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Abstract— We present functional models for software and 

hardware components of Time-Triggered Systems on a Chip 

(TTSoC). These are modeled in the asynchronous component 

based language BIP. We demonstrate the usability of our 

components for simulation of software which is developed for 

the TTSoC. Our software comprises services and an application 

part. Our approach allows us to simulate and validate aspects of 

the software system at an early stage in the development process 

and without the need to have the TTSoC hardware at hand. 
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I. INTRODUCTION 

Simulation and analysis of systems at an early stage in the 
development process allows the identification of problems 
prior to the systems deployment. Thus, it can save 
development costs. 

In this paper we present an approach that allows the 
simulation of application software parts of embedded systems 
without the hardware and low level software drivers and 
operating system. In particular we are targeting systems based 
on Time-Triggered Systems on a Chip (TTSoC) [9] hardware. 
TTSoC are multi core systems where hosts – usually 
comprising at least a core and local memory – communicate at 
pre-defined periodic times with each other. All hosts are 
integrated on one chip. Thus, it is possible to achieve time 
guarantees for messages sent between different hosts. This 
guaranteed behavior facilitates certification, e.g., in the 
automotive or avionics industry. Cores may be specialized, 
e.g., for application code – our deployment scenarios typically 
feature one piece of software which controls the rest of the 
system called application – and I/O. We formally describe an 
abstract model of the TTSoC in software using the BIP 
(Behavior, Interaction, Priority [2]) modeling language. This 
allows us to simulate software parts of the system prior to the 
deployment on the hardware. The deployment may be an 
expensive process, in some cases the hardware might even not 
be available at the start of a development project. Using our 
approach we are able to simulate software and hardware-parts 
of a system in software. This enables us to test software which 
can interact with the simulated software and hardware parts 
(software-in-the-loop). Our BIP model allows the simulation 
of application and I/O communication parts running on 
different cores. Our simulation aims particularly at causal 
dependencies between components and their interactions. 
These aspects behave in the same way as in the nonsimulated 
system. Causal dependencies is an important aspect in multi-
core systems and even more crucial in TTSoC based systems. 

Furthermore, our models represent some architectural features 
of the system. 

In this paper we target TTSoC systems for controlling 
industrial automation devices. As a case study we are 
describing the BIP based simulation code which is needed to 
simulate the application software which controls a sorting 
station (Figure 1) used in the industrial automation domain. 
The main contributions of this paper are the BIP models 

 

Fig.1: Sorting machine overview 

of the TTSoC system, the case study, and a method to 
integrate generated C code pieces from tool chains used in the 
industrial automation domain into BIP models that simulate 
the industrial automation domain. 

1.1 Related Work 

The Distribution Operation Layer (DOL) [15] is used for 
the analysis of embedded multiprocessor systems. DOL can be 
used for system performance analysis as well as optimization / 
design space exploration tasks, like scheduling of applications. 
The Unified Modeling Language (UML) [12], a system 
modeling language, is used to specify, construct, modify and 
visualize object-oriented software systems. Another approach 
for modeling and simulating real-time embedded systems is 
developed in the Ptolemy project [8]. Furthermore, a language 
originally driven by the avionics industry for simulating for 
the analysis and specification of hardware and software 
architectures is AADL [7]. For other languages and notations 
specific to tools, we can mention Simulink / Stateflow that is 
used to model and simulate event-driven systems; SystemC 
[11], a standard design and verification language built in C++; 
Metropolis [1], an environment for complex heterogeneous 
electronic system design that supports simulation, verification 
and synthesis; and IF-toolset [6], an environment for modeling 
and validation of heterogeneous real-time systems. 

In contrast to our work carried out using BIP the real-time 
aspects and precise timing conditions are of greater 
importance in these approaches. Thus, our models are more 
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abstract and simpler to use. Simulating systems on the more 
abstract level is justified by the fact that we do not know the 
full timing properties of our system at simulation time. 
Hardware specifications might also be subject to change at the 
time we run our simulations. In our work we rather want to 
find out possible constraints that need to be fulfilled by 
running a randomized simulation. These constraints are taken 
into account during the implementation by, e.g., ensuring that 
certain code parts meet an upper bound execution deadline by 
using a Worst-Case Execution Time Analysis tool. 

