
Simulation & Synthesis of FPGA Based & Resource Efficient Matrix

Coprocessor Architecture

Jai Prakash Mishra1, Mukesh Maheshwari2

1M.Tech Scholar, Electronics & Communication Engineering, JNU Jaipur, Rajasthan, India

2Assistant Professor, Electronics & Communication Engineering, JNU Jaipur, Rajasthan, India

Abstract

Due to fast routing and logic resources,

embedded multipliers, very high gate densities,

block RAM memory modules, and embedded soft

processors, modern FPGAs offer an excellent platform

for the implementation of efficient Field

Programmable Systems on Chip. The latter are

largely required in a wide range of applications, like

telecommunication, wireless, networking, video,

signal processing, robotics and digital control. All

the above applications are characterized by an

intensive computation of matrix operations like the

matrix multiplication. Therefore, the introduction of

a coprocessor to support the computation of matrix

multiplications alongside a general purpose

processor system can be a good solution to reduce

the computational time & Resources. However, in order

to get the most of their potential performance, FPGAs

need to be programmed at the hardware low level and

not the application level. This process needs a

considerable hardware knowledge, which means that

FPGA programming is still reserved to the specialist.

The recent explosion in FPGAs resource densities and

performance, together with their inherent reprogram

ability feature, makes them very attractive as high

performance, flexible, implementation platforms for

these operations. In this present work a novel

architecture has been developed for large matrix

multiplication. For high performance applications, this

operation will minimize the hardware resources. For

this, we use a parallel architecture for the

multiplication of two matrices using Field

programmable Gate Array (FPGA).

Index Terms: FPGA, Xlinx ISE, Modelsim, Matrix

Multiplication, Parallel Block-Scheduling.

1. INTRODUCTION
Matrix Multiplication Architecture is a processor

intended to perform matrix multiplication in an

efficient manner, with reduced consumption of time

and resources. It finds enormous use in real time image

processing and computer vision applications, where the

images are considered as matrices, and involve various

matrix operations of which multiply is highly important

and relatively difficult to implement. Matrix

multiplication is a core operation in digital signal

processing operations with a variety of applications

such as image processing, computer graphics, sonar

processing and robotics [2][3][4]. For high performance

applications, this operation must be realizes in

hardware. For this, we use a parallel architecture for the

multiplication of two matrices using Field

programmable Gate Array (FPGA) [1].

Traditionally, matrix multiplication operation is

either realized as software running on fast processors or

on dedicated hardware such as Application Specific

Integrated Circuits (ASICs). Software based matrix

multiplication is slow and can often become a bottle-

neck in the overall system operation. However,

hardware (Field Programmable Gate Array (FPGA))

based design of matrix multiplier provides a significant

speed-up in computation time and flexibility as

compared to software and ASIC based approaches

respectively [6].

Modern FPGAs can accommodate multimillion

gates on a single chip. During the last decade, the logic

density, functionality and speed of FPGA have

3174

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

improved considerably. Modern FPGAs are now

capable of running at speed beyond 500 MHz [7].

Another important Feature of FPGAs is their potential

for dynamic reconfiguration [8]; that is, reprogramming

part of the device at run time so that resources can be

reused through time multiplexing.

The matrix multiplication operation is often

performed by parallel processing systems which

distribute computations over several processors to

achieve significant speedup gains. There exists many

realization of matrix multiplication. These

realizations mainly differ in terms of algorithms or the

hardware platforms.

In this work, we consider the problem of

implementing large matrix multiplication algorithm

[1 0] and then mapping the algorithm to parallel

architecture on FPGA. The FPGA-based systolic

array parallel architecture for the tri-matrix

multiplication was evaluated for different matrix size

[9], but if the size of tri-matrix was increased then it

required more hardware resources which were the

computational complexity of multiplier. Since this

design could not be fit into Spartan-3 and large size

matrices requires more hardware resources, more

memory space, more power, RAM and more time

requires for complete the computation. For matrix

multiplication of large matrices, the memory based

architecture is quite efficient whereas, for small and

medium sized matrix multiplication.

