular sent by a

proper authority to be read by many people, with

the signature attesting to the authenticity of the

message). At the receiver, the inverse signature

function is applied to the digital signature to

recover the original message digest. The received

message is subjected to the same hash function to

which the original message was subjected. The

resulting message digest is compared with the one

recovered from the signature. If they match, then it

ensures that the message has indeed been sent by

the (claimed) sender and that it has not been

altered.

 A digital envelope [5] is the equivalent of

a sealed envelope containing an unsigned letter.

The outline of creating a digital envelope is shown

in Fig. 3. The message is encrypted by the sender

using a randomly generated symmetric key. The

symmetric key itself is encrypted using the

intended recipient’s public key. The combination of

the encrypted message and the encrypted

symmetric key is the digital envelope. The process

of opening the digital envelope and recovering the

contents is shown in Fig. 4. First, the encrypted

symmetric key is recovered by a decryption using

the recipient’s private key. Subsequently, the

encrypted message is decrypted using the

symmetric key.

Fig 3: Creating a Digital envelope

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

 And the next step involves creating the

Digital envelop and making the envelop carrying

the Digital Signatures that is generated from the

first three diagrams. The message is encrypted by

the sender using a randomly generated symmetric

key. The symmetric key itself is encrypted using

the intended recipient’s public key.

If electronic mail systems are to replace

the existing paper mail system for business

transactions, \signing" an electronic message must

be possible. The recipient of a signed message has

proof that the message originated from the sender.

This quality is stronger than mere authentication

(where the recipient can verify that the message

came from the sender); the recipient can convince a

\judge" that the signer sent the message. To do so,

he must convince the judge that he did not forge the

signed message himself! In an authentication

problem the recipient does not worry about this

possibility, since he only wants to satisfy himself

that the message came from the sender.

An electronic signature must be message-

dependent, as well as signer-dependent. Otherwise

the recipient could modify the message before

showing the message-signature pair to a judge. Or

he could attach the signature to any message

whatsoever, since it is impossible to detect

electronic \cutting and pasting."

II Proposed Digital Signature algorithm

Existing System:
 * Java's built-in MD5 support is a bottleneck for

your program's performance and you want

something faster that takes less time.

 * You are using a version of Java which doesn't

have MD5 support, such as J2ME MIDP/CLDC.

 * You want the extra convenience methods for

hashing a file, hashing a string, converting the hash

to a hex string, etc

Proposed System

 * You can then convert the hash into the familiar

hex format (e.g.,

"d41d8cd98f00b204e9800998ecf8427e"), if you

wish. If you don't know how to do that, the Fast

MD5 Implementation can do it for you.

* Much faster than any other Java implementation

that I have tested and (surprisingly) even faster than

the native, non-Java MD5 implementation on some

systems.

* First of all, it is important to note that the term

"fast" is used here in relative terms. The

implementation of the MD5 message digest

algorithm available on this page is written in Java

and is fast compared with other implementations

written in Java, both because it is heavily optimized

by itself and because there is an optional native

method that makes it even faster when the platform

supports it. How it compares to a sensible

implementation written in a language, such as C,

that is compiled directly to machine code, is

heavily dependent upon how good of a job the

JIT compiler in your JVM does in compiling the

code or whether you are able to use the optional

native method.

 * all the implementations took roughly the

same amount of real time to execute, except when

the JVM was run in interpreted mode (in which

case it took much longer). This indicates that file

I/O was likely the bottleneck. Therefore, the MD5

implementation that ships with the JDK will be

adequate in a large number of cases. On the other

hand, my fast implementation will be useful when

the underlying I/O is very fast (e.g., if the data

to be hashed is being created on-the-fly in emory),

the CPU is inherently slow, CPU cycles are scarce

(e.g., many other programs are running at the same

time), the Java VM being used does not provide an

adequately fast JIT, or in other cases where it is

desirable to minimize CPU usage. The very

surprising (for me) thing to note is that the Fast

MD5 implementation outperforms the native

"md5sum" binary even when the native methods

aren't used. Oddly enough, the same did not hold

true on Windows where the native binary was

faster in all cases (perhaps the underlying I/O

implementation in the Linux JVM is more efficient

than the same in the Windows JVM.

The MD5 algorithm is quite possibly the

most widely used digest algorithm out there. So of

course, being the geek you are, you want to know

how it works. Read on the following paper

First you must think of your message, not as a

sequence of bytes, but as a sequence of bits (but

only for a short while). The MD5 algorithm will

accept messages that are any arbitrary number of

bits long. However, so that the algorithm can

process the data, it begins by padding the message

to a length it can handle. This length just happens

to be any number such that length mod 512 is equal

to 448, or 64 bits short of being a multiple of 512.

