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Abstract— Beamforming techniques for Direction of Arrival 

(DOA) estimation have been a very promising research area for 

decades. Compressive Beamforming Technique based solutions 

give better resolution and robustness, compared to the 

traditional methods of beamforming.  The basic idea of 

Compressive Sensing (CS) is that, the underlying sparse signal 

can be reconstructed from fewer samples than the Nyquist-

Shannon theorem requires. In this paper various beamforming 

approaches has been discussed and is compared with the 

compressive beamforming technique. Beam patterns of 

traditional beamforming techniques such as Conventional 

Beamformer (CBF), Minimum Variance Distortionless 

Response (MVDR) Beamformer and Multiple Signal 

Classification (MUSIC) beamformer has been simulated for 

angular estimation and compared with the ℓ1-minimization (ℓ1-

svd) algorithm under various scenarios such as noisy conditions 

and single snapshot cases. Simulation results show that the 

compressive beamforming technique is able to estimate even the 

closely spaced targets under snapshot deficient cases where in 

the traditional approaches fails. 

Keywords— Beamforming, Direction of Arrival Estimation, 

Compressive Sensing, CBF, MVDR, MUSIC. 

I.  INTRODUCTION  

Beamforming is a signal processing technique for 
directional signal transmission and reception, used in 
conjunction with an array of sensors [1]. This is achieved by 
combining elements in an array in such a way that signals at 
particular angles experience constructive interference while 
others experience destructive interference. DOA estimation 
using beamforming has got variety of applications in 
astronomy, radar, sonar and seismology. The problem of DOA 
estimation is to gather information about the location of the 
sources and the possible number of sources in the presence of 
noise. There have been many approaches in the literature for 
solving the same, but most of these traditional approaches 
cannot be applied during noisy conditions or when the number 
of snapshot is less. 

The simplest approach for DOA estimation is the 
Conventional Delay-Sum Beamforming (CB) [2]. Even 
though CB is simple to implement, it has got very low angular 
resolution and large number of side lobes. The resolution limit 
of CB beamformers cannot be improved beyond a certain limit 
by increasing the SNR. Adaptive beamforming techniques are 
introduced later to overcome the drawbacks of CB 
beamformer. MVDR (Capon) [3] and MUSIC beamformers 
[4] fall under the adaptive type which has got improved 
estimation performance which largely depends upon the SNR 

and the number of snapshots. Under noisy conditions and 
snapshot deficient cases, these methods fail to estimate the 
sources accurately. 

In recent years, a new approach of DOA estimation has 
been proposed based on the compressive sensing (CS) 
technique [5]. The area of compressed sensing was initiated in 
2006 by two ground breaking papers, namely [6] by Donoho 
and [7] by Candès, Romberg, and Tao. The key idea of 
compressed sensing is to recover a sparse signal from very 
few non-adaptive, linear measurements by convex 
optimization. Performance of CS technique in DOA 
estimation under number of sources and noise conditions is 
presented by Malioutov et al.[8] Robustness of CS in sound 
source localization using sensor arrays has been demonstrated 
in [9] with coherent arrivals and snapshot deficient case. 

In this paper the performance of compressive sensing 
technique using ℓ1-minimization algorithm is demonstrated 
under noisy conditions and with single and multiple snapshot 
scenarios. Also the efficiency and resolution capability of the 
CS technique for angular estimation has been analyzed with 
the traditional approaches for various source locations and 
Signal to Noise Ratios (SNR). 

The remainder of this paper is organized as follows. A 
brief description of the three traditional approaches of 
beamforming is provided in section II. Section III describes 
the compressive sensing approach for DOA estimation for a 
single snapshot case. In section IV, CS approach using ℓ1-svd 
is compared with the CB, MVDR and MUSIC techniques and 
their performance is evaluated. Finally the conclusion is 
summarized in Section V. 

