

Simulation Environment for Mobile Agents using

Java for Wireless sensor Network

Sonia1,
1Research Scholar,

 Department of Computer Science & Engineering,

 Mewar University, Rajasthan, India

Prof. S Niranjan2,
2Professor,

Department of Computer Science & Engineering,

Mewar University,

 Rajasthan, India

Dr. Yashpal Singh3
3Associate Professor,

Computer Science & Engineering Department.

 GITAM, Kablana,

Jhajjar, Haryana, India

Mobile agents are a distributed computing paradigm based on

code mobility that has already demonstrated high effectiveness

and efficiency in IP-based highly dynamic distributed

environments. mobile agents may provide more benefits in

the context of WSNs than in conventional distributed

environments. In this paper we present the design,

implementation and experimentation of Mobile Agent Platform

an innovative Java-based framework for wireless sensor

networks based Mobile agent technology which enables agent-

oriented programming of WSN applications. This paper gives an

overview of what the mobile agents are, what they should do and

how they can be implemented in Java. It seems to be the best

available language for making mobile agents roaming

through the Internet for the time being. We describe our Java-

based mobile agent platform to create mobile agent called JADE

(Java Agent Development Environment) and present its

programming interface. It also presents the JADE software

describing its intended uses, hardware /software requirement as

well as being a walkthrough of JADE internal architecture.

Index Terms—JADE (Java Agent Development Framework), WSN

(wireless sensor network)

I. MOBILE AGENTS IN WIRELESS SENSOR NETWORK

The wireless sensor network is a technology which

employs a large finite number of unattended, intelligent

sensor nodes these are battery powered sensor nodes

constrained in energy supply. As the internet constantly

expands, the amount of available on-line information expands

as well [3]. The issue of how to efficiently find, gather, and

retrieve this information . An agent is a computer system

that is situated in some environment, which autonomously

sense the environment and respond accordingly. There is a

need of a selection of criteria in an environment to establish

an agent-based system. Distributed computing models can

bring benefits to big data. And there are two categories of

distributed computing: client/server model and mobile code

model. Mobile agent model consists of remote computation,

code on demand, and mobile agent model

Authors may prepare their papers for review using any

word processor, one or two columns, single or double spaced.

Please follow the writing style specified in this document.

A. Mobile Agent

Mobile agents have been developed as an extension to and

replacement of the client-server model. A mobile agent

system provides the execution environment for mobile agents

and also provide a framework in which mobile agent

applications can be developed and managed. [2] The mobile

agent technologies can be classified as:

 Mobile Software Agent: A mobile software

agent in a sensor network is the executable

process with its state and code, and it can

migrate from a sensor to another one in the

network.

 Mobile Hardware Agent : These devices are

powerful hardware units of processing,

memory, communication, and mobility

capabilities. These agents traverse the network

to collect information from ordinary sensor

nodes.

There are three issues of Mobile Agent.

1) Its distributed nature:

a) Focus on system architectures and protocols for

managing executions of mobile agent objects.

b) Security, fault tolerance.

2) How one could program this technology:

a) Code mobility, safety, programming constructs

b) Agent communication languages

3) The element of intelligence is absorb in it by the

possibilities in Artificial Intelligence Research with:

a) Focus on intelligence, learning, and

cooperation

B. Life Cycle of a Mobile Agent

The life of a mobile agent is modeled with the stages

it goes through called lifecycle mode. The stages of the model

are: Creation, Starting Deactivation, Disposal and cloning.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

1

Fig 1: Life cycle of Agent

 Creation: Creation of the agent is done only once when

new agent is created. Every agent gets its unique id,

initial state and then it is prepared for further instructions.

 Starting : The server initializes the agent and gives it

a thread of execution after which the agent resumes

its execution. All the agents are executed in parallel on

the host.

 Deactivation: The agent stops all its calculations and

stores its state and intermediate results to a disk. It can be

used for making checkpoints before performing some

unsecured operations or moving to unknown host.

 Disposal: means the agent terminates all its activity

and frees all resources it’s using. After that, its state is

lost forever.

There are various mobile agent system like Agent TCL, ARA,

JADE, WADE, Telescript and Odyssey, Concordia, Mole,

Tacoma, Sumatra, Voyager and java to Go. Though these

systems differ in their goals, motivations, and

implementations, they all (more or less) provide common

functionalities that support: the migration of agents,

the communication between agents, various

programming/interpreted languages, and various forms of

security.

