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Abstract—Arterial stiffness index is a decisive parameter on the 

cardiac health of a person and can be measured to achieve early 

detection of coronary heart disease. Imageless portable systems 

for automated estimation of arterial stiffness by utilizing an 

ultrasound transducer are gaining popularity. The arterial 

stiffness is found out based on the distensions of carotid artery 

[1]. We present an innovative signal processing algorithm for 

the removal of insignificant echoes in the ultrasonographic data 

obtained for arterial stiffness measurement. This algorithm 

analyzes each frame on-the-fly, segments the frame into 

windows and then process them. This algorithm removes echoes 

till and including the anechoic region by analyzing the number 

of strong echoes in each window. The echoes between the artery 

walls are also removed. Application of these algorithms on real-

life data proves its efficacy with a success rate over 96%. 

Keywords—anechoic region, arterial stiffness, carotid artery, 

threshold enumeration. 

I.  INTRODUCTION 

 

Arterial stiffness and its relation to cardiovascular diseases 

has been a recent area of study in the biomedical domain. It is 

found that the abnormal stiffness of artery is an indication of 

cardiovascular diseases [2]. Arterial stiffness can be estimated 

using different techniques. The use of ultrasound to determine 

the arterial stiffness, particularly that of carotid artery has 

recently emerged as an innovative method and is gaining 

popularity [3]. The removal of unwanted echoes in the 

ultrasonographic data is an essential step and is prior to all 

other processing.  

In this paper, we present an algorithm which removes 

unwanted echoes from such data. Till now, different methods 

have been developed for this. [4−6] discussed about the 

conventional variance/standard deviation based methods. The 

strength of such methods depend on the number of frames 

used for computing variance as reliability of variance depend 

on the number of data points used for variance calculation. 

More the number of frames used, more reliable the result 

would be. Other popular methods based on wavelet transform 

[7−9], energy [10−12], filtering [13], higher order statistics 

[14], artificial neural networks [15], probability models and 

associated functions [16,17] etc. have been developed. All of 

these are computationally tedious compared to the algorithm 

presented here.  

II. BACKGROUND 

Fully automated systems for imageless evaluation of arterial 

compliance are being designed [18]. In such systems, a 

transducer in pulse-echo mode is placed on the patient’s neck 

(Fig. 1).  

 

 

 

Fig. 1: Schematic of an automated system for arterial stiffness measurement. 

[19] 

For all the trials in [18], the echo received is digitized at 

100 MS/s with a pulse repetition time of 10 ms and stored in 

a row matrix (1×N). With M pulses sent, a matrix R (called as 

data matrix) of size M×N is obtained. The value of N is 

determined by keeping the constraint that artery wall should 

lie within those many data points. So, an upper bound for N is 

defined and data points beyond this are neglected so that the 

matrix size can be reduced. Each row is synonymously 

mentioned as frames henceforth.  
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Fig. 2: A sample frame. 

 
Fig. 3:Block diagram of TE algorithm. 

Fig. 2 is a sample frame obtained using the system 

designed in [18]. In the beginning of every frame, there are 

high amplitude spikes due to echoes from the skin, skin-gel 

interface etc. These are followed by echoes from the soft 

tissue lying in between the skin and the first artery. This 

region is referred to as anechoic region. In Fig. 2, following 

regions can be identified. 

1. The echoes from beginning till A : echoes from the 

skin, skin-gel interface etc.  

2. The echoes between A and B : anechoic region  

3. The echoes between B and C : echoes from the 

proximal wall of the carotid artery  

4. The echoes between C and D : echoes from the 

distal wall of the carotid artery  

5. The peaks seen after E : echoes from jugular vein  

The removal of unwanted echoes in the signal is a crucial 

step as that makes the further analysis of the signal for 

determining the peaks and ultimately the arterial stiffness 

much simpler.  

III. THRESHOLD ENUMERATION (TE) ALGORITHM 

We present an extremely simple and efficient signal 

processing algorithm called as threshold enumeration (TE) 

algorithm to remove the insignificant echoes i.e., the echoes 

till the first artery and echoes between the artery walls. The 

algorithm is tested using Matlab® on real world signals 

obtained using the acquisition device and the settings 

mentioned in [18] from different test subjects.  

The core principle of TE method is to estimate the 

position of the low echo region and trim the signal 

accordingly. The nature of anechoic region and the echoes 

between artery walls that are crucial to this method are:  

1. The amplitude of echoes in anechoic region is very 

low compared to the artery echoes. 

2. These regions span over at least a few hundred data 

points in each frame. 

The algorithm operates on each frame on-the-fly and 

outputs it for further processing after removing the 

insignificant echoes. Fig. 3 shows the block diagram of the 

TE method. The inputs and outputs of each phase are 

mentioned in the diagram and explained in later sections.  

 
Fig. 4: A sample frame and corresponding T vector. 

A. Threshold Enumeration 

The input to the algorithm is a single frame F (row vector 

of size 1×N ). A zero vector T of length [N/l] ([.] represents 

the greatest integer function, l is the length of window) is 

created. This vector is used to store the number of points 

above a threshold value. A window W of length l is moved 

over F. Let the variable that controls the movement of the 

window be i. The window is defined from i×l to (i+1)×l−1. In 

the first iteration, i will take the value 0. Therefore in the first 

iteration, if l is taken as 100, the window is from 0 to 99. The 

number of points inside W for which the echo amplitude is 

above a threshold is calculated and is stored at T(i). i is 

incremented by 1 after each iteration (Fig. 4). 

