

Abstract— Software products are said to be feasible if they are

developed within the budget constraints. Prior to making software

product it’s imperative to predict the software development cost.

Practitioners have expressed concern over their inability to

accurately estimate costs associated with software development.

This concern has become even more pressing as costs associated

with development continue to increase. As a result, considerable

research attention is now directed at gaining a better

understanding of evaluating software cost estimating tools. This

paper summarizes software cost estimation models: COCOMO II,

COCOMO, PUTNAM, STEER and ESTIMACS based on the

parameters implement ability, extensibility, flexibility and

traceability and techniques used to estimate software costs.

Index Terms— Software Cost Estimation Model, Software

Development, Software Development Cost, Development Life

Cycle, KLOC (Kilo Lines of Code), function count (FC), S/w

(Software), KDSI (Kilo Delivered Source of Instruction), AT

(Algorithmic Technique), NAT (Non-Algorithmic Technique)

I. INTRODUCTION

Software cost estimation model is an indirect measure, which is

used by software personnel to predict the cost of a project. They

are used for the number of purposes. It includes:
 Budgeting

Overall estimate has to be accurate, the most desired

capability. Hence initial efforts are directed in

predicting budget for the software product.
 Tradeoff and risk analysis

An important additional capability is to illuminate the

cost and schedule sensitivities of software project

decisions (scoping, staffing, tools, reuse, etc.).
 Project planning and control

An additional potential is to provide cost and schedule

breakdowns by component, stage and activity.

 Software improvement investment analysis Strategies

such as tools, reuse, and process maturity benefit the

development process of software.[1]

This paper has been divided into five sections. Initial being

Introduction, Section II pertains to surveying of various Cost

Estimation Models. Section III regards to surveying distinct cost

estimation techniques. Section IV defines comparative analysis

of various models on the basis of certain parameters. Finally,

Section V summarizes and tells about future scope for the same.

Section VI is References.

II. COST ESTIMATION MODELS

Economy of s/w development would reduce the current

difficulties of software production resulting in cost overruns or

even project cancellations. Just like in any other field, the field

of software engineering cost models has had its own pitfalls. The

fast changing nature of software development has made it very

difficult to develop parametric models that yield high accuracy

for software development in all domains. S/w development costs

hikes abnormally and practitioners continually express reckon

over their incapability to accurately predict the costs involved.

S/w models constructively explain the development life-cycle

and accurately predict the cost of developing a software product

[2]. Many s/w estimation models have evolved in the last two

decades based on the pioneering efforts by the researchers.

Mostly being proprietary models cannot be compared and

contrasted as far as the model structure is concerned [3]. Theory

or experimentation determines the functional form of these

models. These are:

1. COCOMO 81

1(a) Basic COCOMO

COCOMO is an acronym used for Constructive Cost Model. It

was first published in 1981 book Software Engineering

Economics by Barry Boehm. It gives the magnitude of cost of

project due to the ease of openness of model. It is meant for

relatively small projects as a very few cost drivers are associated

with it. Its supportive when the team size is small, i.e. small staff.

It’ s good for quick, early, rough, order of magnitude of

software costs, but its accuracy is necessarily limited because of

its lack of factors to account for difference in hardware

constraints, personnel quality and experience, use of modern

tools and techniques and other project attributes are known to

Software Cost Estimation Models and

Techniques: A Survey

1
Yansi Keim,

1
Manish Bhardwaj,

2
Shashank Saroop,

2
Aditya Tandon

Department of Information Technology

Ch. Brahm Prakash Government Engineering College, Jaffarpur, New Delhi-110073

1763

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20384

have a significant influence on s/w costs.

EFFORT = a* (KDSI)
b

The value of constants a & b depend on the project type. The

estimated number of delivered lines of code for the project

accounts for the KLOC.

