

Abstract:
Performance analysis of scheduling Algorithms in Simulated

Parallel condition is deals with the optimal assignment of a set of

tasks to the parallel multiprocessor system and commands to their

execution for minimizing the total completion time. When we

submit the Tasks to multiprocessors systems then we really want

to know how well such tasks are performing. The actual

experimentation on multiprocessor is still a costly and complex

approach. These systems are still out of the reach of young

researches for doing research in higher education institutes in

developing countries. There have so many reasons for non-

availabilities of these systems.

So all these shortcomings convinced us to switch towards

simulation of multiprocessor environment for the performance

measurement of processor.

This paper is an effort to provide a GUI based simulated

multiprocessors environment for the performance measurement or

analysis scheduling Algorithms in Simulated Parallel

environment.

Keywords: 1) Multiprocessor Environment Parallelization,

Simulated Framework performance evolution.

INTRODUCTION
In parallel processing, the parallel portion of the application can

be accelerated according to the number of processors allocated to

it. In a homogeneous architecture, where all processors are

identical, the sequential portion of the application will have to be

executed in one of the processors, considerably degrading the

execution time of the application.

Two main distinguishing features of parallel versus sequential

programming are program

Partitioning and task scheduling. Both techniques are essential to

high- performance computing on both homogeneous and

heterogeneous systems. The partitioning

problem deals with how to detect parallelism and determine

the best trade-off between parallelism and overhead, the

scheduling problem deals with choosing the order in which a

certain number of tasks may be performed and their assignment to

processors in a parallel/distributed environment

Interconnection Networks
The interconnection network [6] plays a central role in

determining the overall performance of a multicomputer system.

If the network cannot provide adequate performance, for a

particular application, nodes will frequently be forced to wait for

data to arrive.

Some of the more important networks

 Fully connected or all-to-all

 Mesh

 Rings

 Hypercube

 X - Tree

 Shuffle Exchange

 Butterfly

 Cube Connected Cycles

 Fully connected or all-to-all

This is the most powerful interconnection network (topology):

each node is directly connected to ALL other nodes.

Fig.1 Fully connected

Each node has N-1 connections (N-1 nearest neighbors) giving a

total of N(N-1) / 2 connections for the network.

Even though this is the best network to have the high number of

connections per node mean this network can only be implemented

for small values of N. Therefore some form of limited

interconnection network must be used.

 Mesh (Torus)

In a mesh network, the nodes are arranged in a k dimensional

lattice of width w, giving a total of w^k nodes.

[usually k=1 (linear array) or k=2 (2D array) e.g. ICL DAP]

Communication is allowed only between neighbouring nodes. All

interior nodes are connected to 2k other nodes.

Fig. 1.1D mesh of width 4

Simulated Performance and Task Scheduling Analysis of Multiprocessor

in Parallel (Environment)

 Gagandeep Singh Chhailadeep Kaur

 M.tech (ACET, ASR) Assit Prof. (ACET, ASR)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

1www.ijert.org

Fig.1.2D mesh of width 3

Fig.1.3 D mesh of width 3

 Rings

A simple ring is just a linear array with the end nodes linked.

Fig.1.4 Ring

It is equivalent to a 1D mesh with wraparound connections. One

drawback to this network is that some data transfers may require

N/2 links to be traversed.

This can be reduced by using a chordal ring this is a simple ring

with cross or chordal links between nodes on opposite sides.

Fig.1.5 Chordal ring

 Hypercube Connection (Binary n-Cube)

Hypercube networks consist of N = 2^k nodes arranged in a k

dimensional hypercube.

The nodes are numbered 0, 1...2^k -1 and two nodes are

connected if their binary labels differ by exactly one bit.

Fig.1.6 1D, 2D, 3D Hypercube Connections

Fig.1.7 4D Hypercube

K dimensional hypercube is formed by combining two k-1

dimensional hypercube and connecting corresponding nodes i.e.

hypercube are recursive. Each node is connected to k other nodes

i.e. each is of degree k

The departmental NCUBE is based on this topology i.e. a 5

dimensional hypercube (64 nodes)

1. Metrics for Interconnection Networks
Metrics provide a framework to compare and evaluate

interconnection networks [6]. The metrics we will use are:

1. Network connectivity

2. Network diameter

3. Narrowness

4. Network expansion increments

Network Connectivity
Network nodes and communication links sometimes fail and must

be removed from service for repair. When components do fail the

network should continue to function with reduced capacity.

