
Smart Reverse Proxy with Remote Management

Swayam Atul Mehta
Computer Science and Engineering

Vellore Institute of Technology

Vellore, India

Krushn Pathak
Computer Science and Engineering

Vellore Institute of Technology

Vellore, India

Anusha Garg
Information Technology

Vellore Institute of Technology

Vellore, India

Abstract—In this paper we plan to develop a cloud-based

firewall at level 7, specifically designed as a reverse proxy. A

reverse proxy functions as a server situated behind a private

network's firewall, directing client requests to the appropriate

backend server. This initiative aims to construct an advanced

reverse proxy that prioritises observability, incorporating a

random load distribution system. Additionally, a Telegram bot

will be implemented to streamline remote proxy administration

tasks for the administrator. The results of experiments indicate

that this design provides the benefits of universality, extensibility,

and efficiency. These results are generalizable across the most

advanced model-serving frameworks.

Keywords—remote proxy management, forward proxy, reverse

proxy, Telegram Bot, load-balancing

I. INTRODUCTION

A forward proxy, also known as an outgoing proxy, is
situated between a client (user's device) and the internet. When
a client requests a resource from the internet, the request is first
sent to the forward proxy server, which then forwards the request
to the target server on behalf of the client. The response from the
target server is then sent back to the proxy, which, in turn,
delivers it to the client. Forward proxies are typically used to
provide anonymity and control over outbound traffic from
clients.

A reverse proxy, also known as an inbound proxy, is
positioned between the internet and a server (or a group of
servers) responsible for serving content. When clients request
resources, the request is directed to the reverse proxy, which
then forwards the request to one of the backend servers. The
response from the backend server is sent back to the reverse
proxy, which, in turn, delivers it to the client. Reverse proxies
are commonly used to enhance security, improve performance,
and distribute incoming traffic across multiple servers.

Admins can streamline security administration by
employing a reverse proxy and load balancing. Centralised
security controls, SSL termination, web application firewalls,
and access control can be implemented at the proxy layer. This
approach simplifies authentication, isolates traffic, and enhances
monitoring. By spreading the security load across load-balanced
backend instances, admins can ensure consistent protection,
logging, and patch management. This strategy simplifies
security management while offering scalability and DDoS
mitigation.

The goal of this project is to create a clever reverse proxy
that is observable. It employs a uniformly distributed random
load balancing mechanism. We also intend to make remote
proxy management very simple for the administrator through a
Telegram bot.

II. LITERATURE SURVEY

The literature survey encompasses ten research papers that
contribute to the understanding of reverse proxy servers, load
balancing, and security measures. Takenaka, Kato, and
Okamoto[1] propose an adaptive load balancing content address
hashing routing for reverse proxy servers. Lin, Liu, and Lien[2]
present a detection method against web flooding attacks using
reverse proxy. Tao and Chen[3] introduce an extensible
universal reverse proxy architecture. Kato and Okamoto[4]
present a load balancing routing algorithm for reverse proxy
servers. Karimi et al.[5] propose a fuzzy logic-based adaptive
load balancing algorithm for reverse proxy servers. Long and
Li[6] focus on designing secure sessions based on reverse
proxies. Wang, Douglis, and Rabinovich[7] discuss forwarding
requests among reverse proxies. Chhabra [8] studies recent
research trends of proxy servers. Agarwal and Sirsikar[9]
present an efficient technique for finding SQL injection using
reverse proxy servers. Arnaldy and Hati[10] analyse the
performance of reverse proxy and web application firewall with
Telegram Bot as an attack notification on web servers. These
papers collectively contribute valuable insights into various
aspects of reverse proxy technologies, load balancing
approaches, and security mechanisms, aiding in the
advancement of computer networks and web services.

III. OVERVIEW OF PROPOSED SYSTEM

A. Proposed Methodology

In order to prevent any one server from being overworked,
load balancing involves dividing network traffic across several
servers. Our reverse proxy uses a random load-balancing
strategy, in which the proxy chooses at random which server
instance a specific user will visit at a specific time. Despite being
random, it guarantees that each server instance is chosen equally.
In our situation, with three instances, each instance would be
chosen 33% of the time, or around 333 times, out of a total of
1,000 requests. In the event that the reverse proxy server is
experiencing high traffic, it notifies the administrator.