Basic COCOMO has three types of modes which are following

[4]:-

Organic Mode: Relatively small, simple s/w project in which a
small teams with good application experience. Efforts, E and
Development, D are:-

E = 2.4*(KLOC)
1.05

D=2.5*(E)
0.38

Semi-detached Mode: An intermediate s/w projects in which
teams with mixed experience

E = 3.0* (KLOC)
1.12

D=2.5*(E)

0.35

Embedded Mode: A s/w project that must be developed within
a set of tight h/w, s/w and operational constraints

E = 3.6* (KLOC)
1.20

D=2.5*(E)

0.32

1(b) Intermediate COCOMO

It evaluates software development effort as a function of
program size and set of cost drivers that include subjective
examination of the products, hardware, personnel and project
attributes.

It is used for medium sized projects. The cost drivers are

intermediate to basic and advanced COCOMO. Product

reliability, database size, execution and storage are function of

cost drivers. Team size is medium. The intermediate COCOMO

model takes the form:

EFFORT = a* (KLOC) b * EAF

Here effort in person-months and KLOC is the estimated number

of delivered lines of code for the project.

1(c) Detailed COCOMO

It is used for large sized projects. Requirements, analysis,

design, testing and maintenance determines the cost drivers,

here. Team size is large. The detailed COCOMO Model

inculcates all features of the intermediate version with an

assessment of the cost driver’s effect on each step (analysis,

design, etc) of the software engineering process.

2. COCOMO-II

The COCOMO II research effort was started in 1994 at USC. Its

major focus on non-sequential and rapid development process

models, reengineering, reuse driven approaches, object oriented

approaches, etc. It is a cumulative result of three variants,

Application composition model, Early design model, and Post

architecture model [5].

a. The Application Composition model is worn to

approximate effort and schedule on projects that use

Integrated Computer Aided Software Engineering tools

for rapid application development. It is based on Object

Points (Object Points are a tally of the screens, reports

and 3 GL language modules developed in the

application).
b. The Early Design Model involves the investigation of

substitute system architectures and concepts of
operation.

c. The Post-Architecture Model is used when apex level

design is complete and thorough information about the

project is accessible and as the name suggests, the

software architecture is sound defined and well-known.

It accounts for the intact development life-cycle and is a

exhaustive extension of the Early-Design model. This is

a lean-to intermediate COCOMO model and defined as:-

EFFORT = 2.9 (KLOC)
1.10

3. PUTNAM MODEL (SLIM)

SLIM (Software Life Cycle Model) is based on Putnam’s

study in terms of Rayleigh distribution of project personnel level

versus time. It chains most of the popular size estimating

methods including ballpark techniques, source instructions,

function points, etc. It estimates project effort, schedule and

defect rate. Record and analyze data from formerly completed

projects which are then used to standardize the model [3]. If data

are not obtainable then a set of questions can be answered to get

values of MBI and PF from the presented database.

Productivity, P, is the ratio of software product size S and

development effort E is

that is

P=

The Rayleigh curve [2] is accustomed to define the distribution
of effort which is modeled by the differential Equation

1764

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20384

Fig. 1: The Rayleigh Model

4. ESTIMACS

It is a proprietary system which is used in critical flight s/w [7]

and was marketed by Management and Computer Services

(MACS). ESTIMACS stresses impending the evaluating task in

business terms. Rubin has recognized six vital proportions of

estimation and a map presenting their interactions, all the way

from what he calls the gross business terms through to their

impact on the developer’s protracted term projected portfolio

mix. [3]The significant estimation dimensions are: effort hours,

a. staff size and deployment,

b. cost,

c. hardware resource requirements,

d. risk,

e. portfolio impact..

Fig. 2: Rubin’s map of relationship of estimation dimensions

5.SEER-SEM

SEER-SEM is System Evaluation and Estimation of Resources,

a product offered by Galorath, Inc. of El Segundo, California.