Network connectivity measures the resiliency of a network and its

ability to continue operation despite disabled components i.e.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

2www.ijert.org

connectivity is the minimum number of nodes or links that must

fail to partition the network into two or more disjoint networks

The larger the connectivity for a network the better the network is

able to cope with failures.

Network Diameter
The diameter of a network is the maximum internodes distance

i.e. it is the maximum number of links that must be traversed to

send a message to any node along a shortest path.

The lower the diameter of a network the shorter the time to send a

message from one node to the node farthest away from it.

Narrowness
This is a measure of congestion in a network and is calculated as

follows:

Partition the network into two groups of processors A and B

where the number of processors in each group is Na and Nb and

assume Nb < = Na. Now count the number of interconnections

between A and B call this I. Find the maximum value of Nb / I for

all partitionings of the network. This is the narrowness of the

network.

The idea is that if the narrowness is high (Nb > I) then if the

group B processors want to send messages to group A congestion

in the network will be high (since there are fewer links than

processors)

Network Expansion Increments
A network should be possible to create larger and more powerful

multicomputer systems by simply adding more nodes to the

network. E.g. an 8 node linear array can be expanded in

increments of 1 node but a 3 dimensional hypercube can be

expanded only by adding another 3D hypercube. (i.e. 8 nodes)

1.2 Parallel Environment (PE)
Parallel Environment is a high-function development and

execution environment for parallel applications (distributed-

memory, message-passing applications running across multiple

nodes). It is designed to help organizations develop, test, debug,

tune and run high-performance parallel applications written in C,

C++ and Fortran on pSeries clusters. Parallel Environment runs

on AIX® or Linux®. Parallel Environment includes the following

components:

 The Parallel Operating Environment (POE) for

submitting and managing jobs.

 IBM's MPI and LAPI libraries for communication

between parallel tasks.

 PE Benchmarker, a suite of applications and utilities to

analyze program performance.

 A parallel debugger (pdbx) for debugging parallel

programs.

 Parallel utilities to ease file manipulation.

Overview of Scheduling Mechanism in

Multiprocessor Systems
A Scheduling is a key concept in computer multitasking and

multiprocessing operating system design, and in real-time

operating system design. In modern operating systems, there are

typically many more processes running than there are CPUs

available to run them. Scheduling refers to the way processes are

assigned to run on the available CPUs. This assignment is carried

out by software known as a scheduler.

The scheduler is concerned mainly with:

 CPU utilization - to keep the CPU as busy as possible.

 Throughput - number of process that complete their

execution per time unit.

 Turnaround - total time between submission of a

process and its completion.

 Waiting time - amount of time a process has been

waiting in the ready queue.

 Response time- amount of time it takes from when a

request was submitted until the first response is

produced.

 Fairness - Equal CPU time to each thread.

In real-time environments, such as mobile devices for automatic

control in industry (for example robotics), the scheduler also must

ensure that processes can meet deadlines; this is crucial for

keeping the system stable.

A scheduling algorithm is the algorithm, which dictates how

much CPU time is allocated to Processes and Threads. The goal

of any scheduling algorithm is to fulfill a number of criteria:

 No task must be starved of resources - all tasks must get

their chance at CPU time;

 If using priorities, a low-priority task must not hold up

a high-priority task;

 The scheduler must scale well with a growing number

of tasks, ideally being O (1). This has been done, for

example, in the Linux kernel.

In order to decrease the impact of failures on an application,

matching and scheduling algorithms must be devised which

minimize not only the execution time but also the failure

probability of the application. It is not possible to minimize both

at the same time. Thus, the goal of this paper is to develop

matching and scheduling algorithms, which account for both the

execution time and the failure probability and can trade off

execution time against the failure probability of the application. In

order to attain these goals, a bi-objective scheduling problem is

first formulated and then two different algorithms, the bi-

objective dynamic level scheduling algorithm and the bi-objective

genetic algorithm, are developed. The simulation results confirm

that the proposed algorithms can be used for producing task

assignments where the execution time is weighed against the

failure probability.

Scheduling Algorithm is the method used to determine which of

several processes, each of which can safely have a resource

allocated to it, will actually be granted use of the resource.

First In First Out
FIFO is an acronym for First In, First Out, an abstraction in

ways of organizing and manipulation of data relative to time and

prioritization. This expression describes the principle of a queue

processing technique or servicing conflicting demands by

ordering process by first-come, first-served (FCFS) behavior:

what comes in first is handled first, what comes in next waits

until the first is finished, etc.

FCFS is also the shorthand name for the FIFO operating system

scheduling algorithm, which gives every process CPU time in the

order they come.