A formal study and modeling of some aspects of the same 
sorting station from the industrial automation domain that we 
describe in this paper can be found in [5]. The Coq theorem 
prover [13] is used to prove some properties of the IEC 
61131–3 model [10] of this same station. However, TTSoC 
aspects are not regarded in this Coq based work. 

1.2 Overview 

An overview on the BIP language is given in Section 2. 
Section 3 describes TimeTriggered Systems on a Chip and 
Section 4 presents their modeling in BIP. A case study 
simulating the application software controlling an industrial 
automation device is featured in Section 5. A short evaluation 
is given in Section 6. A conclusion is given in Section 7. 

II. BIP - BEHAVIOR INTERACTION PRIORITY 

In this section we recall the necessary concepts of the BIP 

framework [2]. BIP is a component-based framework for 

constructing systems by superposing three layers of 

modeling: Behavior, Interaction, and Priority. The behavior 

layer consists of a set of atomic components represented by 

transition systems. The interaction layer models the 

collaboration between components. Interactions are 

described using sets of ports and connectors between them. 

The priority layer is used to enforce scheduling policies 

applied to the interaction layer, given by a strict partial order 

on interactions.Maintaining the Integrity of the Specifications 

Component-based Construction 

BIP offers primitives and constructs for modeling and 
composing complex behaviors from atomic components. 
Atomic components are Labeled Transition Systems (LTS) 
extended with C/C++ functions and data. Transitions are 
labeled with sets of communication ports. Composite 
components are obtained from atomic components by 
specifying connectors and priorities. 

Atomic Components An atomic component is endowed with 

a set of local variables X taking values in a domain D. A 

valuation of the set X is a function of X → D that maps each 

variable to a value. Atomic components synchronize and 

exchange data with other components through the notion of 

port. 

Definition 1 (Port). A port p[X0], where X0 ⊆ X, is defined by 

a port identifier p and some data variables in a set X0 (referred 

as the support set). 

Definition 2 (Atomic component). An atomic component B is 

defined as a tuple (P,L, T,X,{gτ}τ∈T,{fτ}τ∈T), where: 

– (P,L,T) is an LTS over a set of ports P. L is a set of 

control locations and T ⊆ L × P × L is a set of transitions. 

– X is a set of variables. 

– For each transition τ ∈ T: 

• gτ is a boolean condition over a valuation of X: the 

guard of τ, 

• fτ is the computation step of τ, a list of statements. 

For τ = (l,p,l0) ∈ T a transition of the internal LTS, l (resp. l0) 

is referred as the source (resp. destination) location and p is a 

port through which an interaction with another component 

can take place. Moreover, a transition τ = (l,p,l0) ∈ T in the 

internal LTS involves a transition in the atomic component of 

the form (l,p,gτ,fτ,l0) which can be executed only if the guard 

gτ evaluates to true, and fτ is a computation step consisting of 

transformations of local variables in X. 

Example: Atomic component “Global timer” Figure 2 shows 

the global timer (clock) used in our TTSoC that we modeled 

as an example of an atomic component. 

 
Fig.2: Atomic component 

This atomic component has a port tick, a control location 

l1 and a variable time that is associated to the port tick and is 

increased every time the transition tick occurs. The absence 

of guard on the transition tick implies that its guard is always 

true. 

Semantics of Atomic Components. The semantics of an 

atomic component is an LTS over configurations and ports, 

formally defined as follows: 

Definition 3 (Semantics of Atomic Components). The 

semantics of the atomic component (P,L,T,X,{gτ}τ∈T,{fτ}τ∈T) is 

an LTS (P,Q,T0) s.t. 

– Q = L × [X → D], 

– T0 = {((l,v),p,(l0,v0)) ∈ Q×P ×Q | ∃τ = (l,p,l0) ∈ T : 

gτ(v)∧v0 = fτ(v)}. 