The conclusions that can be drawn from the plot of vector 

T are:  

1. Number of datapoints above defined threshold 

amplitude is very large for the echoes from the skin.  

2. This is followed by a region where number of 

datapoints above a threshold amplitude is zero. This 

region corresponds to the anechoic region.  

3. Then it again increases when the window overlaps 

with the significant echoes (arteries or static echoes) 

and is zero for the region in between the artery 

walls.  

With the T vector representing the number of data points 

in a window above threshold over the entire frame F, another 

iteration is set up to remove the unwanted echoes.  

 
Fig. 5: A sample frame after first stage of processing. 
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Fig. 6: A sample frame after complete processing. 

 

B. Cropping till the first significant echo 

To remove the echoes till the first important echo, i.e. till 

the artery wall, the algorithm looks for the point in T where 

the value is non-zero for a vector index and zero for the 

preceding index. All echoes in F from index 1 to index 

(i−1)×l are set to zero if all the following conditions are met.  

1. T( i ) is greater than zero. 

2. T( i−1) is equal to zero.  

These conditions are always satisfied at the first 

significant echoes after the anechoic region. Therefore all the 

echoes from beginning till the first significant echo can be 

cropped. But cropping is done till point (i−1)×l rather than i×l 

so as to trim only considerable number of data points before 

the first significant echo. This ensures that no required echo 

is missed. When the first significant echo is reached, the 

iteration is terminated and the echoes before the significant 

echo are trimmed as mentioned before (Fig. 5). 

C. Cropping  the echoes between artery walls 

The same method can be used to remove the echoes between 

artery walls assuming that there are sufficient data points 

between the artery walls. Here again another loop is 

implemented to control the window movement. Now the new 

control variable j will have the initial value i. Here again the 

number of points under the window for which the echo 

amplitude is higher than the threshold is obtained from the 

vector T. The condition for trimming is slightly modified as 

follows:  

1. T ( j ) is equal to zero.  

2. T ( j+1) is equal to zero.  

This condition is true between two significant echoes and all 

the points from j×l to ( j+1)×l of F are set to zero. When the 

next significant echo is reached this condition fails. Hence 

this method removes all the echoes between the significant 

echoes ensuring that none of the significant echoes are 

removed. The processed frame after both the cropping steps 

will have only the significant echoes of F (Fig. 6).  

IV. PERFORMANCE AND VALIDATION 

To analyze the performance of the algorithm, real-life data 

taken from different volunteers were processed to estimate 

how effectively the algorithm removes the unwanted echoes. 

For validating this method, we investigated the algorithm’s 

efficiency in the following two ways. 

A. Validation using hit ratio 

The effectiveness is quantitatively evaluated by checking 

the number of frames where the algorithm effectively 

removes the unwanted echoes keeping the desired echoes 

untouched. The hit ratio is calculated as number of frames 

where this happens out of the total number of frames. 

The index of the first non-zero value of the processed 

matrix is found out. If the algorithm is able to crop the frame 

in a 300 data point window around the starting of the first 

artery, the algorithm is said to have worked correctly or in 

other words, it is a hit. The number of frames for which this 

happens is evaluated. The results are tabulated (Table I). 

Each subject data has 400 frames in total. 

 

Figure  7: Peak location before and after processing. 

Each of the cases where the algorithm fails to give a hit 

was evaluated separately to check if we are missing a 

required artery. It was found that in all these cases, the 

algorithm only crops the frame earlier in the anechoic region 

but do not remove any significant data. Even in these cases, 

skin echoes and a large part of the anechoic region as well as 

the non-echoic regions between arteries are removed. So, the 

algorithm is very reliable. 

TABLE I.  RESULTS OF TE ALGORITHM 

 Subject No. of Hits Hit Ratio 

 1 398 99.5% 

 2 394 98.5% 

 3 398 99.5% 

 4 384 96% 

 5 399 99.75% 

 6 396 99% 

 7 398 99.5% 

 8 391 97.75% 

 9 387 96.75% 

 10 400 100% 

 11 389 97.25% 

 12 398 99.5% 

 13 398 99.5% 

 14 387 96.75% 

 15 396 99% 
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B. Improvement in peak detection 

As the removal of unwanted echoes is a prelude to the 

methods for peak detection, the amount by which these 

echoes are removed improves the ease of peak detection. This 

is calculated by performing peak detection on the raw data as 

well as the processed data. The number of peaks in each case 

along with the plots clearly indicates the usefulness of the 

algorithm (Fig. 7)  

V. CONCLUSION 

In this paper, we have discussed an efficient method called 

as threshold enumeration(TE) method to remove the 

unwanted echoes from given ultrasonographic data taken for 

arterial stiffness measurement. This algorithm enumerates the 

number of high threshold values in a window and removes 

the unwanted echoes using this. The ability of the algorithm 

to effectively remove the unwanted echoes across the 

different subjects is observed through plots, hit ratio and 

improvement in peak detection. The algorithm removes the 

anechoic region as well as the low amplitude echo portion 

between the arteries effectively, thereby improving ease of 

peak detection. Using the various ultrasonographic data 

specimens, the efficiency and accuracy of this method is 

evaluated and demonstrated. It is found that this algorithm 

takes only 2-4% of time that is required for a variance based 

method. 
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