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 Abstract: The single objective dynamic economic dispatch (SODED) 

problem been formulated in quadratic form and solved extensively 

using pure and hybrid methods. SODED solution can be improved by 

introducing higher order generator cost functions since the fuel cost 

functions become more non-linear when the actual generator response 

is considered. Cubic cost functions models the actual response of 

thermal generators more accurately, thus it is an industry practice to 

adopt cubic polynomials for modelling fuel costs of generating units. 

Previous works have considered cubic static ED (SED).Therefore, 

there is need to consider the formulation of the dynamic SODED with 

all the possible constraints. Further the hybrid methods used in the 

solution of this vital problem need to be revisited and better ones 

developed. The modern trend of hybrids are the two-method and three-

method hybrids. In this paper, cubic SODED is formulated and 

validated on IEEE 3-unit,5-unit and  26-unit systems using Modified 

Firefly Algorithm  with Levy Flights and Derived Mutation(MFA-LF-

DM).The proposed  method proved  better than Genetic Algorithm 

(GA),  Particle Swarm Optimization (PSO) in determining optimal 

dispatch in the industry using the fully constrained SODED. 

 

Key words: Cubic cost functions, Modified Firefly Algorithm with Levy 

Flights and Derived Mutation (MFA-LF-DM), Single objective dynamic 

economic dispatch (SODED) 
 

I: INTRODUCTION 

Economic Dispatch (ED) with cubic cost functions has been 

extensively studied in the past researches. According  Z.X  

Liang and J.D Glover ,1991[1],a very   crucial issue  in 

SODED studies  is to determine the order and approximate 

the coefficients of the polynomial  used  to model  the cost  

function. This helps in reducing the error between the 

approximated polynomial along with its coefficients and the 

actual operating cost. According  to Z.X  Liang and J.D 

Glover,1992 [2] and  A.Jiang and S.Ertem,1995 [3] to obtain 

accurate SODED results, a  third order  polynomial is 

realistic  in modelling  the operating  cost for a non-

monotonically increasing  cost  curve. SODED works using 

cubic cost functions include Bharathkumar.S et al, 2013[4], 

Hari M.D et al, 2014[5], Deepak Mishra et al, 2006[6], and 

N.A.Amoli et al, 2012[7]. Krishnamurthy, 2012 [8] used  the 

static  cubic function of  the  emissions  dispatch  in the  

Multi Objective  Static ED(MOSED) using  the Lagrange 

method(LM).This  provided  better  results  as  compared  to  

the  quadratic  functions. In all these studies, however, the 

cubic cost function provided more accurate and practical 

results as compared to lower order cost functions. A 

summary of ED works using cubic cost functions is provided 

in Table 1.0, from which, it is clear that static cubic cost 

functions have been considered in a great extent. Only B.S 

et al, 2013 [4] has considered the SODED, thus there is need 

to consider the SODED with all the possible constraints in 

place. The thermal cost functions has been considered with 

only the work in [4], [5] and [8] incorporating emission cost 

functions. Further, the pure heuristic deterministic methods 

which are strong and weak at the same time have been 

applied, only the works in [5] have considered a two method 

hybrid. Thus there is need to use more advanced hybrid 

methods for better results in these vital and complex cubic 

cost functions. 

Contribution: In this paper a fully constrained dynamic 

SODED (with ramp rates, valve points and prohibiting 

zones) with cubic cost function is formulated. A new 

method, Modified Firefly Algorithm (MFA) and its hybrids 

is proposed for its solution. These hybrids include MFA with 

Levy Flights (MFA-LF) and MFA-LF with Derived 

Mutation (MFA-LF-DM). The results are compared with 

those for pure methods, for example, Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO). Cubic and 

Quadratic cost functions results are also compared and 

presented. 

II: PROBLEM FORMULATION  

 Economic dispatch (ED) may sometimes be classified as a 

static optimization (SOSED) problem in which costs 

associated with the act of changing the outputs of generators 

are not considered.  