2. The PARALLEL BLOCK (PB)

Architecture
2.1 Algorithm

We separate the sequential block algorithm into

two parallel algorithms, called Master and Slave. The

Master algorithm is executed on a single

processor, and the Slave on multiple processors. In

the discussion to follow and Shown in fig-1, we refer

to the Slave processors as to Processing Elements

(PE). The Master sends the data from matrices A and

B within messages and loads the results into matrix C

ordered as Si by Sj blocks, according to the Parallel

Block scheduling algorithm [1]. The data in the

messages are correctly ordered by the Master and are

delivered in a preserved order to the PE chain. In each

PE, the scheduling algorithm is performed in the

following steps:

Step 1: The Master processor sends Si elements of

one column of array A so that each PE receives Si/P

elements.

Step 2: The Master processor sends Sj elements of

Fig-1 The PB computational scheme – an example

for N = 4 and Si = Sj = 2

One row of array B to all PEs. The elements of

array A and B are multiplied in each PE and

added to the corresponding temporary elements of

array C. Results are accumulated into the local PE

memory.

Step 3: Repeat N times steps 1 and 2. Finally, the

PE local memories will contain Si × Sj elements of

C.

Step 4: The Master processor transfers the Si × Sj

block of C from the PE local memories to the main

memory. If there are unprocessed blocks, go to step 1.

2.2 Explanation
The Main Processor (comprises of Matrix A,

Matrix B

and Matrix C) sends a signal for data transfer from

Matrix A and Matrix B which is received by

Slave processor (comprises of MAC unit) in the form

3175

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

of data acknowledgement signal.

As the Slave receives the data acknowledgement

signal it fetch the data from Matrix A and Matrix B

and store it in respective FIFO registers.

As per the functionality described above

regarding the parallel block architecture, the data

elements are fed to register 1 to register N, depending

upon the size of matrix. If the size of matrix is 8x8

then the PEs required is 4. Then the data are

multiplied and there after addition is performed, the

resulted output is stored in output register from

C11_reg to C41_reg. The computed result is fed to

Matrix C.

The basic building block of proposed matrix

multiplication is shown in figure-2. This building block

comprises of Matrix A, Matrix B, MAC Unit and

Matrix C.

Fig-2 Basic block building architecture

Matrix-A

Matrix A is having elements of I x K matrix

structure. The length of elements is 2nwhere n is in the

multiples of 2. A clock signal is provided to it. When

the read A signal is high, Slave processor will fetch

data from Matrix A. The address A signal will

increment in the multiples of 2.

Matrix-B
Matrix B is having elements of K x J matrix

structure. The length of elements is 2n
where n is in the

multiples of 2. A clock signal is provided to it. When

the read B signal is high, Slave processor will fetch

data from Matrix B. The address B signal will

increment in the multiples of 2.

MAC Unit
Basically MAC Unit comprised of Slave

Processor which performs all the arithmetic

operations. In Slave Processor individual processing

elements are there which depends upon the length of

matrix. When the reset signal is active high, the Slave

Processor comes to reset hence before starting any

new task/operation the reset signal should be kept

high for one clock period.

Matrix C
Matrix C is of I x J matrix structure. After the

results being computed from MAC Unit, Shown in fig-

3. The data is stored in Matrix C according to the

address location.

The input signal to both the PE and Slave

Processor is same whereas the output of the PE is C1,

C2, C3 and C4 whereas the output of the Slave

Processor is controlled by 2:1 multiplexer. Data

Acknowledgement and Data from Main are the two

important signals of Slave Processor Shown in fig-3.

Until the Data acknowledgement signal is low; FIFO A

and FIFO B will not fetch the data from respective

matrices. Similarly when Done from Main signal

becomes active high it means that all the required data

has been fetched.

3176

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

Fig-3 Basic MAC Unit

2.3 Algorithm for Main Processor

1) Reset Main

Reset all counter and reset slave processor.

2) Main 1

Read 32 bit from Matrix A and Matrix B;

increment address A count and address B count by 2.

3) Main 2

Load data from Matrix A Out to FIFO A and Matrix

B Out to FIFO B; send data acknowledgement to

Slave Processor; increment N count.

4) Main 3

Check N count; if N count=7 then go to main 4 else go

to check for data request.

5) Check for data request

If data request =1 then go to Main1 else remain in

check for data request.

6) Main 4

Send done from main signal to Slave Processor; reset

N count and increase final count by 1.