A configuration is a pair (l,v) ∈ Q where l ∈ L is a control 

location, and v ∈ [X →D] is a valuation of the variables in X. 

The evolution of configurations (l1,v) −−−p(vp→) (l2,v0), where 

vp is a valuation of variables attached to port p, is possible if 

there exists a transition (l1,p[Xp],gτ,fτ,l2), s.t. gτ(v) = true. As a 

result, the valuation v of variables is modified to v0 = fτ(v[Xp 

← vp]). 

Creating composite components. Assuming some available 

atomic components B1, ...,Bn, we show how to connect {Bi}i∈I 

with I ⊆ [1,n] using connectors. 

A connector γ is used to specify possible interactions, i.e. 

the sets of ports that have to be jointly executed. Two types of 

ports (synchron, trigger) are defined, in order to specify the 

tick time 

time ++ 
tick Timer 

l 1 
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feasible interactions of a connector. A trigger port is active: it 

can initiate an interaction without synchronizing with other 

ports. It is represented graphically by a triangle. A synchron 

port is passive: it needs synchronization with other ports for 

initiating an interaction. It is denoted by a circle. A feasible 

interaction of a connector is a subset of its ports s.t. either it 

contains some trigger, or it is maximal. 
   

 
and broadcast 

 

Figure 3 shows two connectors: Rendezvous (only the 

maximal interaction s1r1r2r3 is possible), Broadcast (all the 

interactions containing the trigger port s1 are possible). 

Formally, a connector is defined as follows: 

Definition 4 (Connector). A connector γ is a tuple (Pγ,t,G,F), 

where: 

– Pγ = {pi[Xi] | pi ∈ Bi.P}i∈I s.t. ∀i ∈ I : Pγ ∩ Bi.P = {pi}, 

– t : Pγ → B s.t. t(p) = true if p is trigger (and false if 

synchron), 

– G is a Boolean function over the set of variables ∪i∈IXi 

(the guard), – F is an update function defined over the set 

of variables ∪i∈IXi. 

Pγ is the set of connected ports called the support set of γ. The 

ports in Pγ are tagged with function t indicating whether they 

are trigger or synchron. Moreover, for each i ∈ I, xi is a set of 

variables associated to the port pi. 

A communication between the atomic components of 

{Bi}i∈I through a connector (Pγ,G,F) is defined using the notion 

of interaction: 

Definition 5 (Interaction). A set of ports a = {pj}j∈J ⊆ Pγ for 

some J ⊆ I is an interaction of γ if one of the following 

conditions holds: (1) there exists j ∈ J s.t. pj is trigger; (2) for 

all j ∈ J, pj is synchron and {pj}j∈J = Pγ. 

An interaction a has a guard and two functions Ga,Fa, 

respectively obtained by projecting G and F on the variables 

of the ports involved in a. We denote by I(γ) the set of 

interactions of γ. Synchronization through an interaction 

involves two steps. First, the guard Ga is evaluated, then the 

update function Fa is applied. If there are several possible 

interactions inside a connector, we choose the interaction 

involving the maximum1 number of ports. One can also add 

priorities to reduce non-determinism whenever several 

interactions are enabled. Then, the interaction with the 

highest priority is chosen. 

                                                           
1 If there are several maximal interactions, the choice between them is at 

random. 

In the TTSoC system that we modeled, the global timer 

communicates with all the components that need to 

synchronize their action according to some time schedule. 

These communications are done by using interactions 

between the global timer and these components. Figure 4 

represents a connector with data transfer used in the TTSoC 

model. It connects two ports core2tiss io of a communication 

service component Comm and of a TISS component. These 

ports have their own associated message variables msg. The 

message variable of the Comm component is sent over the 

connector to the TISS component (TISS.msg = Comm.msg). 

Definition 6 (Composite Component). A composite 

component is defined from a set of available atomic 

components and a set of connectors. The connection of the 

{Bi}i∈I using the set Γ of connectors is denoted Γ({Bi}i∈I). 