According to Jizhong Zhu, pp. 87-88, (2009) [13], the single 

objective function corresponding to the production cost can 

be approximated to be a quadratic function of the active 

power outputs from the generating units. This static ED 

(SED) is formulated as  

min 𝐹 = 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝐶𝑖                                      (1) 

A general formulation for the 𝑛𝑡ℎ order SOSED was   

proposed by Yusuf Sonmez, 2013[9].  It can   be given   by 

the equation 

F(𝑃𝑖𝑗) = 𝑎0,𝑖 + ∑ 𝑎𝑗𝑖
𝐿=𝑛
𝑗=1 𝑃𝑡,𝑖

𝑗
+ 𝑟𝑖                  (2) 
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Table 1.0. ED with Cubic Cost Functions. 

Reference Ob Nature Ob function Con Method 

Z.X Liang et al,1991[1] T Static - Gram-Schmidt(GS), Least Squares(LS) 

Z.X Liang et al,1992 [2] T Static 3 Dynamic programming(DP) 

A.Jiang and S.Ertem,1995 [3] T Static 2 Newton Method(NM) 

B.S et al ,2013[4] T,E 
DED with ramp rates 

and valve points 
4 

Fuzzy Logic (FL), Bacteria Foraging(BF)  and Nelder-

Mead(NM) (FL-BF-NM) 

Hari Mohan D.et al,2014[5] T,E Static 5 PSO-General Search Algorithm (PSO-GSA) 

Yusuf Somez,2013[9] T General static 2 Artificial  Bee Colony (ABC) 

Deepak Mishra et al,2006 [6] T General static 2 OR-Hopfield Neural Network(ORHNN) 

N.A Amoli et al,2012 [7] T Static 2 Firefly Algorithm(FA) 

Krishnamurthy .S et al ,2012[8] T,E Static 2 Langrange Method(LM) 

T. Adhinarayanan M.Sydulu,2006[10] T Static 2 Lambda-logic based(LLB) 

T.Adhinarayanan M.Sydulu,2010 [11] T Static 2 Lambda-logic based(LLB) 

E.B Elanchezhian et al,2014[12] T Static 8 Teaching learning based optimization (TLBO) 

        Key: Ob-Objective function, T-Thermal cost objective function-Emissions cost objective function, Con-Number of constraints 
 

On the other hand, dynamic SODED is one that considers 

change-related cost and takes the ramp rate limits, valve 

points and prohibited operating zone of the generating units 

into consideration. The general form of the SODED is given 

by 

F(𝑃𝑖𝑗) = {𝑎0,𝑖 + ∑ 𝑎𝑗𝑖

𝐿=𝑛

𝑗=1

𝑃𝑡,𝑖
𝑗

+ 𝑟𝑖  }

+ |𝑒𝑖 sin 𝑓𝑖(𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)|    (3) 

Where 𝑎0,𝑖,𝑎𝑗,𝑖, 𝑒𝑖  and 𝑓𝑖 are   the cost coefficients   of the ith 

unit,  𝑃𝑖
𝑚𝑖𝑛is the lower generation bound for it unit and 𝑟𝑖is 

the error associated with the ith equation. 

When L=1 the linear   form of the SODED results. 

F(𝑃𝑖,1) = 𝑎1,𝑖𝑃𝑡,𝑖 + 𝑎𝑜,𝑖 + 𝑟𝑖 + |𝑒𝑖 sin 𝑓𝑖(𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)|     (4) 

This is also called the first order model this is of no practical 

significance ED studies. 