This model is based on the original Jensen model [Jensen1983],

and has been on the market since last 15 years. The scope of the

model is broad. It covers all phases of the project life-cycle,

from early specification all the way through design,

development, delivery and maintenance. It facilitates extensive

sensitivity and trade-off analyses on model input parameters. It

organizes project elements into work breakdown structures for

suitable planning and control and displays project cost drivers.

The model allows the interactive scheduling of project elements

on Gantt charts. Builds estimates upon a sizable information

base of existing projects [2].

III. COST ESTIMATION TECHNIQUES

A. Algorithmic Techniques

Algorithmic methods use a formula to calculate the software cost

estimate. The formula is developed from models which are

created by combining related cost factors. In addition, the

statistical method is used for model construction.

The algorithmic method is designed to provide some

mathematical equations to perform software estimation. These

mathematical equations are based on research and historical data

and use inputs such as Source Lines of Code (SLOC), number of

functions to perform, and other cost drivers such as language,

design methodology, skill-levels, risk assessments, etc. The

algorithmic methods have been largely studied and many models

1765

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20384

have been developed, such as COCOMO models, Putnam

model, and function points based models.

Function Point Analysis

The Function Point Analysis is another method of quantifying

the size and complexity of a software system in terms of the

functions that the systems deliver to the user. A number of

proprietary models for cost estimation have adopted a function

point type of approach, such as ESTIMACS and SPQR/20.

This is a measurement based on the functionality of the program

and was first introduced by Albrecht [8]. The total number of

function points depends on the counts of distinct (in terms of

format or processing logic) types.

There are two steps in counting function points:

i. Counting the user functions:- The raw function counts are

arrived at by considering a linear combination of five

basic software components: external inputs, external

outputs, external inquiries, logic internal files, and

external interfaces, each at one of three complexity

levels: simple, average or complex. The sum of these

numbers, weighted according to the complexity level, is

the number of function counts (FC).

ii. Adjusting for environmental processing complexity:- The

final function points is arrived at by multiplying FC by an

adjustment factor that is determined by considering 14

aspects of processing complexity.

B. Non-Algorithmic Techniques

Non-algorithmic methods do not use a formula to calculate the

software cost estimate.

i. Top-Down Estimating Method

Top-down estimating method is also called Macro Model. Using

top-down estimating method, an overall cost estimation for the

project is derived from the global properties of the software

project, and then the project is partitioned into various low-level

mechanism or components. The leading method using this

approach is Putnam model. This method is more applicable to

early cost estimation when only global properties are known. In

the early phases of the software development, it is very useful

because there is no detailed information available.

ii. Bottom-Up Estimating Method

Using bottom-up estimating method, the cost of each software

components is estimated and then combines the results to arrive

at an estimated cost of overall project. It aims at constructing the

estimate of a system from the knowledge accumulated about the

small software components and the interactions. The leading

method using this approach is COCOMO's detailed model.

iii. Estimating by Analogy

Estimating by analogy means comparing the proposed project to

previously completed similar project where the project

development information id known. Actual data from the

completed projects are extrapolated to estimate the proposed

project. This method can be used either at system-level or at the

component-levels.

The estimating steps using this method are as follows:

a. Find out the characteristics of the proposed project.

b. Select the most similar completed projects whose

characteristics have been stored in the historical data base.

c. Find out the estimate for the proposed project from the most

similar completed project by analogy.

IV. COMPARATIVE ANALYSIS OF VARIOUS
MODELS ON THE BASIS OF CERTAIN

PARAMETERS

COCOMO 81 or COCOMO I model published in 1981. In [2],

Barry Boehm described the capabilities of COCOMO 81 from

simply providing cost estimation capability to sensitivity

analysis and trade-off analysis. The reports in [3] tell us the

model being entirely transparent; its openness shows how it

works. The drivers are helpful to understand the factors

affecting project costs. However the shifting needs from

mainframe overnight batch processing to real time application,

strenuous effort in building s/w for reusing, new system

development including the off-the-shelf component, spending

as much effort on designing, managing the s/w software

development process once spent creating the s/w product,

application generation programs, object oriented approaches.