II. JADE (JAVA AGENT DEVELOPMENT ENVIRONMENT)

JADE conceptualizes an agent as an independent and

autonomous process that has an identity, possibly persistent,

and that requires communication with other agents in order to

fulfill its tasks. This communication is implemented through

asynchronous message passing and by using an Agent

Communication Language (ACL) with a well-defined and

commonly agreed semantics [3]. JADE (Java Agent

Development Framework) is a software framework to develop

distributed agent-based applications in compliance with the

FIPA specifications for interoperable intelligent multi-agent

systems. It also includes [6]:

 A runtime environment where JADE agents can

“live” and that must be active on a given host before

one or more agents can be executed on that host.

 A library of classes that programmers have to/can

use (directly or by specializing them) to develop

their agents.

 A suite of graphical tools that allows administrating

and monitoring the activity of running agents.

A. Programming Environment for JADE

The most important issues about the mobile agents is the

selection of implementation language, System requirements.

In earlier days, the mobile agent programming which resulted

in languages like TCL, Oblique, and Rosette; even C and C++

languages were used for this purpose [4].

B. The system requirement to run JADE

Jade has been completely implemented in Java. Its

capabilities can only be fully exploited by using the Java

programming language. The minimal system requirement is

the JDK 1.2 Runtime or later. Java Developing Kit 1.1

(JDK 1.1) and JDK 1.2 with their possibilities, like Remote

Method Invocation (RMI) that allows object methods to

be called over the network.

C. Features of JADE

JADE offers the following list of features to the agent

programmer:

 FIPA-compliant Agent Platform, which includes the

AMS (Agent Management System), the DF (Directory

Facilitator), and the ACC (Agent Communication

Channel), all automatically activated at the agent

platform startup;

 Distributed agent platform. Agents are implemented as

one Java thread and Java events are used for effective

and lightweight communication between agents on the

same host. Parallel tasks can be still executed by one

agent, and JADE schedules these tasks in an efficient

way;

 Directory Facilitator (DF): This console allows to

register/deregister/modify/search for agents and

services, it allows also to federate the DF with other

DF's and to propagate searches to the federated DFs.

 FIPA-compliant MTPs (Message Transport Protocol) to

connect different agent platforms. It provide transport

mechanism and interface to send/receive messages

to/from other agents.

 Dummy Agent, a tool to compose custom messages to

send and display the received messages. Messages can

also be saved to a file and loaded from a file. The tool

allows to simulate by hand the communicative behavior

of an agent.
o Automatic registration of agents with the

AMS;
o Graphical user interface to remotely manage

the life-cycle of agents and agent

containers.

III. ARCHITECTURE OF THE JADE AGENT PLATFORM

The JADE Agent Platform complies with FIPA97

specifications and includes all those mandatory agents that

manage the platform that is the AMS, and the DF. The AMS

(Agent Management System) that provides the naming

service (i.e. ensures that each agent in the platform has a

unique name) .The DF (Directory Facilitator) that provides a

service by means of which an agent can find other agents

providing the services he requires in order to achieve his goals

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

2

A. Containers and Platforms

Each running instance of the JADE runtime environment is

called a Container as it can contain several agents. The set of

active containers is called a Platform. A single special Main

container must always be active in a platform and all other

containers register with it as soon as they start. If another

main container is started somewhere in the network it

constitutes a different platform to which new normal

containers can possibly register.

Fig 2: Containers and Main-Container

Main Container supported following features are:

 Managing the Container Table (i.e. the set of all the

nodes that compose the distributed platform).

 Managing the Global Agent Descriptor Table (i.e. the set

of all the agents hosted by the distributed platform,

together with their current location).

 Managing the MTP table (i.e. the set of all deployed

MTP endpoints, together with their deployment

location).

 Hosting the platform AMS agent.

 Hosting the platform Default DF agent

Fig 3: JADE agent Architecture

JADE distributed architecture relies on a special node, named

Main Container, to coordinate all other nodes and keep

together the whole platform. Ordinary containers will then be

able to connect to the platform through any of the active Main

Container nodes; the different copies will evolve together

using cross-notification.