7) Main 5

Load Ist set of data from Slave to Matrix C of Main; go

to Main 6.

8) Main 6

Load IInd set of data from Slave to Matrix C of Main;

go to Main 7.

9) Main 7

Load IIIrd set of data from Slave to Matrix C of Main;

go to Main 8.

10) Main 8

Load IVth set of data from Slave to Matrix C of Main;

go to Main 9.

11) Main 9

If final count=1 then go to Main 10.

If final count=2 then go to Main 11.

If final count=3 then go to Main 12.

If final count=4 then go to Reset Main.

12) Main 10

Set reset address A count and set preset address B

count; go to Main 1.

13) Main 11

Set preset address A count and set preset address B

count; go to Main 1.

14) Main 12

Set preset address A count and set preset address B

count; go to Main 1.

Fig-4 FSM of Main Controller

3177

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

2.4 Algorithm for Slave Processor
1) Check for data ack
Wait for data ack from the main processor.

2) Slave 1

1 cycle is required to store data in registers from FIFO

A and FIFO B.

3) Slave 2

1 cycle is required to compute results; wait for

done from main; from the main processor if done

from main = 0 then go to check for data ack else go to

slave 3.

Fig-5 FSM for Slave Controller

4) Slave 3

1 cycle is required to send I set of data to main

processor.

5) Slave 4
1 cycle is required to send II set of data to main

processor.

6) Slave 5
1 cycle is required to send III set of data to main

processor.

7) Slave 6
1 cycle is required to send IV set of data to main

processor; also data req = 0 is sent to main processor.

3. SIMULATION RESULTS
The matrix multiplication Architecture is simulated

by using Xilinx 10.1i ISE Simulator by writing VHDL

hardware description language.

Fig-6 Simulation Result of I
st

Block of Data

Fig-7 Simulation Result of II
nd

Block of Data

3178

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

Fig-8 Simulation Result of III
rd

Block of Data

Fig-9 Simulation Result of IV
rt

Block of Data

4. RTL AND TECHNOLOGY

SCHEMATIC
4.1 RTL View:

 RTL View is a Register Transfer Level graphical

representation of Architecture design. This

representation (.ngr file produced by Xilinx Synthesis

Technology (XST)) is generated by the synthesis tool at

earlier stages of a synthesis process when technology

mapping is not yet completed. The goal of this view is

to be as close as possible to the original HDL code. In

the RTL view, the design is represented in terms of

macro blocks, such as adders, multipliers, and registers.

Standard combinatorial logic is mapped onto logic

gates, such as AND, NAND, and OR.

Fig-10 RTL Schematic

4.2 Technology Schematic
This schematic shows the representation of design

in terms of logic elements optimized to the target

Xilinx device or “technology”, for example, in terms of

LUTS, carry logic, IOB‘S and other technology

specific components. Viewing this schematic allows

seeing a technology level representation of HDL

optimized for a specific Xilinx architecture, which may

help discover design issues early in the design process.

Fig-11 Technology Schematic

5. COMPARATIVE RESULTS &

PERFORMANCE
The proposed architecture was modeled in VHDL

hardware description language. The VHDL model was

synthesized with Xilinx ISE 10.1i targeted for Spartan

3179

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

3E (XC3S500e-5vq100) FPGA device from Xilinx. In

order to show the performance of the proposed

architecture, the same FPGA device was used. For

illustration of the proposed technique, we designed 8×8

matrix multiplier for 8-bit fixed point number. The

design implemented uses 4 Processing Elements. The

results demonstrate that our design have fewer

Utilization of FPGA resources as compared to previous

Architecture [10]. Table 1 & Table 2 summarized the

performance in terms of Logic Utilization, Peak

Memory and Power Consumptions comparison. The

main idea of the proposed Architecture is to reuse the

resource and input the data in serial. In this way, the

hardware cost can be dramatically decreased. There are

following Comparative Results between old

architecture [10] and proposed architecture.

