
 Software Cost Models

 Y.Sangeetha M.Tech (Ph.d) P.Madhavi Latha Dr R.Satya Prasad

 Asst.Professor, Asst.Professor Associate Professor

 VRSEC, VRSEC Acarya Nagarjuna University

 Vijayawada. Vijayawada. Vijayawada.

Abstract
Software cost estimation is the process of predicting the effort required to develop a

software system. Large numbers of estimation models have been proposed over the

last 30 years. This paper provides a comparison of existing software cost estimation

methods including the recent advances in the field. I have highlighted the cost

estimation models that have been proposed and used successfully. Models may be

classified into 2 major categories: algorithmic and non-algorithmic. Each has its

own strengths and weaknesses. This paper compares the most popular algorithmic

models used to estimate software costs [SLIM, COCOMO, Function Points,

SEER-SEM and so on). A key factor in selecting a cost estimation model is the

accuracy of its estimates.

I. INTRODUCTION

A cost model is a set of mathematical relationships arranged in a systematic sequence to

develop a cost methodology in which outputs, namely cost estimates, are derived from

inputs. These inputs include quantities and prices. Cost models can vary from a simple

one-formula model to an extremely complex model that involves hundreds or even

thousands of calculations.

Cost models can be classified in several ways. One basis for classification would be the

complexity of manipulation of the inputs, secondly according to the function they serve

and lastly according to the likelihood of repetitive use. Earlier various software cost

estimation models have been suggested and studied by many researchers (Kim and Lee,

Kafura and Henry, Kaur, Mittal and Parkash, Maxwell, Brian and Smith).This paper

describes the comparative analysis of all the existing cost models. In this study, we

investigate the estimation accuracies of each model.

II. RELATED WORK

Various Cost models have been examined e.g. COCOMO and FPA and I review the

independent work done by various researchers who have investigated these models. My

research is concerned with the comparative study of all existing models using actual

project data. An important task in software project management is to understand and

control critical variables that influence the software effort [5]. Some recent study is also

done in the field of ―”Analogy based Estimations”. Analogy based estimations compare

the similarities between the projects whose effort is to be estimated with all the historical

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org

projects. In other words, it tries to identify that historical project which is most similar to

the project being estimated [6].

III. NEED FOR COST ESTIMATION MODELS

Cost estimation is one of the most challenging tasks in project management. It is to

accurately estimate needed resources and required schedules for software development

projects. The software estimation process includes estimating the size of the software

product to be produced, estimating the effort required, developing preliminary project

schedules, and finally, estimating overall cost of the project. Accurate cost estimation is

important because:

 It can help to classify and prioritize development projects with respect to an

overall business plan.

 It can be used to determine what resources to commit to the project and how well

these resources will be used.

 It can be used to assess the impact of changes and support replanning.

 Projects can be easier to manage and control when resources are better matched

to real needs.

 Customers expect actual development costs to be in line with estimated costs.

IV. TYPES OF COST MODELS

COCOMO MODEL

Basic COCOMO Model

The basic COCOMO model gives an approximate estimate of the project parameters. The

basic COCOMO estimation model is given by the following expressions:

Effort = a
1

х (KLOC)
a

2PM

Tdev = b
1

x (Effort)
b

2

Months

Where, • KLOC is the estimated size of the software product expressed in Kilo Lines of

Code,

 a
1
, a

2
, b

1
, b

2
are constants for each category of software products,

 Tdev is the estimated time to develop the software, expressed in months,

 Effort is the total effort required to develop the software product, expressed in

person months (PMs).

Estimation of development effort

For the three classes of software products, the formulas for estimating the effort based on

the code size are shown below:

Organic : Effort = 2.4(KLOC)
1.05

PM

Semi-detached : Effort = 3.0(KLOC)
1.12

PM

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org

Embedded : Effort = 3.6(KLOC)
1.20

PM

Estimation of development time

For the three classes of software products, the formulas for estimating the development

time based on the effort are given below:

Organic : Tdev = 2.5(Effort)
0.38

Months

Semi-detached:Tdev = 2.5(Effort)
0.35

Months

Embedded : Tdev = 2.5(Effort)
0.32

Months

Drawbacks of Basic COCOMO:

 It can be observed that the development time is a sublinear function of the size of

the product, i.e. when the size of the product increases by two times, the time to

develop the product does not double but rises moderately.