Note that a composite component obtained by composition of 

a set of atomic components can be composed with other 

components in a hierarchical and incremental fashion using 

the same operational semantics. 

Definition 7 (Semantics of Composite Components). A state 

q of a composite component C = Γ(B1,...,Bn), where Γ connects 

the Bi’s for i ∈ I, is a n-tuple q = (q1,...,qn) where qi = (li,vi) is a 

state of Bi. Thus, the semantics of C is precisely defined as a 

transition system (Q,A,−→), where: 

– Q = B1.Q × ... × Bn.Q, 

– A = {a ∈ I(γ)}γ∈Γ is the set of all possible interactions, 

– −→ is the least set of transitions satisfying the following 

rule: 

 
where a = {pi}i∈I, X is the set of attached variables on the 

ports of a, v is the global valuation of variables, and Fai is the 

partial function derived from F restricted to the variable 

associated to pi. 

The meaning of the above rule is the following: if there exists 

an interaction a s.t. all its ports are enabled in the current state 

and its guard (Ga(v(X))) is true, then we can fire the 

interaction. When a is fired, not involved components stay in 

the same state, and, involved components evolve according to 

the interaction. 

Notice that several distinct interactions can be enabled at 

the same time, thus introducing non-determinism in the 

product behavior, possibly restricted using priorities. 

Definition 8 (Priority). Let C = (Q,A,−→) be the behavior of 

the composite component Γ(B1,...,Bn). A priority model π is a 

strict partial order on the set of interactions A. Given a 

priority model π, we abbreviate (a,a0) ∈ π to a ≺ a0. The 

component π(C) is defined by the behavior (Q,A,−→π), where 

−→π is the least set of transitions satisfying the following 

rule: 

r 1 

r 1 

r 2 r 3 

r 2 r 3 
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An interaction is enabled in π(C) only if it is enabled in C, 

and, it is maximal according to π among the active 

interactions in C. 

Finally, we consider systems defined as a parallel 

composition of components together with an initial state. 

Definition 9 (System). A system S is a pair (B,Init) where B is a 

component and Init is the initial state of B. 

III. TIME-TRIGGERED SYSTEMS ON A CHIP 

In a TTSoC several hosts communicate with each other 
using a time-triggered network. Hosts and time-triggered 
network are integrated on one chip. 

In this paper, we follow the TTSoC description given in 
[9]. A TTNoC consists of the following components: 

– Hosts are physical entities that interact via a time-

triggered network with each other. In many cases a host is 

a CPU Core equipped with its own memory and possible 

local I/O access. Cores provide computation power. 

Distinct cores can be used for handling different I/O tasks. 

Apart from cores, hosts can be connections to other bus 

systems or related I/O devices. 

– Hosts are connected via a Time-Triggered Network on a 

Chip (TTNoC). 

The TTNoC provides communication channels between 

the hosts. For each application purpose the TTNoC is 

configured in a way such that messages of fixed length 

can be sent between the different cores in distinct time 

slots. In our case (following [9]) we are looking at a 

TTNoC which is organized using a mesh structure. This 

means that different parts of communication channels are 

connected via switches which route messages through the 

network. One consequence is that unlike in traditional 

bus-systems different hosts may be communicating at the 

same time as long as their communication channel parts 

and switches do not interfere with each other. 

– The connection between a host and a TTNoC is guarded 

using a Trusted Interface Subsystem (TISS) which serves 

as an interface and intermediate storage for the host 

thereby abstracting some TTNoC details and ensuring that 

time slots and routes for messages are met. 

An example TTSoC is shown in Figure 5. One can see that 
six hosts are connected via TISS to the TTNoC. Two of the 
switches are directly connected to two TISS. The other two 
switches are each connected to only one TISS. The switches 
are connected with each other realizing a 2x2 grid. One can 
see that parallel communication is in some cases possible, e.g., 
Host 1 with Host 4, Host 5 with Host 6 and Host 2 with Host 3 
can exchange messages in the same time slot. 