When L=2, the most popular quadratic SODED results. This   

is   given   by 

F(𝑃𝑖,2) = 𝑎2,𝑖𝑃𝑡,𝑖
2 + 𝑎1,𝑖𝑃𝑡,𝑖 + 𝑎𝑜,𝑖 + 𝑟𝑖

+ |𝑒𝑖 sin 𝑓𝑖(𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)|         (5) 

When L=3, the cubic form of the SODED results. This can 

be expressed as 

F(𝑃𝑖,3) = 𝑎3,𝑖  𝑃𝑡,𝑖
3 + 𝑎2,𝑖𝑃𝑡,𝑖

2 + 𝑎1,𝑖𝑃𝑡,𝑖 + 𝑎𝑜,𝑖 + 𝑟𝑖

+ |𝑒𝑖 sin 𝑓𝑖(𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)|   (6) 

 The problem in equation (6) is solved subject to the 

following constraints: 

  ∑ 𝑃𝑔𝑖

𝑁

𝑖=1

= 𝑃𝐷 + 𝑃𝐿    (7) 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥                 (8)  
𝑃𝑖𝑗 − 𝑃𝑖𝑗−1 ≤ 𝑈𝑅𝑖                   (9) 

𝑃𝑖𝑗−1 − 𝑃𝑖𝑗 ≤ 𝐷𝑅𝑖                     (10 )  

−𝑃𝑙
𝑚𝑎𝑥 ≤ 𝑃𝑙𝑗 ≤ 𝑃𝑙

𝑚𝑎𝑥  𝑙 = 1,2,3 … … . 𝐿  (11)  

𝑃𝑖 ≤ 𝑃𝑃𝑍,𝐿𝑂𝑊                                (12)  
𝑃𝑖 ≥ 𝑃𝑃𝑍,𝐻𝐼𝐺𝐻                               (13) 

 

III: PROPOSED METHODOLOGY 

Introduction to Fireflies   

The fireflies are the most charismatic species among the 

insects and their spectacular display have inspired the poets, 

writers and scientists. Today more than 2000 species exists 

and the flashings of the fireflies can be seen in the summer 

sky in the tropical and temperate regions with warm weather 

and most active in the nights [15]. These fireflies produce 

the short rhythmic patterns of flashing lights and these 

patterns of flashes are unique in species to species, and the 

flashing light is produced by a bioluminescence process. 

Moreover, flashing is produced to attract their mating 

partners; the first signalers are flying males who tries to 

attract the females on ground. In response females also emit 

flashing lights and move towards the brightest firefly. 

However the flashing lights obey certain physical rules, the 

light intensity, I , decrease with the increase of distance r 

according to the term 𝐼𝛼1/𝑟2 [16] .Also the flashing is 

produced for communication purpose among each other and 

also to attract prey, but still the flashing behavior is a topic 

of discussion among scientists and engineers. Thus the 

flashing behavior of fireflies plays a key role in 

reproduction, protection, communication and feeding.  

Firefly Algorithm (FA) 

Firefly Algorithm (FA) [14] is a new nature inspired 

algorithm developed by Xin-She Yang in the year 2007, 

based on the flashing behavior of the fireflies. The flashing 

signifies the signal to attract other fireflies, where the 

objective function is associated with the flashing light or the 

light intensity which helps the fireflies to move to brighter 

and more attractive locations to achieve optimal solution. 

The FA has three idealized rules or assumptions which are 

been developed to define the characteristics of fireflies:  i) 

All fireflies are unisex and they move towards the more 

attractive and brighter one irrespective of their sex. ii) The 

level of attraction of firefly is proportional to brightness 

which reduces with the increase in the distance between two 

fireflies  𝐼𝛼1/𝑟2  since air absorbs the light. If there is no 
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brighter or more attractive firefly than a particular one, it 

will then move randomly. iii) The brightness or light 

intensity is determined by the value of the objective function 

of a given problem and it is proportional to the light intensity 

for a maximization or optimization problem. 