 Accurate Estimation is not obtained as a host of other project parameters besides

the product size affect the effort required to develop the product as well as the

development time.

Intermediate COCOMO model

The basic COCOMO model assumes that effort and development time are functions of

the product size alone. However, a host of other project parameters besides the product

size affect the effort required to develop the product as well as the development time.

Therefore, in order to obtain an accurate estimation of the effort and project duration, the

effect of all relevant parameters must be taken into account. The intermediate COCOMO

model recognizes this fact and refines the initial estimate obtained using the basic

COCOMO expressions by using a set of 15 cost drivers (multipliers) based on various

attributes of software development. Boehm requires the project manager to rate these 15

different parameters for a particular project on a scale of one to three. Then, depending

on these ratings, he suggests appropriate cost driver values which should be multiplied

with the initial estimate obtained using the basic COCOMO. In general, the cost drivers

can be classified as being attributes of the following items:

Product: The characteristics of the product that are considered include the inherent

complexity of the product, reliability requirements of the product, etc.

Computer: Characteristics of the computer that are considered include the execution

speed required, storage space required etc.

Personnel: The attributes of development personnel that are considered include the

experience level of personnel, programming capability, analysis capability, etc.

Development Environment: Development environment attributes capture the

development facilities available to the developers. An important parameter that is

considered is the sophistication of the automation (CASE) tools used for software

development.

Drawbacks of Intermediate COCOMO:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org

 Consider a software product as a single homogeneous entity. However, most large

systems are made up several smaller sub-systems.

Complete COCOMO model

A major shortcoming of both the basic and intermediate COCOMO models is that they

consider a software product as a single homogeneous entity. However, most large

systems are made up several smaller sub-systems. These sub-systems may have widely

different characteristics. For example, some sub-systems may be considered as organic

type, some semidetached, and some embedded. Not only that the inherent development

complexity of the subsystems may be different, but also for some subsystems the

reliability requirements may be high, for some the development team might have no

previous experience of similar development, and so on. The complete COCOMO model

considers these differences in characteristics of the subsystems and estimates the effort

and development time as the sum of the estimates for the individual subsystems. The cost

of each subsystem is estimated separately. This approach reduces the margin of error in

the final estimate.

The following development project can be considered as an example application of the

complete COCOMO model. A distributed Management Information System (MIS)

product for an organization having offices at several places across the country can have

the following sub-components:

• Database part

• Graphical User Interface (GUI) part

• Communication part

Of these, the communication part can be considered as embedded software. The database

part could be semi-detached software, and the GUI part organic software. The costs for

these three components can be estimated separately, and summed up to give the overall

cost of the system.

SEER-SEM MODEL

The System Evaluation and Estimation of Resources – Software Estimating Model

(SEER-SEM) began with the Jensen model and diverged significantly in the early 1990s.

SEER-SEM is composed of a group of models working together to provide estimates of

effort, duration, staffing, and defects. Supported sizing metrics include source lines of

code (SLOC), function-based sizing (FBS) and a range of other measures. They are

translated for internal use into effective size (Se). Se is a form of common currency within

the model and enables new, reused, and even commercial off-the-shelf code to be mixed

for an integrated analysis of the software development process. The generic calculation

for Se is:

 Se = NewSize + ExistingSize x (0.4 x Redesign + 0.25 x Reimpl + 0.35 x Retest)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org

In SEER-SEM, all size metrics are translated to Se, including those entered using

Function Based Sizing (FBS). After FBS is translated into function points, it is then

converted into Se as:

where, Lx is a language-dependent expansion factor. AdjFactor is the outcome of

calculations involving other factors mentioned above. Entropy ranges from 1.04 to 1.2

depending on the type of software being developed.

The basic effort equation is:

 K = D
0.4

 (Se/Cte)
1.2

where, Se is effective size – introduced earlier. Cte is effective technology – a composite

metric that captures factors relating to the efficiency or productivity with which

development can be carried out [1].

Advantages of SEER-SEM:

 Allows probability level of estimates, staffing and schedule constraints to be input

as independent variables.