B. Agent Task– The Behavior Class

A behavior represents a task that an agent can carry out and is

implemented as an object of a class that extends jade.core.

behaviours. Behavior. Each class extending Behaviour

must implement the action() method, that actually defines

the operations to be performed when the behavior is in

execution and the done() method, that specifies whether or not

a behavior has completed and have to be removed from the

pool of behaviors an agent is carrying out. This means that

when a behavior is scheduled for execution its action()

method is called and runs until it returns. Therefore it is

the programmer who defines when an agent switches from the

execution of a behavior to the execution of the next one.

In JADE there is a single Java thread per agent. Since JADE

agents are written in Java, however, programmers may start

new Java threads at any time if they need. If you do that,

remember to pay attention since the advantages mentioned in

this section are no longer valid. The path of execution of the

agent thread is depicted in Figure below:

Fig 4: Agent Thread path of execution

IV. CREATING AND EXECUTING JADE AGENT IN

ECLIPSE ENVIRONMENT

Before creating and JADE agent we have to download JADE

software from the JADE web site http://jade.tilab.com/. We

get five compressed files: JADE, JADE-examples, JADE-

doc, JADE-bin, JADE-all

We installed JADE-bin, Eclipse and jdk-1.4 archive in our

system. Having uncompressed the archive file, a directory tree

is generated whose root is jade and with a lib subdirectory.

This subdirectory contains some the jade.jar jar file that has to

be added to the CLASSPATH environment variable. To work

with command prompt we have to set the CLASSPATH but

here we use eclipse to implement agent code. Before creating

agent, create a java project in eclipse as follows:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

3

Fig 5: Java Project in eclipse

A. Eclipse Configuration

 Importing External files: Create a new project in eclipse

and add all jars of JADE in the library. For importing

packages in jade library Go to project->properties->java

build path-> Libraries tab Add external Jar file to work

with JADE Packages.

Fig 6: Adding External files in project

 Creating Project and Agent Class: Now we can use

JADE classes directly in our project. Add a new class

named HelloAg as a public class to the project, specified

jade.core.Agent as the parent class. Override the setup

method in the new class to say hello to the console.

Create a simple hello agent using the eclipse new class

wizard and fill the fields.

Fig 7: Creating a new project

The finished agent class looked as follows:

import jade.core.Agent;

public class HelloAg extends Agent

{

 protected void setup() {

 System.out.println("Hellod,

I'm” +getLocalName());

 }

}

Fig 8: Adding HelloAg Agent in project

 Run Configuration: This agent can not run as a

program, we need to start a JADE container and add the

agent inside the container. To start a container to run this

agent do the following run configuration:

For that we will do:

Run->Run Configure-> Java Application-> right

click-> New This window will open and in this

window write in Main Class text box as jade.Boot.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

4

Fig 9: Run configuration

 Passing arguments to an agent: These arguments can be

retrieved, as an array of Object, by means of the

getArguments() method of the Agent class. Arguments

on the command line are specified included in parenthesis

and separated by spaces. C:\ jade > java jade. Boot

Agent: DemoAgent. But in eclipse we can pass argument

as: Now in click on Argument tab and write as
 -gui bob: demo.HelloAg

Fig 10: Passing argument to agent

 Run: Finally, execute the application by clicking on

Apply and run.

Fig 11: Execution of agent

V. REMOTE MONITORING AGENT

The above output is the JADE disclaimer that is printed out

each time the JADE runtime is started. The Remote

Monitoring Agent (RMA) allows controlling the life cycle of

the agent platform and of all the registered agents. The

distributed architecture of JADE allows also remote

controlling, where the GUI is used to control the execution of

agents and their life cycle from a remote host.

Fig 12: Remote Monitoring Agent

A. Agent Termination

Agent can be suspended, Resumed, killed, migrated, cloned,

Freezed as well as can send messages to another agent uging

ACL language.

Fig 13: Termination of Agent

B. Communication– The ACL Message Classes

The communication paradigm adopted is the asynchronous

message passing. Each agent has a sort of mailbox (the agent

message queue) where the JADE runtime posts messages

sent by other agents. Whenever a message is posted in the

message queue the receiving agent is notified. A message in

JADE is implemented as an object of the

jade.lang.acl.ACLMessage class that provides get and set

methods for handling all fields of a message.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

5

Fig 14: The JADE asynchronous message passing paradigm

a. JADE messaging Architecture:

A JADE platform is a distributed environment

composed of several run-time containers launched over one or

more hosts across a network. In the platform, an important

role is played by the Main Container where the FIPA service

agents live. The ACL language Messages exchanged by

JADE agents have a format specified by the ACL

language defined by the FIPA international standard for

agent interoperability. There is two type of agent

communication , intra-platform and inter-platform agents

communication.