II. CLASSICAL BEAMFORMING APPROACHES  

A uniform linear array (ULA) having M number of 
sensors is considered for discussion. Sensors are equally 
spaced at a distance ‘d’, which is half the wavelength (λ) of 
the received signal. Assume that the sources are in the far 
field of the sensor arrays. Consider a plane wave transmitted 
by the ith source is arriving at an angle θi in which θ ranges 
from -900 to +900 with respected to the array axis. Let ‘s’ be 
the transmitted signal such that s ϵ cN. The array steering 
vector at each of the sensor array due to the source i can be 
written as in [9]: 

  𝑎(𝜃𝑖) = 𝑒−𝑗(
2𝜋

𝜆
)𝑝𝑠𝑖𝑛(𝜃𝑖)

                       (1) 
where p is the vector having the sensor locations. The 
observation (measurement) vector at the M sensors denoted 
as y ϵ cM such that M < N in most of the practical situations. 
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Steering Matrix A formed using the steering vectors in (1) 
can be written as: 
 

                               𝐴𝑀𝑋𝑁 = [𝑎(𝜃1) … . 𝑎(𝜃𝑁)]           (2) 

 
Let the zero mean additive noise received as n, the 

measurement vector y can be written as: 

              y=As +n                   (3) 

 
   The idea of beamforming is to steer the array so as to 

scan across the angular region and measure the output power 
in each direction. Maximum output power is obtained in 
those direction which coincides with the DOA of the signal 
and thus angular estimate is calculated. 

    Beamformers are generally classified as either data 
independent or statistically optimum beamformers, depending 
on how the weights are chosen [1]. In data independent 
beamformer, the weights do not depend on the array data and 
are chosen to present a specified response for all signal and 
interference scenarios. Conventional Beamformer (CB) is a 
data independent beamformer having a fixed weight which is 
same as the steering matrix A. The weights in a statistically 
optimum beamformer are chosen based on the statistics of the 
array data to optimize the array response and the weights are 
determined using adaptive algorithms. MVDR and MUSIC 
beamformer are some of the statistically optimum 
beamformers. 

A. Conventional Beamformer 

 CB is the simplest DOA estimation technique which is 
also known as the Delay-Sum Method. CB linearly combines 
the sensor output to enhance the signal at a particular look 
direction and attenuating the signal from undesired directions. 

The output power of CB can be expressed as: 

 

                               PCB (θ)=WHRYYW                           (4) 

 

where 𝑅𝑌𝑌 is the cross spectral matrix given as: 

 

                       𝑅𝑌𝑌 =
1

𝑇
∑ 𝑦𝑡𝑦𝑡

𝐻𝑇
𝑡=1                         (5) 

and W is the weight vector which is same as A in case of CB. 

Hence 𝑃𝐶𝐵 can be rewritten as: 

                                                           

     𝑃𝐶𝐵 (𝜃) = 𝐴(𝜃)𝑅𝑌𝑌𝐴(𝜃)𝐻                  (6) 
 

CB is efficient even for single snapshot scenario, but it 

suffers from low resolution and large number of secondary 

lobes. 
 

B. MVDR Beamformer 

The MVDR is an adaptive beamforming algorithm also 
known as Capon Beamformer. The basic principle of MVDR 
is to minimize the output power in such a way that the gain 
should be unity along the look direction. Cost function can be 
denoted as: 

                 min𝑤 𝑊
𝐻𝑅𝑌𝑌𝑊 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑊𝐻𝐴 = 1           (7) 

 

 

Solving W using the method of Lagrange multipliers, the 

weight vector can be determined as: 

 

                              W=
RYY

-1
A(θ)

A(θ)HRYY
-1

A(θ)
         (8) 

 

Using (8), the MVDR spatial spectrum can be expressed 

as:  

 

𝑃𝑀𝑉𝐷𝑅(𝜃) = 𝑊𝐻𝑅𝑌𝑌𝑊 =
1

𝐴(𝜃)𝐻𝑅𝑌𝑌
−1𝐴(𝜃)

         (9) 

 

The angle θ corresponding to the peak value in the 

spectrum is the DOA estimate. 