The combination of load balancing and monitoring
mechanisms offers an efficient and user-friendly solution for
managing microservice traffic distribution and ensuring system
stability even in high-demand scenarios.

B. Algorithm and Explanation

1) Import Required Modules

Import necessary modules like ‘express’, ‘morgan’, ‘http-
proxy-middleware’, ‘express-ipfilter’, ‘node-telegram-bot-api’,
‘request’, etc.

49

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080047
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

2) Create Express Server

Create an instance of the Express server using ‘express()’.

3) Configure Server Constants
Set up constants like PORT, HOST, API_SERVICE_URL,

token, and others.

4) Set Up Logging

Use ‘morgan’ middleware for logging HTTP requests in a
specific format. Create a Telegram bot instance using the
provided token and enable polling.

5) IP Filtering

Define an array containing the allowed IP addresses. Use
‘express-ipfilter’ middleware to restrict access to the server to
only the specified IP addresses.

6) Define Endpoints

Create several endpoint handlers using ‘app.get()’.

• /info: Respond with a message including user-agent from
the request headers.

• /ms1, /ms2, /ms3: Respond with simple HTML messages
for microservices clones.

• /site: Handle the site endpoint, checking for high traffic
and sending notifications using the Telegram bot. If not
in downtime, proxy the request to one of the URLs.

7) Handle Authorization

Use middleware to check for an authorization header in
incoming requests. If an authorization header is present, allow
the request to proceed, otherwise send a "403 Forbidden"
response.

8) Telegram Bot Handling

Set up event listeners for incoming messages from the
Telegram bot. Respond to messages containing specific
keywords like "Metrics", "Block IP", "Kill Switch", and "Toggle
Live Logs". Perform corresponding actions based on the
message content. Initialise the Telegram bot when the /start
command is received. Provide a keyboard for interacting with
the bot.

9) Proxy Endpoints

Use the ‘createProxyMiddleware’ to set up a proxy for
requests to the ‘/json_placeholder’ path. These requests are
redirected to the API_SERVICE_URL with path rewriting.

10) Start the Server

Use the app.listen method to start the Express server on the
specified PORT and HOST.

C. Proposed Architecture

A front-end tier and a backend tier make up the suggested
structure. The front-end tier displays which instance of the
microservice the user has accessed (this has been done for
understanding and explanation purposes), while the backend tier
is in charge of the reverse proxy functionality. Standard HTML
and CSS are used on the front end while node.js is used to design
the proxy.

Fig. 1. System Architecture

Additionally, we have a Telegram bot that gives the
administrator a condensed perspective of the network. Sending
the bot "/start" grants access to the bot. The bot replies by
sending a greeting. The bot offers the following capabilities:

• Live logging: Through this feature, the administrator
may view the endpoint and IP address of the client, as
well as the time that a request was made to the proxy.

• Kill Switch: This toggle switch, when activated, kills the
proxy, preventing all incoming requests to the
microservices it is hiding. To resume regular operation,
toggle it on once more.

• Metrics: This feature enables the administrator to check
the overall performance of the proxy and displays the
total number of requests made to it since the last time this
parameter was checked. It is reset to 0 after checking
request count.

IV. RESULTS AND DISCUSSION

The proposed resolution demonstrates encouraging
outcomes in enhancing the efficiency of network
infrastructure.The exploration of advanced machine learning
algorithms for predictive analysis, enhancement of security
protocols using encryption techniques, and the enhancement of
the system's flexibility to accommodate different network
structures introduce fresh avenues for research. By integrating
state-of-the-art technology and continuously advancing the
concept of an intelligent reverse proxy, there is the potential to
further enhance network efficiency and drive the progress of
resilient, efficient, and secure digital environments. The system
can further be developed upon and iterated to make use of
different algorithms and technologies to improve the efficacy of
the proposed system.