Intra-platform: It involves agents living in the same

platform and JADE uses its internal message transport

protocols (IMTPs) for implementing delivery services. JADE

delivers messages using event passing when both the sender

and the receiver agents live in the same container.

Inter-platform: In the inter-platform scenario,

interaction among agents is achieved by the Agent

Communication Channel (ACC), which is physically

distributed across all the containers of the platform. each

container can be launched with one or more message transport

protocols (MTPs) and the entire platform is able to internally

route the messages and select the best MTP for each situation

JADE provides a Java interface both for implementing new

ad-hoc IMTP and MTP. IMTP has been implemented for

JADE integrated with Leap to provide inter-container

communication in wireless environment.

Fig 15: Components of Jade Messaging Architecture

b. Sending and Receiving Messages:

This format comprises a number of fields and in particular:

• The sender of the message by calling send() method.

• The list of receivers by mean of specifying receive ()

method.

• The communicative intention indicating what the sender

intends to Assuming you have an Agent ID (AID) for the

recipient, sending a message is easy[7]

ACLMessage msg = new

ACLMessage(ACLMessage.INFORM);

msg.setContent("Message #" + n);

msg.addReceiver(new AID(name, AID.ISLOCALNAME)

);

 send(msg);

We can add several receivers to the message by addReceiver()

method and the one send broadcasts it to all of them. There

are 2 basic ways for the receiver to get its messages. By using

blockingReceive() and with receive() methods.

Using BlockingReceive() method, the receiving agent

suspends all its activities until a message arrives:

 ACLMessage msg = blockingReceive();

The second method, with receive(), examines the message

queue, returning a message if there is one or null otherwise.

This is the normal technique used when an agent is involved

in parallel activities and has multiple active Behaviours.

 ACLMessage msg = receive();

 if (msg != null)

 <.... handle message...>

 else

<... do something else like block() ...>

Each Agent Container is an RMI server object that locally

manages a set of agents. It controls the life cycle of agents by

creating, suspending, resuming and killing them. Besides it

deals with all the communication aspects by dispatching

incoming ACL messages, routing them according to the

destination field (:receiver) and putting them into private

agent message queues; for outgoing messages, instead, the

Agent Container maintains enough information to look up

receiver agent location and choose a suitable transport to

forward the ACL message. Following figure shows the Agent

registered with the DF.

VI. CONCLUSION

JADE design tries to put together abstraction

and efficiency, giving programmers easy access to the main

FIPA standard assets while incurring into runtime costs for a

feature

only when that specific feature is used. This “pay as you go”

approach drives all the main JADE architectural decisions:

from the messaging subsystems that transparently chooses

the best transport available, to the address management

module, that uses optimistic caching and direct connection

between containers.

Since JADE is a middleware for developing distributed

applications, it must be evaluated with respect to scalability

and fault tolerance, which are two very important issues for

distributed robust software infrastructures.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

6

REFERENCES

[1] A. Fuggetta, G. Picco, G. Vigna, “Understanding Code

Mobility”, IEEE Transactions on Software Engineering, Vol.

24, No. 5, pp. 352-361, May 1998.

[2] David M. Chess, Colin G. Harrison, and Aaron

Kershenbaum. “Mobile Agents: Are they a good idea?”,

IBM Research Report.

[3] http://jade.tilab.com/community-faq.htm

[4] Damir Horvat 1, 3 , Dragana Cvetkoviü “Mobile Agents and

Java Mobile Agents Toolkits” Proceedings of the HICSS –

2000, Maui, Hawai'i, USA, January 2000

[5] Peine, H., Stolpmann, T., “The Architecture of the Ara Platform

for Mobile Agents, “ Department of Computer Science,

University of Kaiserslautern, Germany, 1998.

http://www.unikl.de/AGNehmer/Projekte/Ara/Doc/

[6] http://jade.tilab.com/doc/JADEProgramming-Tutorial-for-

beginners.pdf

[7] http://www.iro.umontreal.ca/~vaucher/Agents/Jade/primer4.htm

l

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

7