Table-1 Hardware Cost for old Architecture

S.No Logic Utilization
Hardware

Used

%

Use

 1
Number of Flip

Flops
365 3%

2
Number of 4 input

LUTs
452 4%

3
Number of

occupied Slices
293 6%

4
Total Number of 4

input LUTs
458 4%

5
Number of bonded

IOBs
165 71%

6
Number of

BUFGMUXs
1 14%

7
Peak Memory

Usage
172 MB

8 Total Power 0.102W

Table-2 Hardware Cost for Proposed Architecture

S.No
Logic

Utilization

Logics

Used

Available

Logics

%

Use

 1
Number of

Flip Flops
176 9312 1%

2
Number of 4

input LUTs
282 9312 3%

3

Number of

occupied

Slices

165 4656 3%

4

Total

Number of 4

input LUTs

298 9312 4%

5
Number of

bonded IOBs
39 66 59%

6
Number of

BUFGMUXs
2 24 8%

7

Peak

Memory

Usage

116 MB

8 Total Power 0.080W

6. CONCLUSION
Matrix multiplication can be applied extensively in

many areas. Original parallel method of the

implementation on Simulink Xilinx 10.1, which is

implemented for on Spartan 3E in which Block

consumes considerable low hardware resources, which

makes it hard to be realized. We provided a new

method to improve the module in order to save the

resources and consume minimum power. In this way,

less hardware is needed to complete the computation.

Other methods can be used to optimize the matrix

multiplication, such as pipeline technology.

Several design techniques such as parallel

processing and pipelining are employed to achieve high

performance and efficient hardware realization of the

matrix multiplier using FPGA. Implementation results

demonstrate the effectiveness of the proposed design

technique over previous solutions. In terms of Logic

Utilization, the proposed architecture is better than the

implementations that are reported in the literature.

REFERENCES
[1] Yong Dou S. Vassiliadis G. K. Kuzmanov G. N.

Gaydadjiev, “64-bit Floating-Point FPGA Matrix

Multiplication”, Computer Engineering, EEMCS, TU

Delft, P.O. Box 5031,2600 GA delft, The Neatherlands.

[2] J. D. Foley, A. van Dam, S. K. Feiner, and J. F.

Hughes,"Computer Graphics, Principles and Practice",

Addison-Wesley, second edition, 1996.

[3] P. Graham and B. Nelson, "FPGA based Sonar

Processing", Proceedings of the 6th ACM / SIGDA

international symposium on FPGAs, pp. 201-208,

February 1998.

[4] A. Jones, A. Nayak. P. Banerjee, "Parallel

Implementation of Matrix and Signal Processing

Libraries on FPGAs", Proceedings of the 14th

International Conference on Parallel and Distributed

Computing Systems, 200.

http:Hwww.ece.northwestern.edu/-kiones/papers/342-

050.pdf

3180

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

[5] K. Benkrid, D. Crookes, J. Smith, and A.

Benkrid, 'High Level Programming for Real Time

FPGA Based Video Programming', Proceedings of

ICASSP'2000, Istanbul, June 2000. Volume VI, pp.

3227-3231.

[6] S.M.Qasim, S.A.Abbasi, and B.Almashary, “A

proposed FPGA-bases parallel architecture for matrix

multiplication”, Circuits and Systems, 2008, APCCAS

2008, Pages 1763-1766, Nov 2008.

[7] T. J. Todman, G. A. Constantinides, S. J. E.

Wilton, O.Mencer, W.Luk, and P. Y. K.

Cheung,“Reconfigurable computing: architectures and

design methods”, IEEE Proc. Computer and Digital

Techniques,Vol. 152, No. 2, pp 193–207, Mar. 2005.

[8] L. Singhal and E. Bozorgzadeh, “Multi-layer

floorplanning for reconfigurable designs,”IET:

Computers and Digital Techniques, Vol.1, No. 4, pp.

276–294, July 2007.

[9] Syed M.Qasim, Ahmed A. Telba and Abdulhameed

Y. AlMazroo Department of Electrical Engineering,

“FPGA Design and Implementation of Matrix

Multiplier Architectures for Image and Signal

Processing Applications” Centre King Saud University,

College of Engineering Riyadh 11421, Saudi

Arabia{smanzoor, abbasi, bmashary}@ksu.edu.

[10] Xiaoxiao Jiang1, Jun Tao2, Department of

Electrical Engineering, University of Minnesota,Twin

Cities, USA,”Implementation of Effective Matrix

Multiplication on FPGA”, Proceeding of IEEE IC-

BNMT2011.

3181

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10602