The simplest scheduling algorithm [10], FIFO simply queues

processes in the order that they arrive in the ready queue.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

3www.ijert.org

 Since context switches only occur upon process

termination, and no reorganization of the process queue

is required, scheduling overhead is minimal.

 Throughput can be low, since long processes can hog

the CPU

 Turnaround time, waiting time and response time can

be low for the same reasons above

 No prioritization occurs, thus this system has trouble

meeting process deadlines.

 The lack of prioritization does permit every process to

eventually complete, hence no starvation.

This scheduling method is used on Batch-Systems, it is NON-

PREEMPTIVE. It implements just one queue, which holds the

tasks in order they come in. Its Strengths are its Simple and Fair

but the Problems are Convoy Effect and Order of task arrival is

very important for average Turnaround time.

 1.2.2 Shortest Job First (SJF)
It selects the shortest Job/Process that is available in the run

queue.

This scheduling algorithm assumes that run times are known in

advance. It is NON-PREEMPTIVE

Strengths:

-Nearly optimal (Turnaround Time)

Problems:

-Only optimal if all jobs/process are available simultaneously

-Usually run times are not known ...

Shortest-Job-First (SJF)
 Another name is Shortest Process Next algorithm

 A better name may be shortest next-CPU-burst first

 Assumes we know the length of the next CPU burst of

all ready processes

 The length of a CPU burst is the length of time a

process would continue executing if given the processor

and not preempted

 SJF estimates the length of the next burst based on the

lengths of recent CPU bursts

 Starts with a default expected burst length for a new

process

 Suppose that time intervals are numbered 1 for first

CPU burst, 2 for second CPU burst, etc.

 Default length is e(1), the expected length of time for

the first CPU burst

 Unlike other scheduling algorithms, this algorithm

assumes that information about a process's burst length

is stored between the times when it is ready.

 In keeping with the need for efficiency, only a small

amount of info is stored and only a simple calculation is

performed

 We can weight the previous expectation (representing

all previous bursts) and the most recent burst with any

two weights that add up to 1, e.g., say 0.5 and 0.5, or

0.9 for previous expectations and 0.1 for actual time for

most recent CPU burst.

1.2.3 Round Robin
Round-robin (RR) is one of the simplest scheduling algorithms

for processes in an operating system, which assigns time slices to

each process in equal portions and in circular order, handling all

processes without priority.

For example, if the timer runs at 100Hz, and a process' quantum

is 10 ticks, it may run for 100 milliseconds (10/100 of a second).

In the Round Robin algorithm, each process is given an equal

quantum; the big question how to choose the time quantum.

Advantages of Round Robin include its simplicity and strict "first

come, first served" nature. Disadvantages include the absence of a

priority system: lots of low privilege processes may starve one

high privilege one.

Round-robin scheduling
The scheduler assigns a fixed time unit per process, and cycles

through them.

 RR scheduling involves extensive overhead, especially

with a small time unit.

 Balanced throughput between FCFS and SJN, shorter

jobs are completed faster than in FCFS and longer

processes are completed faster than in SJN.

 Fastest average response time, waiting time is

dependent on number of processes, and not average

process length.

 Because of high waiting times, deadlines are rarely met

in a pure RR system.

 Starvation can never occur, since no priority is given.

Order of time unit allocation is based upon process

arrival time, similar to FCFS.

PROBLEM DEFINITION

A parallel algorithm, as opposed to a traditional sequential

(or serial) algorithm, is an algorithm which can be

executed a piece at a time on many different processing

devices, and then put back together again at the end to get

the correct result.

On a given problem, once the parallelism is extracted and

the execution is described as a dynamic task graph, the

problem is to schedule this task graph on the resources of

the parallel architecture. This motivates theoretical studies:

to design algorithms whose related task graphs can be

scheduled on various architectures with proved bounds is a

main research axis; to provide scheduling algorithms suited

to machine models; to develop quantitative models of

parallel executions.

Some algorithms are easy to divide up into pieces like this.

For example, splitting up the job of checking all of the

numbers from one to a hundred thousand to see which are

primes could be done by assigning a subset of the numbers

to each available processor, and then putting the list of

positive results back together.

Most of the available algorithms to compute pi (), on the

other hand, cannot be easily split up into parallel portions.

They require the results from a preceding step to

effectively carry on with the next step. Such problems are

called inherently serial problems. Iterative numerical

methods, such as Newton's method or the three-body

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

4www.ijert.org

problem, are also algorithms, which are inherently serial.

Some problems are very difficult to parallelize, although

they are recursive. One such example is the depth-first

search of graphs.