Need for Improved FA (IFA) 

The reasons behind making FA [16] so popular and 

successful include: i) The method automatically divides its 

population into subgroups, because of the fact that local 

attraction is stronger than long distance (global) attraction. 

ii) FA does not use historical individual best and explicit 

global best. This reduces the potential drawbacks of 

premature convergence. iii) Also FA does not use the 

velocities hence problems associated with velocities in PSO 

is automatically eliminated. iv) FA has an inbuilt ability to 

modify and therefore to control the parameters such as 𝛾, 

leading to improved results. Hence it can be clearly seen that 

the FA is more efficient in respects of controlling 

parameters, local search ability, robustness and elimination 

of premature convergence. 

N.A Amoli et al, 2012 [7] used the basic FA in solving static 

ED with cubic cost functions. However, the method is poor 

in global searching and optimization, long convergence 

time, requires more iterations, and low computational speed 

.These problems can be addressed by using modified 

(improved) FA [17] and using heuristic and deterministic 

methods to form hybrid FA [18]. In a hybrid method the 

weaknesses of the base method are suppressed while its 

strengths are exalted leading to better realistic results and 

improved performance of the method. In this paper 

therefore, a hybrid of Modified FA (MFA) with Levy-

Flights (LF) [MFA-LF] coupled with Derived Mutation 

(DM); [MFA-LF-DM] is proposed. 

 Modified   Firefly Algorithm (MFA) with Levy Flights (LF) 

and Derived Mutation (DM) [MFA-LF-DM]  

The MFA-LF-DM proposed in this paper has six operators. 

These include brightness, distance, attractiveness, 

movement, randomness reduction and mutation. These are 

formulated as follows:   

i) Brightness  

The brightness 𝐼 of a firefly at a particular location 𝑥 can be 

chosen as  

𝐼(𝑥) ∝ 𝑓(𝑥)               (14) 

 

ii) Distance  

The distance between any two fireflies 𝑖 and 𝑗 at 𝑥𝑖 and 𝑥𝑗 

respectively is the Cartesian distance  

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗  ‖ = √∑(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2

𝑑

𝑘=1

             (15) 

Where 𝑥𝑖,𝑘 is the 𝑘𝑡ℎ component of the spatial component 𝑥𝑖 

of the 𝑖𝑡ℎ firefly  

The minimum distance between any two fireflies 𝑖 and 𝑗 at 

𝑥𝑖 and 𝑥𝑗 is thus given by  

𝑟 = min 𝑟𝑖𝑗 = min‖𝑥𝑖 − 𝑥𝑗  ‖                 (16) 

iii) Attractiveness  

The attractiveness 𝛽 between two fireflies  𝑖 and 𝑗 at a 

separation distance 𝑟𝑖𝑗  is given by  

𝛽 = 𝛽0𝑒−𝛾𝑟2
                  (17) 

Where 𝛽0 is the attractiveness at 𝑟 = 0. 

In actual implementation, the actual implementation 𝛽(𝑟) is 

a monotonically decreasing function generalized as  

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟𝑚
 𝑚 ≥ 1            (18) 

iv) Movement  

The movement of a firefly 𝑖 is attracted to another more 

attractive (brighter) firefly 𝑗 by the relation  

𝑥𝑖+1
′ = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗

2

(𝑥𝑖 − 𝑥𝑗)

+ α sign [𝑟𝑎𝑛𝑑 −
1

2
]           (19) 

Where 𝑥𝑖  is the current position of a firefly,the second term 

defines the  fireflies attractiveness  to light intensity as seen 

by the adjacent firefly and the third term is for the random 

movement  of a firefly is no brighter firefly is left, 𝛼  is a 

randomization parameter, and is a random number generator 

uniformly distributed over the space [0,1],that is, 𝑟𝑎𝑛𝑑 ∈
[0,1]. 

In general the solutions can be improved by reducing the 

randomness by  

𝛼 = 𝛼∞ + (𝛼0 − 𝛼∞)𝑒−𝑡           (20) 

Where  𝑡 ∈ [0, 𝑡𝑚𝑎𝑥]the pseudo is time for simulation and  

𝑡𝑚𝑎𝑥 is the maximum number of generations, 𝛼∞ and 𝛼0 are 

the final and initial values of the randomness parameter  

v) Randomness Reduction  

Levy flight is a random walk of step lengths having direction 

of the steps as isotropic and random. The concept 

propounded by Paul Pierre Levy (1886-1971) is very useful 

in stochastic measurements and simulations of random and 

pseudo-random phenomena. 