The model’s success greatly requires historical data, but it

might not be present every time. The COCOMO-II came into

existence [2] when needs mentioned above arose. Joint efforts

of USC-CSE (University of California, Center for Software

Engineering) and the COCOMO II Project Affiliate

Organizations the COCOMO II model was presented in 1995.

It supported updated project database [7]. The strategy

maintained focused upon preserving the openness of previous

version.

SLIM s/w cost estimation model has not been widely accepted

due to certain limitations. Why it has been initially accepted is

given below: One of the key advantages to this model is the

1766

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20384

simplicity with which it is calibrated. Most software

organizations, regardless of maturity level can easily collect

size, effort and duration (time) for past projects. Process

Productivity, being exponential in nature is typically converted

to a linear productivity index an organization can use to track

their own changes in productivity and apply in future effort

estimates. [2] Why this model is not widely accepted? One

significant problem with the PUTNAM model is that it is based

on knowing, or being able to estimate accurately, the size (in

lines of code) of the software to be developed. There is often

great uncertainty in the software size. It may result in the

inaccuracy of cost estimation. The error percentage of SLIM, a

Putnam model based method, is 72.87%.

The ESTIMACS model was developed by Howard Rubin of

Hunter College as an outgrowth of a consulting assignment to

Equitable Life. It is a proprietary system and, at the time the data

were collected, was marketed by Management and Computer

Services (MACS). Since it is a proprietary model, details, such

as the equations used, are not available. The model does not

require

SLOC as an input, relying instead on “Function-Point-like”

measures. The research in this paper is based on Rubin’s paper

from the 1983 IEEE conference on software development tools

and the documentation provided by MACS [ZO, 221. The 25

ESTIMACS input questions are described in these documents.

The ESTIMACS average error is 85 percent, which includes

some over and some under estimates, and is the smallest average

error of the four models. [7]

There is a brief discussion given below how the SEER-SEM

model gone through its development stages and which version is

currently in use. SEER-SEM model has made its unique way in

software cost estimation process.

Version 1.0: In 1988, Galorath Incorporated began work on the

initial version of SEER-SEM which resulted in an initial

solution of 22,000 lines of code. SEER-SEM version 1.0 was

released on 13 5.25" floppy disks and was an early product

running on Windows version 2. Designing SEER-SEM for

Windows was considered risky as the operating system had yet

to establish itself as a viable competitor to the current dominant

OS, Microsoft's MS-DOS. However, the adoption of a

Windows-based format proved to be worthwhile, allowing

SEER-SEM to offer a much more intuitive user interface than

would have otherwise been available in
MS-DOS. Galorath chose Windows due to the ability to provide

a more graphical user environment, allowing more robust

management tradeoffs and understanding of what drives

software projects.
Next Versions: Since that initial release in 1988, SEER-SEM

has undergone numerous upgrades, keeping up with changing

technology, adapting to better meet the needs of the customer,

and altering the model to achieve more precise estimates. For

example, the 1994 release of SEER-SEM version 4 included

major enhancements to the core math behind the model,

handling the realities of projects rather than just a Rayleigh

curve approximation, as well as dozens more knowledge bases

and the latest research in software science and complexity

metrics. 2003 saw SEER-SEM add significant new features such

as Goal Setting and Risk Tuning. Both features operated as their

names suggest with Risk Analysis allowing project managers to

make changes to estimates and Goal Setting allowing for

projects to not only be estimated, but also to be managed.

Version 6 of SEER for Software was the first to be fully

COM-enabled, allowing SEER to both input and output through

various Microsoft products, such as Excel. Version 7 included

better handling of projects that stretch beyond their optimal

effort. [9]

Current Version: SEER for Software Version 7.3 is a vast

improvement over the original implementation, representing

perhaps the first time that any version of SEER could be

integrated to support all phases of a project's lifecycle. The size

of the software has grown to over 200,000 source lines of code

and shifted from simply a means to generate work estimates

through parametric modeling to a system that buttresses those

results with simulation-based probability and over 20,000

historical cases to draw conclusions from.