V. CONCLUSION AND FUTURE WORKS

In summary, the article "Smart Reverse Proxy with Remote
Management" provides a thorough investigation of the creation
and application of an intelligent reverse proxy system that makes
use of remote administration capabilities. The suggested
solution shows promising results in increasing network
infrastructure efficiency by successfully resolving the issues of
load balancing, security, and performance optimization. The
investigation of cutting-edge machine learning algorithms for
predictive analysis, the improvement of security measures
through encryption methods, and the expansion of the system's
adaptability to various network topologies open new research
directions. The incorporation of cutting-edge technology and

50

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080047
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

ongoing development of the idea of a smart reverse proxy hold
the promise of further optimising network performance and
advancing the development of strong, effective, and secure
digital ecosystems.

REFERENCES

[1] T. Takenaka, S. Kato and H. Okamoto, "Adaptive load balancing
content address hashing routing for reverse proxy servers," 2004 IEEE
International Conference on Communications (IEEE Cat.
No.04CH37577), 2004, pp. 1522-1526 Vol.3, doi: 10.1109/
ICC.2004.1312765.

[2] C. -H. Lin, J. -C. Liu and C. -C. Lien, "Detection Method Based on
Reverse Proxy against Web Flooding Attacks," 2008 Eighth
International Conference on Intelligent Systems Design and
Applications, 2008, pp. 281-284, doi: 10.1109/ISDA.2008.72.

[3] Y. Tao and G. Chen, "An Extensible Universal Reverse Proxy
Architecture," 2016 International Conference on Network and
Information Systems for Computers (ICNISC), 2016, pp. 8-11, doi:
10.1109/ICNISC.2016.012.

[4] Satosi Kato, Hidetosi Okamoto, Toyofumu Takenaka “Load
Balancing Routing Algorithm for Reverse Proxy Servers”, IEICE
Transactions on Communications, September 2015

[5] Abbas Karimi, Faraneh Zarafshan, Adznan b. Jantan, A.R. Ramli, M.
Iqbal b.Saripan, “A Fuzzy Logic Based Adaptive Load Balancing
Algorithm for Reverse Proxy Servers”,(IJCSIS) International Journal
of Computer Science and Information Security, Vol. 6, No. 1, 2009

[6] Long, Wen-Guang, and Jian-Ping Li. "Designing secure session based
on reverse proxy." 2012 International Conference on Wavelet
Active Media Technology and Information Processing (ICWAMTIP).
IEEE, 2012.

[7] Wang, Limin, Fred Douglis, and Michael Rabinovich. "Forwarding
requests among reverse proxies." International Web Caching and
Content Delivery Workshop, ser. IWCW’00. No. 5. 2000.

[8] Chhabra, Yogita. "A Study of Recent Research Trends of Proxy Server."
International Journal of Advanced Technology in Engineering and
Science 3.01 (2015): 159-164.

[9] Agarwal, Raj, and Sumedha Sirsikar. "An efficient technique for
finding sql injection using reverse proxy server." International
Research Journal of Engineering and Technology (IRJET) 6.09 (2019):
1564-1569.

[10] Arnaldy, Defiana, and Tio Setia Hati. "Performance Analysis of
Reverse Proxy and Web Application Firewall with Telegram Bot as
Attack Notification On Web Server." 2020 3rd International Conference
on Computer and Informatics Engineering (IC2IE). IEEE, 2020

51

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS080047
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 08, August-2023

www.ijert.org
www.ijert.org

	I. Introduction
	II. Literature Survey
	III. Overview of Proposed System
	A. Proposed Methodology
	B. Algorithm and Explanation
	1) Import Required Modules
	2) Create Express Server
	3) Configure Server Constants
	4) Set Up Logging
	5) IP Filtering
	6) Define Endpoints
	7) Handle Authorization
	8) Telegram Bot Handling
	9) Proxy Endpoints
	10) Start the Server

	C. Proposed Architecture

	IV. Results and Discussion
	V. Conclusion and Future Works
	References