The movement of a firefly 𝑖 with Levy Flights is defined by 

the relation  

𝑥𝑖+1
′ = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗

2

(𝑥𝑖 − 𝑥𝑗)

+ α sign [𝑟𝑎𝑛𝑑 −
1

2
] ⨁Levy             (21)  

Where the second term is due to attraction, while the third 

term is randomization via the Levy Flights with α being the 

randomization parameter.The product ⨁ means entry wise 

multiplication  

The sign [𝑟𝑎𝑛𝑑 −
1

2
]   where 𝑟𝑎𝑛𝑑 ∈ [0,1] essentially 

provides a random sign or direction while the random step 

length is drawn from a Levy distribution given by  

𝐿𝑒𝑣𝑦~𝑢 = 𝑡−𝜆 , (1 < 𝜆 ≤ 3)             (22) 
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Which has an infinite variance with an infinite mean  

vi) Derived Mutation (DM) 

To further improve the exploration of or diversity of the 

candidate solution, the simple mutation corresponding to 𝛼 

from the ant colony optimization (ACO) genetic algorithm 

(GA), evolutionary programming ( EP) and differential 

evolution (DE)algorithms is adopted in the MFA-LF 

process. This enhances the accuracy of the optimum results 

in solving the fully-constrained SODED problem. 

3.2 Algorithm for MFA-LF-DM 

The proposed MFA-LF-DM algorithm is implemented using 

the following procedure: 

Step 1: Define objective function 𝑓(𝑥). 

Step 2: Read the system data, cubic cost coefficients, loss 

coefficients, minimum and maximum power limits of all the 

generating units and power demand  

Step 3: Input the algorithm parameters- randomness (𝛼), 
attractiveness(𝛽), light absorption coefficient(𝛾), 
randomness reduction parameter (𝜆) , number of fireflies 

(𝑛), maximum iterations, and stopping criteria. 

Step 4: Generate initial population of fireflies 𝑥𝑖( 𝑖 =
 1,2,3 … . 𝑛) in a random manner 

Step 5: Set the iteration counter to 1 

Step 6: Evaluate the light intensity 𝐼𝑖  or function value at 𝑥𝑖 

by value of 𝑓 (𝑥𝑖). 
Step 7: while (𝑡 < 𝑀𝑎𝑥 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

for𝑖 = 1: n all n fireflies 

    for 𝑗 = 1 all n fireflies 

         if 𝐼𝑗 > 𝐼𝑖  

         Move firefly 𝑖 towards 𝑗 in d-dimension via Levy 

flights 

         end if 

         Find the minimum variation distance of all fireflies  

            𝑟 = 𝑚𝑖𝑛 (∑(𝑓𝑖𝑟𝑒𝑓𝑙𝑦 𝑖 − 𝑓𝑖𝑟𝑒𝑓𝑙𝑦 𝑗)) 

        Attractiveness varies with distance r via exp [−𝛾𝑟] 
        Evaluate new solutions and update light intensity 

   end for 𝑗 

end for 𝑖 

Random  

Mutation if 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  

Rank the fireflies and find the current best 

end of while loop  

Step 8: Post process results and visualize the same 

Step 9: Find the firefly with the highest light Intensity 

among all fireflies, Gbest 

Step 10: Plot the increase of light intensity with time per 

iteration 

Step 11: Plot the objective with respect to time, % best 

solution with time 

Step 12: End of MFA-LF-DM 

IV: RESULTS AND ANALYSIS 

In this method the initial solution is generated randomly 

within the feasible range, The FA parameters used in the 

problem are as shown in table 2.0.The mapping of the 

parameters to the SODED problem is also given .  