The original SEER-SEM has also branched into:

 SEER for Information Technology – SEER-IT

– a version of SEER created to aid IT professionals

estimates the design, build, and maintenance of

information technology infrastructures and service

management projects.

 SEER for Hardware, Electronics, & Systems –

SEER-H – a version of SEER designed to aid in the

life-cycle cost estimation of any type of hardware,

electronics or system.

 SEER for Manufacturing – SEER-MFG – a version of

SEER tailored for estimating the detailed production

costs of manufacture, covering a wide range of

state-of-practice manufacturing process

knowledge.[10]

1767

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20384

Table 1 Comparison of various Cost Estimation Models

V. FUTURE SCOPE

Here, we have carried out the comparative systematic study of
some software cost estimation models in conjunction with
their relevant techniques. Although, it would be awfully
difficult to say which model is preeminent as it is vastly based
on the size of software and certain other factors. But, largely
COCOMO-II is hugely used and has a broad prospect too.

Thus, we would like to carry out our future study on the same.

VI. ACKNOWLEDGEMENT

This paper has come out as a successful work product due to the

throughout support of our well-regarded teacher Mr. Gulzar

Ahmad (Assistant Professor).

]REFERENCES

[1] Ashita Malik, Varun Pandey, Anupama Kaushik et al.(2013), “Analysis of

Fuzzy Approaches for COCOMO II”, Vol-6, India, pp 68-75

[2] Barry Boehm, Chris Abts, Sunita Chulan et al. (2000), “Software

Development Cost Estimation Approaches”, Annuals of Software

Engineering, 10, pp 177-205

[3] Barry Boehm, Chris Abts, Sunita Chulani et. al., “Software Development

Cost Estimation Approaches- A Survey”, IBM Research

[4] Roger S. Pressman, 1997 – Software Engineering – A Practitioner‟ s

Approach, Fourth Edition;

http://groups.engin.umd.umich.edu/CIS/course.des/cis525/js/f00/gamel/

help.html

[5] Sunita Devnani-Chulani et. al(May 1999), “Bayesian Analysis of

Software Cost and Quality Models”

[6] Astha Dhiman, Chander Diwaker et. al(2013), “Optimization of

COCOMO II Effort Estimation using Generic Algorithm”

[7] Raymond Madachay, Barry Boehm et. al(2008), “Comparative Analysis

of COCOMO II, SEER-SEM and True-S Software Cost Models”

 [8] Sweta Kumari, Shashank Pushkar et. Al(2013), “Performance Analysis of

Software Cost Estimation Methods: A Review”

[9] Galorath, D & Evans M. (2006) Software Sizing, Estimation, and Risk

Management ISBN 0-8493-3593-0

S.
Year of Parameters

Model Name Author Technique Used

No. Publishing
Extensibility Flexibility Traceability Easy to

Implement

 Being

01. ESTIMACS Howard
1970 Function Point

√ √ proprietary,

Rubin (AT)
accessibility is

 less

PUTNAM‟ s Ballpark Technique

L.H.

(NAT),

02. S/w Life Cycle 1978
√

Putnam, Function Point
√

Model(SLIM)

(AT),

03. COCOMO Barry
1981 SLOC‟ s, KDSI √

√

81[3][4][5][6] Boehm

Top-down, bottom- Suitable for

04 SEER-SAM Galorth 1983 √ √ √ SLC over

up

2,00,000

 USC-CSE &

 COCOMO
Object Point,

Suitable for

II Project

COCOMO II 1995 Function Point,

√ √ large size

05. Affiliate

SLOCs, KSLOC

projects

Organizations

1768

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20384