IV. MODELING THE TTNOC IN BIP 
Here we give a description of the TTNoC components and 

their connection to the environment using TISS. We present 
their modeling using BIP. 

 

Fig.5: TTSoC overview Figures and Tables 

4.1 Managing Time 

Time-triggered systems are characterized by the fact that 
the communication between different hosts is done in a 
synchronous time-triggered way whereas the hosts themselves 
may internally behave in an asynchronous way and the 
interaction with the TISS may also behave asynchronously. 

Global Time Our model features a component which 

emits a global time tick (cf. Figure 2). Different parts of our 

BIP model can use this time tick, e.g., for synchronization. 

Splitting of the global time tick into subticks In the 

TTNoC BIP model at hand a global time tick tick is followed 

by three subticks t1, t2 and t3 that represent internal steps that 

are taken to transmit a message between different TISS via 

the TTNoC switches. Thus, we have four ticks which may be 

used to transmit a message between a TISS and a switch, 

transmit a message between this switch and another switch, 

transmit a message between this other switch and yet another 

switch, and finally transmit it to another TISS. Thus, routes 

through the TTNoC may comprise at most three switches. 

The time tick splitting is modeled as an independent BIP 

component. Larger TTNoC would require the modeling of 

additional subticks. 

4.2 The TISS 

A TISS has two main purposes: 

– It communicates with the host and serves as an 

intermediate storage for messages. The interface to the 

host associates messages with a port number. The 

interface to the TISS comprises the message together 

with routing and target host information. 

– It sends and receives messages at predefined periodical 

points in time over the TTNoC. Thereby it ensures that 

no collision of messages from different TISS occur inside 

the TTNoC. For this reason a static schedule has to be 

computed in advance for the entire TTSoC and each 

TISS is programmed accordingly. 

Figure 6 shows a core that communicates over a TTNoC 

using a TISS. Variables and their modifications are not 
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shown. The TISS receives messages from the core and sends 

messages to the core. In case of incoming messages from the 

core, routing information is added to messages and they are 

transmitted over the TTNoC. Otherwise, the routing 

information is deleted and the message is given to the core. 

The TISS also serves as a kind of buffer, since TTNoC and 

core do not have to be synchronized. The BIP model 

 

Fig.6: Connecting a host system to the TTNoC via a TISS 

comprises two locations l0 and l1. Messages may be received 

and collected at any time from the host system using the 

connector between the core2tiss io ports. The transmission 

and receiving of messages to and from he TTNoC happens 

only at the ttnoc comm transition from l1 to l0 while the 

global time tick performs a transition from l0 to l1. This 

ensures that at most one message is either sent over or 

received from the TTNoC per global time tick from a single 

TISS. Incoming messages from the TISS are associated with 

a port number and stored intermediately. The port number is 

used to determine the target host and additional routing 

information. This resolvement happens during or before a 

ttnoc comm transition. Messages to be collected from the host 

are also stored in the TISS together with a port number. The 

conditions when a message is actually sent during the ttnoc 

comm typically depends on additional internal variables that 

can, e.g., count global time ticks in the TISS during the tick 

transition. This ensure that different types of messages (e.g., 

associated with different ports) are only sent at predefined 

periodic points in time to predefined targets and remain in 

storage otherwise. 

 

4.3 Inside the TTNoC 

We refer to Figure 5 for on overview on the BIP 

components that represent a TTNoC and connectors and ports 

for message passing. Not shown in this figure are the means 

to emit and handle time ticks and the communication details. 

BIP models for switches A switch can handle one message 

per global tick. In our BIP model for switches in the 

described TTNoC we model this feature by introducing three 

states: l0, l1 and l2. l0 is the state before a message arrives. l1 

is the state where a message has arrived but not transmitted, 

l2 represents a state where the arrived message has been 

forwarded to another TISS or switch, but some time is still 

remaining before the next global tick. The arrival of a 

message occurs together with tick or during t1 or t2. The 

routing to the other switch or TISS happens in t1, t2 or t3. If 

it happens in t3 we return to l0 immediately, otherwise we 

mark the switch as used by taking state l2. Figure 7 gives an 

overview on a simple BIP model for the switch 2. It omits 

some communication details. The BIP models used in a more 

comprehensive implementation feature additional 

intermediate locations not visible to the external to facilitate 

the handling of additional constraints. 

 
vices interactions 

 

The TTSoC as a Component The TTSoC itself is modeled as 

a single composite BIP component comprising the switches, 

TISS components and connectors between these components. 