C. MUSIC  Beamformer 

MUSIC is a high resolution DOA estimation algorithm 
based on the eigen decomposition of the cross spectral 
matrix 𝑅𝑌𝑌. Eigen vectors obtained are then separated into 
signal subspace and noise subspace. The orthogonality 
between the signal subspace and noise subspace are exploited 
in MUSIC to estimate the DOA. Power spectrum of MUSIC 
can be expressed as: 

                             𝑃𝑀𝑈𝑆𝐼𝐶(𝜃) =
1

𝐴(𝜃)𝐻𝑈𝑛̂𝑈𝑛̂𝐻𝐴(𝜃)
            (10) 

where  𝑈𝑛̂ corresponds to the noise Eigen vector. 

III. CS APPROACH FOR DOA ESTIMATION 

Compressive Sensing (CS) is an innovative process in 
which sparse or compressible signals are captured and 
represented at a rate considerably below the Nyquist rate. 
Traditional approaches to data acquisition follow Shannon's 
Sampling theorem which states that a band limited signal can 
be perfectly reconstructed if and only if it is sampled at a rate 
at least twice its bandwidth. A signal is said to be sparse or 
compressible if it contains only very few non-zero 
coefficients or if it can be transformed into some other 
domain where the signal has only a fewer number of 
significant samples. In compressive sensing approach, the 
sparse signal is reconstructed using convex optimization 
process [10]. 

   Compressive Sensing is possible because of two principles 

say sparsity and incoherence [11]. Compressive Sensing 

exploits the fact that many natural signals are sparse or 

compressible which implies that they have short 

representations when expressed in the proper basis ψ.  If  a 

signal can be expressed as a linear combination of only K 

basis vectors, then the signal is said to be K-sparse (K 

nonzero coefficients). Incoherence deals with the idea that 

objects having a sparse representation in ψ must be spread 

out in the domain in its acquired domain. Consider two bases 

φ and ψ. The coherence between the two bases is given by 

[12]: 

 

                       𝜇(𝜑, 𝜓) = √𝑁𝑚𝑎𝑥1≤𝑘,𝑗≤𝑁|𝜑𝑘
𝑇𝜓𝑗                  (11) 

 

where N is the length of the original signal, φk and ψj are the 

kth column and jth column of φ and ψ respectively. The 

coherence is a measure of the largest correlation between the 
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basis vectors of φ and ψ and it always lies in the interval 

(1, √𝑁). 
 

In Compressed Sensing, the original N x 1 signal x is 

multiplied by a M x N measurement matrix φ, to obtain the M 

(M<N) compressed measurements. This can be expressed 

mathematically as: 
 

                                       𝑦 = Φ𝑥 = ΦΨ𝑠 = Θ𝑠        (12) 
 

The measurement matrix φ should be incoherent with the 

sparsifying basis ψ for achieving compressed sensing and 

reconstruction. The value of M required is considerably 

smaller than N, hence the name compressed sensing. 

A. Reconstruction Process 

The reconstruction process considers the problem of 
recovering an object x from its linear measurements 𝒚 = 𝚽𝒙. 
The signal reconstruction algorithm must take the M 
measurements in the vector y, the measurement matrix φ and 
the basis ψ and reconstruct the ‘N’ length signal x or 
equivalently its sparse coefficient vector s. The M linear 
measurements can be written as (12) 

 

   𝑦 = Θ𝑠                        (13) 
 

where = ΦΨ . 
 

The transform matrix has fewer rows than columns i.e. M 

< N which implies that the number of equations is less than 

the number of unknowns. Hence there are infinitely many 

solutions (𝒔̂) that satisfy 𝚯𝒔̂ = 𝒚 which is an ill-posed 

problem. This it turns out to be an optimization problem and 

the solution can be found by applying constraints.  