Parallel algorithms are valuable because of substantial

improvements in multiprocessing systems and the rise of

multi-core processors. In general, it is easier to construct a

computer with a single fast processor than one with many

slow processors with the same throughput. But processor

speed is increased primarily by shrinking the circuitry, and

modern processors are pushing physical size and heat

limits. These twin barriers have flipped the equation,

making multiprocessing practical even for small systems.

The cost or complexity of serial algorithms is estimated in

terms of the space (memory) and time (processor cycles)

that they take. Parallel algorithms need to optimize one

more resource, the communication between different

processors. There are two ways parallel processors

communicate, shared memory or message passing.

Shared memory processing needs additional locking for the

data, imposes the overhead of additional processor and bus

cycles, and also serializes some portion of the algorithm.

Message passing processing uses channels and message

boxes but this communication adds transfer overhead on

the bus, additional memory need for queues and message

boxes and latency in the messages. Designs of parallel

processors use special buses like crossbar so that the

communication overhead will be small but it is the parallel

algorithm that decides the volume of the traffic.

Parallel algorithm design is not easily reduced to simple

recipes. Rather, it requires the sort of integrative thought

that is commonly referred to as ``creativity.'' However, it

can benefit from a methodical approach that maximizes the

range of options considered, that provides mechanisms for

evaluating alternatives, and that reduces the cost of

backtracking from bad choices. Goal of this paper is to

suggest a framework within which parallel algorithm

design can be explored. In the process, we hope this will

develop intuition as to what constitutes a good parallel

algorithm. Various cost annotations, such as number of

operations, Response time, Turnaround time, Waiting

Time, Total Turnaround time have been introduced in

order to lead to more realistic complexity analysis on

distributed architectures.

1.2.4 Comparison between different Scheduling
Algorithms

Schedulin
g
algorithm

CPU

Utilizat
ion

Throughp
ut

Turnar
ound
time

Respo
nse
time

Deadli
ne
handli
ng

Starvati
on

free

First

In First
Out

Low Low High High No Yes

Shortest
remaining
time

Mediu
m

High
Mediu
m

Mediu
m

No No

Round-
robin
schedulin
g

High Medium
Mediu
m

Low No Yes

Performance Metrics of Parallel Systems

Speedup: Speedup Tp is defined as the ratio of the serial runtime

of the best sequential algorithm for solving a problem to the time

taken by the parallel algorithm to solve the same problem on p

processor. The p processors used by the parallel algorithm are

assumed to be identical to the one used by the sequential

algorithm.

Cost: Cost of solving a problem on a parallel system is the

product of parallel runtime and the number of processors used E

= p.Sp

Efficiency: Ratio of speedup to the number of processors.

Efficiency can also be expressed as the ratio of the execution time

of the fastest known sequential algorithm for solving a problem to

the cost of solving the same problem on p processors. The cost of

solving a problem on a single processor is the execution time of

the known best sequential algorithm

Details about working of the Simulator
1.4.1 Simulator features

 Training, evaluation and analysis system – able to

create and manage users and exercises. The instructor

can assign and evaluate exercises checking its

execution data.

 GUI based – Easy to use & understand.

 Graph generator--By just clicking on Graph Generator

button in simulator it generates the performance graphs

in Excel worksheet. With the help of VBA Macro

coded in Excel worksheet, data from MS-Access is

passed to excel worksheet and hence graphs are

generated from this data.

 Run-time performance measurement --It measures

the completion time as well as average completion time

during run-time at regular intervals [15].

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

5www.ijert.org

2 Steps for the working of simulator: -

1. Initially value for the jobs are assigned.

2. Then information about number of processors is fed to

the simulator as shown in snapshot.

3. On the basis of number of process arrived it equally

divides the load among different processors.

4. When jobs are divided among processors they started

giving response and at run time choose the scheduling

algorithm according to requirement.

5. Then show the simulator and start the simulation where

jobs start running and we get the response time,

Waiting time and Turnaround time. As information

about Turnaround time of various jobs at any instant is

available, Total turnaround time of the processor is

generated.

 Fig.1 Simulator in Idle state.

 Fig.2 Processes have been added.

 Fig.3 Number of processes is decided and load is divided.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

6www.ijert.org

 Fig.4 FCFS based strategy is choosed and

simulator is showed.

 Fig.5 Simulator is started.

Fig.6 Smallest job first strategy has been choose &

simulation is generated.