As interfaces it offers connections to the hosts and to the 

global time tick. 

 

4.4 Modeling the Host System 

In our case modeling a host system means the creation of 
BIP models that simulate the entire software that runs on a 
core and its execution characteristics. In the proposed scenario 
a host system is composed of components that realize: 
communication services, higher-level services, application 
code and I/O. Thus, the host is realized using different BIP 
components which may interact with each other. Unlike in the 
TTNoC different BIP components, e.g., representing different 
threads on the host core can run completely asynchronous. 
This may, e.g., be the case for different threads running on a 
CPU core. 

Communication Services Communication services 
represent software parts that realize some functionality that the 
application code may use. This can comprise operating system 
services and special hardware drivers. Here they are realized 
as BIP components that are connected to a TISS on the one 
side and to higher-level services, I/O, and application models 
on the other side. They simulate, services that we are 
implementing as part of a basic software support for our 
TTSoC. 

Higher-level Services Higher-level services are composed 
services that realize some higher-level functionality based on 
other services. Here we have modeled a voting service which 
takes several input values, e.g., from different sensors and 
establishes a mean value which is forwarded to the 
application. 

Application Code Component The application code is 
modeled as an atomic or composite single BIP component. A 
scenario with an application code component with connectors 
to other services is shown in Figure 8. 

Input / Output Components We provide BIP models that 
simulate Input and Output operations. These comprise 
simulation components that provide simulation of sensor data. 
Furthermore output components that simulate, e.g., actuators. 
In the current implementation these output components write 
their status data to files. 
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Realizing a Host System Figure 9 shows the interaction of 
an application with a communication service. This interaction 
may occur asynchronously to the global time tick and the 
TTNoC. By means of this asynchronity we model the much 
faster execution clock speed of a core compared to the 
TTNoC. 

 
Fig.9: Application and services on a core connected to a TISS 

4.5 Application Code for Industrial Automation 

In this paper we target different application scenarios for 
the usage of TTSoC based systems in the industrial 
automation domain. Software for industrial automation is 
typically described using the IEC 61131–3 [10] standard. 
These software descriptions divide computation into different 
steps which are often executed one after the other forming a 
kind of loop structure with branches. C code is typically 
generated for each of these steps individually. In the real 
system it is integrated into one large C loop structure. Here we 
realize this loop like top level control structure in BIP as an 
LTS and integrate generated or hand written C code that 
realizes the functionality represented by the steps into the LTS 
transitions. This way, we have a device to test and simulate 
these generated or hand-written C code pieces and adapt them. 

API calls The generated or hand-written C code contains 
API calls (e.g., a POSIX API). Communication with BIP 
modeled services is done by using the same C API calls from 
the application code. However, the implementation is done in 
a slightly different way. Our C functions store and retrieve 
values from intermediate stores which are filled and collected 
by the services. The same principle is used in the real 
implementation so our simulation sticks close to it. In the real 
implementation services can, e.g., be realized as independent 
threads. 

Time The execution of a step is usually associated with a 
maximal execution time called time slice. In our model 
execution of the C code associated with a step is done during 
one state transition. Modeling the duration of this execution is 
done by requiring that a number of global time ticks 
(corresponding to the time-slice) have to be elapsed before the 
application code component is able to communicate its new 
result and control is passed to the BIP transition associated 
with the next step. 

 

 

 

 

We have described an additional transformation from IEC 
61131–3 to BIP in [4]. Unlike in this work, here we keep the 
BIP structure as minimal as possible in order to simulate the 
C-code pieces in the most realistic way. 