 

1) Minimum ℓ2 norm reconstruction: The classical 

approach to find the ill-posed inverse problems is to find the 

with the smallest ℓ2 (energy) by solving 

 

           ŝ = arg min ∥ s ∥2  subject to y = Θs       (14) 

 

The solution to (14) is the least squares solution which has a 

tendency to spread the energy among a large number of 

entries of s, resulting in a non-sparse solution. 

 

2) Minimum ℓ0 norm reconstruction: The ℓ0  norm counts 

the number of non-zero entries in s. The optimization 

problem can be written as 
 

           ŝ = arg min ∥ s ∥0  subject to y = Θs                   (15) 

 

Solving (15) is numerically unstable and NP complete, and 

hence not used commonly.  

3) Minimum ℓ1 norm reconstruction: The optimization 

problem can be written as 

           ŝ = arg min ∥ s ∥1  subject to y = Θs                   (16) 

This problem can exactly recover K sparse signals and 

closely approximate compressible signals with high 

probability [12]. ℓ1 norm minimization is a convex 

optimization problem that conveniently reduces to a linear 

program known as basis pursuit whose computational 

complexity is about O(N3) which makes the optimization 

problem computationally tractable. 
 

B. Formulation of  DOA Estimation Problem using CS 

Approach 

Consider single snapshot case with T=1. In DOA 
estimation problem, the goal is to find θ. To cast this problem 
as a sparse representation problem, an over-complete 
representation A in terms of all possible source locations is 
introduced. Let {θ1, θ2 … θN} be the sampling grid of all 
source locations of interest. The number of potential source 
locations N will be much greater than the number of sources 
K or even the number of sensors M. Steering Matrix A can be 
constructed using the steering vectors at each source locations 
as its columns  

                  𝐴𝑀𝑋𝑁 = [𝑎(𝜃1) 𝑎(𝜃2) … . 𝑎(𝜃𝑁)]              (17) 

 

As explained in (3), the measurement vector y can be 

written as y = As + n. Now the signal model in (3) can be 

rewritten as a CS problem [13] 

 

                    𝑦 = Φ𝑥 = ΦA𝑠 + Φn                       (18) 

 

where 𝚽 of size M x N is constructed by randomly selecting 

M rows from an identity matrix of size N x N. As a result, the 

compression procedure is performing a random sub-

sampling/selection of the antenna elements of the array. Now 

the number of sensor elements needed is greatly reduced 

when compared to the traditional DOA estimation methods 

and therefore (18) can be written as y = As + n. 

As in numerous nonparametric source localization 

techniques, the approach forms an estimate of the signal 

energy as a function of hypothesized source location, which 

ideally contains dominant peaks at the true source locations. 

The central assumption is that the sources can be viewed as 

point sources, and their number is small. With this 

assumption, the underlying spatial spectrum is sparse (i.e., s 

has only a few nonzero elements), and we can solve this 

inverse problem via regularizing it to favor sparse signal 

fields using the ℓ1-methodology. The appropriate objective 

function for the problem is 

 

                  ŝ = min ∥ y − As ∥2
2 + λ ∥ s ∥1                          (19) 

 

where λ is the regularization parameter. ℓ1-minimization 

problem (ℓ1-SVD) is solved using cvx toolbox [14] which 

uses interior point method to solve the convex optimization 

problem.  
 

IV. SIMULATION RESULTS 
A uniform linear array of M=10 sensors separated by half 

a wavelength of the narrowband source signals is considered 
for the experiment.  Three narrowband sources (K=3) 
impinge on this array from distinct DOAs. Performance of 
CB, MVDR and MUISC beamformers is compared with L1-
SVD for three sources kept at various angles for snapshots 
T=30 and T=1(Singe-Snapshot) with a uniform sampling grid 
of 10(N=181). 
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Fig. 1 shows the beam pattern for CB, MVDR, MUSIC 

and L1-SVD for three equal strength sources which are 

located at farther apart (-300, 200and 600) with a uniform 

linear array of  M=10 sensors, SNR=15dB and T=30. As seen 

from the plot, all the beamforming techniques are able to 

resolve the three sources, but the 3dB beam width is lesser for 

L1-SVD compared to the other approaches.  MVDR and 

MUSIC gives better performance compared to CB. When the 

number of snapshots and SNR is high, all the beamforming 

approaches mentioned here are performing well. 
 