The message is padded by first appending a 1 bit to

the message, and then enough 0 bits to make the

message the proper length. The 1 bit is always

added, so even if the message is already the proper

length, it will be padded (a message can be padded

with anywhere from 1 to 512 bits).

The next step is to calculate the length of the

message (before padding). This number is then

appended as the last 64 bits of the message, making

the message length a multiple of 512. If the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

message happens to be greater than 2^64 bits long,

then the least significant 64 bits of the message are

used (length mod 2^64)[8].

The MD5 algorithm uses 4 state variables, each of

which is a 32 bit integer (an unsigned long on most

systems). These variables are sliced and diced and

are (eventually) the message digest. The variables

are initialized as follows:

A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476

Now on to the actual meat of the algorithm: the

main part of the algorithm uses four functions to

thoroughly goober the above state variables. Those

functions are as follows:

F(X,Y,Z) = (X & Y) | (~(X) & Z)

G(X,Y,Z) = (X & Z) | (Y & ~(Z))

H(X,Y,Z) = X ^ Y ^ Z

I(X,Y,Z) = Y ^ (X | ~(Z))

Where &, |, ^, and ~ are the bit-wise AND, OR,

XOR, and NOT operators (respectively) that all C

programmers should be familiar with.

These functions, using the state variables and the

message as input, are used to transform the state

variables from their initial state into what will

become the message digest. For each 512 bits of

the message increasingly, digital signatures are

being used in secure e-mail and credit card

transactions over the Internet. The two most

common secure e-mail systems using digital

signatures are Pretty Good Privacy and

Secure/Multipurpose Internet Mail Extension. Both

of these systems support the RSA as well as the

DSS-based signatures. The most widely used

system for the credit card transactions over the

Internet is Secure Electronic Transaction (SET)[9].

It consists of a set of security protocols and formats

to enable prior existing credit card payment

infrastructure to work on the Internet. The digital

signature scheme used in SET is similar to the RSA

scheme. And this type of digital signature with Fast

MD5 algorithm can be used for safe and fast

transactions. This Fast MD5 algorithm makes Hash

Code stronger in less span of time it is the

overcome of MD5 algorithm in feature of Fastness.

III Conclusion

Many traditional and newer businesses and

applications have recently been carrying out

enormous amounts of electronic transactions,

which have led to a critical need for protecting the

information from being maliciously altered, for

ensuring the authenticity, and for supporting non-

repudiation. Just as signatures facilitate validation

and verification of the authenticity of paper

documents, digital signatures with Fast MD5 Hash

Algorithm serve the purpose of validation and

authentication of electronic documents by integrity

checking. This technology is rather new and

emerging and is expected to experience growth and

widespread use in the coming years.

References:

[1] Erfaneh Noorouzi ,Amir Reza Estakhrian

Haghighi , A New Digital Signature Algorithm

IPCSIT vol.3 (2011) © (2011) IACSIT Press,

Singapore

[2] D. E. Denning, Cryptography and Data

Security: Addison-Wesley Publishing Co, July 1998

[3] R. L. Rivest, A. Shamir,and L. M. Adleman, "A

method for obtaining digital signatures and public

key cryptosystems," Communications of the ACM,

vol. 21, pp. 120- 126, 2003.

[4] C. Chang and Y. F. Chang, "Signing a digital

signature withouting using one- way hash functions

and message redundancy schemes," IEEE Trans,

vol. 8, pp. 485-487, 2004.

[5] A. Buldas and M. Saarepera, "Electronic

Signature System with Small Number of Private

Keys," presented at 2
nd

 Annual PKI Research

Workshop, 2003.

[6] W.C.Cheng, C.-F. Chou, and L. Golubchik,

"Performance of Batch-based Digital Signatures,"

presented at the 10th IEEE Int'l Symp. on Modeling,

Analysis, & Simulation of Computer &

Telecommunications Systems (MASCOTS' 02),

2002.

[7] A.Asokan, G.Tsudik, and M.Waidner, "Server

supported digital signatures," presented at

proceedings of ESORICS’96, Rome, Italy, 1996.

[8] S. J. Hwan and C.-C. Chen, "New multi-proxy

multi signature schemes," Applied Mathematics

and Computation, vol. 147, pp. 57-67, 2004.

[9] Y. Mizukami, M. Yoshimura, H. Miike, and I.

Yoshimura,"An Off-line Signature Verification

System Using an Extracted Displacement

Function," 2004.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