V. APPLICATION AND SERVICE SIMULATION FOR 

A SORTING STATION 
Here we describe the application code for our sorting 

station as depicted in Figure 5. 

Figure 10 gives an overview on a possible setting: this 
study is inspired by a real existing demonstrator [14]. Six 
hosts are connected via a TISS to the TTNoC. One host 
comprises a core that executes the application software, 
another core is dedicated to a voting service that judges the 
quality of values delivered by sensors. Two hosts each 
perform the reading of sensor values and control of actuators. 
Each host features communication services to communicate 
via its TISS over the TTNoC with other hosts. The IEC 
61131-3 structure that runs as application is sketched in Figure 
11 (cf. [5]). The different steps are shown for which we 
integrate C-code in our BIP model of the application. The BIP 
model itself has a similar structure. The entire application is 
modeled as a single BIP component communicating with 
services. Transitions between steps are replaced by transitions 
between BIP locations. Additional transitions are inserted to 
handle I/O at the end of each step. Each step is modeled in a 
way such that it terminates in a fixed amount of time. This is a 
typical feature in IEC 61131–3 that we took care of here. 

Common to all scenarios is that the application is running 
on different cores than I/O operations and has to communicate 
with and control the I/O. In our real systems 

 

Fig.10: Overview on a configuration scenario 
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Fig.11: IEC 61131–3 control structure 

the TTSoC is realized using FPGA technology. In 
principle it is possible to adapt the number of cores and the 
layout of the TTNoC to application needs. Furthermore, cores 
can be specialized towards distinct domains of computation 
and I/O. The number of API calls in the application C-code is 
very small: just Posix calls to receive and transmit messages. 

VI. EVALUATION 
We have run and analyzed different system configurations 

using our BIP models of TTSoC components, services and 
application code. All of them realize different simulation 
scenarios for the industrial automation domain (cf. Section 5). 
In particular they are based on our application for the sorting 
station shown in Figure 1. 

The simulation gives us the ability to test and improve our 
application software. By omitting and modifying priorities of 
interactions different non-deterministic scenarios can be 
simulated. Due to this testing we where able to fix some minor 
errors in the actual C-code implementation. More importantly 
our simulation revealed the following weakness of our overall 
sorting service control strategy: it can occur that the 
application receives old sensor data and actuator commands 
are not delivered on time. The main reason for this is that the 
communication between the application and the TISS happens 
asynchronously and without a timing guarantee. 

One solution to overcome this drawback would be to 
change the design of the system and establish a synchronous 
communication between application software and TISS at 
distinct points in time. This, however would require major 
changes in the system design. For this reason we analyze 
application software parts to estimate a worst case execution 
time. This can be used to determine a maximal latency for 
reaction of the application software to sensor data and control 
of actuators. The overall speed of processing elements in the 
sorting station will be set such that these latencies do not lead 
to a wrong handling of an element. 

VII. CONCLUSION 
We showed a way to simulate and validate aspects of 

TTSoC based systems at an early development stage. We 
presented BIP models for representing hardware components 
of TTSoC based systems. Furthermore, we introduced BIP 
models for connected software services. These models provide 
an environment for simulating TTSoC based systems prior to 
deployment and availability of exact specifications. They can 
be used for a variety of TTSoC usage scenarios. We 
exemplified a case study from the industrial automation 
domain. Here the main purpose is simulating the controlling 

software parts (application) prior to availability of the entire 
system. Thereby we introduced a way of modeling and 
simulating PLC applications using BIP. Running our 
simulations we discovered additional timing constraints which 
have to be ensured in the real-implementation of the system. 

As future work, we plan to investigate additional case 
studies in other domains. Furthermore, we are also interested 
to formally analyze properties of our models. These comprise 
analysis of invariants and related properties like deadlock 
freedom by using, 

e.g., D-Finder 2 [3]. An extension to real-time aspects is 
also a goal. Another, area for future work is the connection of 
the input and output components to software that graphically 
displays the status of an industrial automation device, so that 
one can actually see a virtual video of a machine that sorts 
work pieces controlled by our BIP components. 
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