 

Fig. 1  DOA estimation of three equal strength sources located at -300, 

200and 600 with a ULA of M=10 sensors, SNR=15dB and T=30 

Fig. 2 compares the performance of CB, MVDR, MUSIC 

and L1-SVD when the three sources are located at 230, 330 

and 430 and SNR = 15dB. The CB beamformer is unable to 

resolve the three sources whereas Capon, MUSIC and L1-

SVD resolve the three sources. Conventional beamformers 

can resolve the sources only when the source locations are 

sufficiently apart. 

 
Fig. 2 DOA estimation of  three equal strength sources located at 230, 330 and 

430  with a ULA of M=10 sensors, SNR=15dB and T=30 

Performance of DOA estimation algorithm largely depends 

on the resolution capability of the sources when they are 

placed at close proximity. Fig. 3 compares the performance 

of the above mentioned beamformers when the sources are 

located with DOAs 230, 280, 330 and SNR = 15dB. L1-SVD 

can resolve the two sources whereas CB, MVDR and MUSIC 

is unable to resolve the three closely spaced sources as 

evident from the figure, which shows the superior resolution 

of compressive sensing based beamformers. 

. 

 

Fig. 3 DOA estimation of three equal strength sources located at 230, 280and 
330 with a ULA of M=10 sensors, SNR=15dB and T=30 

Fig. 4 shows the performance of the four beamformers 

when the three sources with DOAs 330, 430 and 530, T=30 

and SNR= -5dB.  It is clear from the figure that only L1-SVD 

is able to resolve the two sources at this SNR. The other three 

methods are unable to resolve the sources during noisy 

conditions. 

 

 
Fig. 4 DOA estimation of  three equal strength sources located at 230, 330 and 

430  with a ULA of M=10 sensors, SNR=-5dB and T=30 

Now consider the case for single snapshot (T=1). MVDR 
and MUSIC beamformers performance degrades when the 
snapshots are less as the cross spectral matrix becomes rank 
deficient. Hence for single snapshot scenario, CB beamformer 
is compared with L1-SVD when the three sources are located 
at 230, 280, 330 and SNR = 25dB. Even for a single snapshot 
case, L1-SVD is able to resolve the closely spaced sources 
with much accuracy as seen from the fig. 5. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060206
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

342



 

Fig. 5 DOA estimation of three equal strength sources located at 230, 280 and 

330 with a ULA of M=10 sensors, SNR=25dB and T=1 

From the above simulation results, it is evident that L1-SVD 

based on compressive sensing approach outperforms the 

traditional methods of beamforming. Conventional 

Beamformer fails to resolve the closely spaced target under 

any conditions. MVDR and MUSIC beamformer has shown 

better performance compared to conventional beamformers 

under high SNR, and when the number of snapshots is large. 

But the performance of these two algorithms degrades during 

noisy conditions or when the snapshots are less. In all the 

scenarios mentioned above, L1-SVD has shown superior 

resolution even for closely spaced sources. 

 

V. CONCLUSION 

In this paper DOA estimation using L1-SVD based on 

compressive sensing approach has been analyzed and its 

performance is compared with the traditional beamforming 

approaches for single snapshot and multiple snapshot 

scenarios. Simulation results indicate that the Compressive 

beamformers have superior resolution even for a single 

snapshot data in comparison with the CBF, MVDR and 

MUSIC beamformers. Also MVDR and MUSIC need 

multiple snapshots whereas the L1-SVD algorithm is able to 

resolve closely spaced sources for both multiple and single 

snapshot scenarios. It is found to have good resolving 

capability even at low SNR. 
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