The cubic cost coefficient, maximum and minimum power 

limits, ramp rates and valve points have been taken from [4] 

and [10].A lossless system is assumed. The results are 

divided into four parts: SOCED and SODED comparison, 

ED with cubic cost function under various demands, ED 

with Cubic and quadratic cost functions and finally a 

comparison of MFA-LF-DM with other methods in solving 

the SODED with cubic cost functions. 

TABLE 2.0 Parameters for MFA-LF-DM 

 

 

 

 

 

 

 

 

SOCED and SODED  

The optimal generation of the six generating units and the 

optimal costs are displayed for each of the intervals. The 

algorithm is first run without any constraints and the 

optimization does not include the ramp rate constraints, that 

is, the algorithm is run to optimize a classic economic 

dispatch problem. The algorithm is then run to solve the 

classic economic dispatch with minimum generation 

constraints. 

Modifications are then done to include maximum generation 

constraints. Finally, the algorithm is run to include the 

inequality, equality and ramp rate constraints. The algorithm 

optimizes a dynamic economic dispatch problem. The 

power demand for each interval is taken as [150MW, 

300MW, 400MW 500MW]. The key used in interpreting the 

results in this section include A: SOCED without 

constraints,    B: SOCED with min generation constraints, 

C: SOCED with min and MAX constraints, D: SODED with 

valve points and ramp rate limits. Further, in the tables,t 

represents  computation time(seconds),n ,the number of 

iterations,L,losses(MW) and C,the optimal cost($). From the 

results tabulated in Table 3.0-5.0, it is clear that the optimal 

cost increases with the power demand. The cost of operation 

is directly proportional to the power demand. The cost is 

highest for the SOCED, then slightly less for the SOCED 

with minimum generation constraints, lesser when the 

algorithm is used for SOCED with max and min generation 

constraints and the cost is least when SODED is used with 

valve point effects and ramp rate generation constraints. The 

difference in the optimal cost is more pronounced at higher 

power demand. This is so because at lower power demand 

only minimum generating constraints are violated hence the 

costs tend to be similar. At higher power demands, line 

constraints and max generation constraints are violated 

hence the need to keep them in check by not overloading the 

Parameter Value  

Brightness 𝐹(𝑥) 

Alpha  (𝛼) 0.9 

Beta (𝛽) 0.5 

Gamma  (𝛾) 1.0 

Number of fireflies (𝑛) 50 

Maximum no. of iterations 100 

Attraction at  𝑟 = 0, (𝛽0) 2.5 

Lambda (𝜆) 1.5 
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generators. This is done by defining the highest power 

demand that a generator can supply.  

Table 3.0: Results for a load demand of 150 MW 

Unit  A B C D 

G1 45.9510 45.9510 45.9510 45.9510 

G2 34.4019 34.4019 34.4019 34.4019 

G3 19.8484 19.8484 19.8484 19.8484 

G4 9.8010 9.8010 9.8010 9.8010 

G5 11.0204 11.0204 11.0204 11.0204 

G6 15.9781 15.9781 15.9781 15.9781 

L  0.3010 0.3025 0.3055 0.3100 

t 2.5 2.6 2.8 3.0 

n  10 11 12 15 

C 489.0303 452.9328 452.9328 454.3845 
 

Table 4.0: Results for a load demand of 300 MW 

Unit  A B C D 

G1 95.0530 95.0530 95.0530 95.0530 

G2 71.1643 71.1643 71.1643 71.1643 

G3 41.0587 41.0587 41.0587 41.0587 

G4 20.2745 20.2745 20.2745 20.2745 

G5 22.7970 22.7970 22.7970 22.7970 

G6 33.0525 33.0525 33.0525 33.0525 

L 0.6050 0.6085 0.6090 0.7100 

t 2.6 2.7 3.0 3.2 

n  12 15 17 18 

C 927.6174 927.6174 891.7733 886.5009 

 