 Fig.21 Round Robin strategy has been choosed

and simulation is generated.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

7www.ijert.org

 OBJECTIVE
 In the design of scheduling algorithms for efficient parallel

processing, there are four fundamental aspects for the design of

scheduling algorithms: Performance, Time-complexity,

Scalability and Applicability.
By high performance we mean the scheduling algorithms should

produce high quality solutions. The algorithms must be robust so

that they can be used under a wide range of input parameters.

Scheduling algorithms should have low time-complexity. The

time-complexity of an algorithm is an important factor so far as

the quality of solution is not compromised. Parallel scheduling

algorithms must be scalable. On the one hand, the problem should

possess problem-size scalability, that is, the algorithms

consistently give a good performance even for large input. On the

other hand, the algorithms should possess processing-power

scalability, that is, given more processors for a problem, the

parallel scheduling algorithms produce solutions with almost the

same quality in a shorter period of time. Scheduling algorithms

could be used in practical environments. To achieve this goal one

must take into account realistic assumptions about the program

and multiprocessor models.

CONCLUSION & FUTURE DIRECTIONS
This Paper demonstrated the advantages of deploying a

scheduling algorithm method in a parallel system. It had

presented an scheduling algorithm method and demonstrated its

favorable properties, both by theoretical means and by

simulations.

The value of the proved minimal disruption property of the

mapping adaptation has been demonstrated in the extensive set of

simulations. Such a scheme is particularly useful in systems with

many input ports and packets requiring large amounts of

processing. With the proposed scheme, a kind of statistical

multiplexing of the incoming traffic over the multiple processors

is achieved, thus in effect transforming a network node into a

parallel computer. The improvements of processor utilization

decrease the total system cost and power consumption, as well as

improve fault tolerance.

Work done in this Thesis was an effort to design and develop a

simulated multiprocessor environment so as to virtualize the

actual Scheduling system. This paper presents a simulation

environment developed with the aim to facilitate the research of

multiprocessor systems as well as performance measurement of

scheduling algorithms in developing countries. A simulator

program was coded in VB.net to fulfil this purpose. In future the

work done in this thesis can be extended by modelling many

more scheduling algorithms in the developed environment. Effort

will be done in future to validate the data captured by simulator

with actual experimental setup.

REFERENCES

1. Almasi, G.S. and A. Gottlieb (1989). Highly Parallel

Computing. Benjamin-Cummings publishers, Redwood City, CA.

2. Hillis, W. Daniel and Steele, Guy L., Data Parallel Algorithms

Communications of the ACM December 1986

3. Quinn Michael J, Parallel Programming in C with MPI and

OpenMP McGraw-Hill Inc. 2004. ISBN 0-07-058201-7

4. IEEE Journal of Solid-State Circuits:"A Programmable 512

GOPS Stream Processor for Signal, Image, and Video

Processing", Stanford University and Stream Processors, Inc.

5. Barney, Blaise. "Introduction to Parallel Computing".

Lawrence Livermore National Laboratory.

http://www.llnl.gov/computing/tutorials/parallel_comp/.

Retrieved 2007-11-09

6. Bill Dally, Stanford University: Advanced Computer

Organization: Interconnection Networks

7. Quinn Michael J, Parallel Programming in C with MPI and

OpenMP McGraw-Hill Inc. 2004. ISBN 0-07-058201-7.

8. Albert Y.H. Zomaya, Parallel and distributed Computing

Handbook, McGraw-Hill Series on Computing Engineering, New

York (1996).

9. Ernst L. Leiss, Parallel and Vector Computing A practical

Introduction, McGraw-Hill Series on Computer Engineering,

New York (1995).

10. Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis,

Introduction to Parallel Computing, Design and Analysis of

Algorithms, Redwood City, CA, Benjmann / Cummings (1994).

11. X. Sun and J. Gustafson, "Toward a Better Parallel

Performance Metric," Parallel Computing, Vol. 17, No. 12, Dec.

1991, pp. 1093-1109.

12. Bossel H., Modeling & Simulation, A. K. Peters Pub., 1994.

13. Ghosh S., and T. Lee, Modeling & Asynchronous Distributed

Simulation: Analyzing Complex Systems, IEEE Publications,

2000.

14. Fishman G., Discrete-Event Simulation: Modeling,

Programming and Analysis, Springer-Verlag, Berlin, 2001.

15. Woods R., and K. Lawrence, Modeling and Simulation of

Dynamic Systems, Prentice Hall, 1997.

16. Rashmi Bajaj and Dharma P. Agrawal. Improving scheduling

of tasks in a heterogeneous environment. IEEE Trans.

Parallel Distrib. Syst., 15(2):107–118, 2004.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

8www.ijert.org