Table 5.0: Results for a power demand of 400MW 

Unit A B C D 

G1 125.5410 125.5410 125.5410 125.5410 

G2 93.9901 93.9901 93.9901 93.9901 

G3 54.2282 54.2282 54.2282 54.2282 

G4 26.7775 26.7775 26.7775 26.7775 

G5 30.1091 30.1091 30.1091 30.1091 

G6 43.6540 43.6540 43.6540 43.6540 

L 1.0500 1.0580 1.1000 1.2000 

t 2.6 2.9 3.9 4.1 

n  13 16 17 19 

 C 1266 1266 1139 1,084.8 
 

The computation time and the number of iterations increase 

with system demand. It should be noted that the parameter 

gamma (𝛾)  which is set to 1.0 in this case characterizes the 

variation of the attractiveness, beta 𝛽 ,and it is very crucial 

in determining the speed of convergence and how the MFA-

LF-DM behaves. Theoretically, 𝛾𝜖[0, ∞ but in 

practice 𝛾𝜖𝑂(1) and is determined by the characteristic 

length of the system to be optimized. By varying 𝛾 the 

computation speed can be improved 

Table 6.0: Results for a load demand of 500MW 

Unit  A B C D 

G1 160.7583 160.7583 160.7583 160.7583 

G2 120.35 120.35 120.35 120.35 

G3 69.44 69.44 69.44 69.44 

G4 34.2829 34.2829 34.2829 34.2829 

G5 38.5554 38.5554 38.5554 38.5554 

G6 55.900 55.900 55.900 55.900 

L 1.8010 1.8080 2.1015 2.3050 

t 3.0 4.0 4.5 5.0 

n  15 17 18 20 

C 1719.8 1719.8 1221.6 1,209.9 

4.2 ED with Cubic Cost Function under Various Demands  

With the demand of [500MW, 600MW, 700MW, 800MW], 

the results for the cubic cost function under various demands 

are tabulated   in Table 7.0 .In this case the IEEE 6-unit 

system is used. The optimal cost and the losses increase with 

power demand. However the Computation time and the 

number of iterations are not affected by demand in a great 

extend 

Table 7.0: SODED   with cubic cost function under various demands 

[MW] 500 600 700 800 

G1 48.7954 56.9279 65.0605 73.1931 

G2 37.8673 44.1786 50.4898 56.8010 

G3 21.4006 24.9673 28.5341 32.1009 

G4 11.3017 13.1856 15.0689 16.9525 

G5 12.7317 14.8537 16.9757 19.0976 

G6 17.9033 20.88 23.8711 26.8549 

L 2.3065 2.3090 2.5000 2.9950 

t 5.5 5.8 6.2 6.0 

n  15 18 18 20 

C 1,977.1 3,523.3 4,211.0 4,951.29 
 

 SODED with Quadratic and Cubic Cost Functions 

.The Algorithms were tested with 3 unit, 5 unit and 26 unit 

test systems and the results compared with the basic 

methods; FA, MFA, and MFA-LF. The system demands 

considered are 850MW, 1800MW, 2000MW and 2500MW. 

The results presented are for the 2500MW demand. 

From the results in Table 8.0 it, it is clear that the cubic cost 

functions   provide better and more realistic costs (higher 

costs) than the quadratic cost functions. The MFA-LF-DM 

method gave the best optimal results as compared to the FA, 

MFA and MFA-LF. 

SODED with Cubic Cost Functions  

Further comparison was done using the 5-unit and the 26-

unit systems .The results are as tabulated in table 9.0 -10.0. 

The results are compared with those in [5] since this is the 

only work that has considered cubic cost functions in DED. 

From these tables, it can be observed that optimal cost in 

industrial power systems increases with the complexity of 

the system. Further, the system losses also are directly 

proportional to the system size. The execution time and the 

number of iterations don’t vary to a great extend with the 

system size and the nature of cost function. It is worth noting 

that the MFA-LF-DM provide better optimal costs, losses 

and total output power than all the lower versions of FA, GA 

and PPSO. 

V: CONCLUSION 

 The objective of this paper was to propose a method for 

solving SODED with cubic cost functions. Cubic cost 

functions provided more realistic higher costs which are 

applicable in an industrial setting in a fully constrained 

environment. MFA-LF-DM proved effective than FA, 

MFA, MFA-LF and the basic heuristic methods in the 

solutions of the industrial cubic SODED, which is a good 

example of NP hard problems. The pure MFA is also found 

to be more effective than GA and PSO in cost optimization.  

This effectiveness is measured in terms of efficiency and 

success rate. MFA-LF-DM has been found to be very 

efficient, however a further improvement on the 

convergence can be achieved by carrying out sensitivity 
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studies by varying of parameters such as𝛽0,𝛾,𝛼 and more 

interestingly𝜆. Other than mutation, other operators of the 

biologically inspired heuristic methods can also be 

considered. For more realistic results, a multi objective 

dynamic economic dispatch (MODED) problem with 

thermal cubic cost functions need to be considered. That is, 

the SODED problem need to be considered simultaneously 

with Renewable energy, transmission losses and emissions. 

The security and power wheeling aspects under SODED and 

MODED with higher order cost functions may form an 

exciting area for further research  
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Table 8.0: Cubic Cost Function on 3-Unit System 

Quadratic Cubic  

Unit  FA MFA MFA-LF MFA-LF-DM FA MFA MFA-LF MFA-LF-DM 

1 393.170 393.170 393.170 393.169 725.02 724.99 724.99 724.99 

2 334.604 334.604 334.603 334.603 910.19 910.19 910.19 910.19 

3 122.226 122.226 122.226 122.226 864.88 864.88 864.88 864.88 

L 850.00 850.00 850.00 850.00 2,500.00 2,500.00 2,500.00 2,500.00 

t 5.0 6.0 6.5 7.0 5.2 6.7 7.0 8.0 

n 60 58 52 50 68 62 55 53 

C 8,194.35 8,194.35 8,193.30 8,193.20 12,730.14 12,729.35 12,728.15 12,728.05 
 

Table 9.0: Five Unit System with Static Cubic Cost Functions 

Unit  GA[5] PSO[5] MFFA  MFFA-LF MFFA-LF-DM 

1 320.00 319.90 320.00 320.05 320.10 

2 343.74 343.70 343.73 343.70 343.74 

3 472.60 472.50 472.40 472.45 472.68 

4 320.00 320.08 319.95 320.00 320.00 

5 343.74 343.77 343.65 343.74 343.74 

L 1800.00 1800.00 1800.00 1800.00 1800.00 

t 8.5 9.5 8.5 9.0 10.0 

n 72 68 60 55 53 

C 18,611.07 18,610.40 18,609.35 18,609.05 18,608.65 
 

Table 10.0: 26-Unit System with Static Cubic Cost Functions 

Unit  GA[5] PSO[5] MFFA MFFA-LF MFFA-LF-DM 

1-9 2.40 2.40 2.40 2.40 2.40 

10-12 15.20 15.20 15.20 15.20 15.20 

13-16 25.00 25.00 25.00 25.00 25.00 

17 129.71 124.69 124.69 124.69 124.69 

18 124.71 124.69 124.69 124.69 124.69 

19 120.42 120.40 120.40 120.40 120.40 

20 116.72 116.70 116.70 116.70 116.70 

21-23 68.95 68.95 68.95 68.95 68.95 

24 337.76 337.85 337.85 337.85 337.85 

25-26 400.00 400.00 400.00 400.00 400.00 

L 2000.00 2000.00 2000.00 2000.00 2000.00 

t 24 26 20 22 25 

n 95 92 90 88 85 

C 27,671.24441 27,671.2276 27,671.3926 27,672.1113 27,672.3345 
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