 Facilitates extensive sensitivity and trade-off analyses on model input parameters.

 Organizes project elements into work breakdown structures for convenient

planning and control.

 Displays project cost drivers.

 Allows the interactive scheduling of project elements on Gantt charts.

 Builds estimates upon a sizable knowledge base of existing projects

Drawbacks of SEER-SEM:

 There are over 50 input parameters related to the various factors of a project,

which increases the complexity of SEER-SEM, especially for managing the

uncertainty from these outputs.

 The specific details of SEER-SEM increase the difficulty of discovering the

nonlinear relationship between the parameter inputs and the corresponding

outputs. Overall, these two major limitations can lead to a lower accuracy in effort

estimation by SEER-SEM [4].

PRICE-S

The PRICE-S model was originally developed at RCA for use internally on software

projects such as some that were part of the Apollo moon program. It was then released in

1977 as a proprietary model and used for estimating several US DoD, NASA and other

government software projects. The model equations were not released in the public

domain, although a few of the model’s central algorithms were published in [Park 1988].

The tool continued to become popular and is now marketed by PRICE Systems, which is

a privately held company formerly affiliated with Lockheed Martin. As published on

PRICE Systems website (http://www.pricesystems.com), the PRICE-S Model consists of

three submodels that enable estimating costs and schedules for the development and

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org

support of computer systems. These three submodels and their functionalities are outlined

below:

The Acquisition Submodel: This submodel forecasts software costs and schedules. The

model covers all types of software development, including business systems,

communications, command and control, avionics, and space systems. PRICE-S addresses

current software issues such as reengineering, code generation, spiral development, rapid

development, rapid prototyping, object-oriented development, and software productivity

measurement.

The Sizing Submodel: This submodel facilitates estimating the size of the software to be

developed. Sizing can be in SLOC, Function Points and/or Predictive Object Points

(POPs). POPs is a new way of sizing object oriented development projects and was

introduced in [Minkiewicz 1998] based on previous work one in Object Oriented (OO)

metrics done by Chidamber et al. and others [Chidamber and Kemerer 1994; Henderson-

Sellers 1996].

The Life-cycle Cost Submodel: This submodel is used for rapid and early costing of the

maintenance and support phase for the software. It is used in conjunction with the

Acquisition Submodel, which provides the development costs and design parameters.

PRICE Systems continues to update their model to meet new challenges. Recently, they

have added Foresight 2.0, the newest version of their software solution for forecasting

time, effort and costs for commercial and non-military government software projects.[8]

SLIM

The SLIM model developed by Putnam is based on a Norden/Rayleigh manpower

distribution and his finding in analyzing many completed projects [Putnam and Myers

1992].The central part

 S = Ck * Effort
1/3

*td
4/3

 Where, Effort is in person-months, td is the software delivery time; Ck is a productivity

environment factor.

A Manpower Buildup Index (MBI) and a Technology Constant or Productivity factor

(PF) are used to influence the shape of the curve. SLIM can record and analyze data from

previously completed projects which are then used to calibrate the model; or if data are

not available then a set of questions can be answered to get values of MBI and PF from

the existing database. The productivity environment factor reflects the development

capability derived from historical data using the software equation. The size S is in LOC

and the Effort is in person-years. Another relation found by Putnam is:

 Effort = D0 *td
3

Where, D0 is the manpower build-up parameter which ranges from 8 (entirely new

software with many interfaces) to 27 (rebuilt software).

Putnam's model is used in the SLIM software tool based on this model for cost estimation

and manpower scheduling.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org

Advantages of SLIM:

 Uses linear programming to consider development constraints on both cost and

effort.

 SLIM has fewer parameters needed to generate an estimate

over COCOMO'81 and COCOMO'II

Drawbacks of SLIM:

 Estimates are extremely sensitive to the technology factor

 Not suitable for small projects

COPMO MODEL

The Multivariable class model selected was the Cooperative Programming Model

(COPMO) by Thebaut. Thebaut’s approach includes two methods for predicting effort

and duration. The overall emphasis of this app roach is a two part model:

 Effort = Ep + Ec

The first portion of this model Ep represents the productive effort (design, development

and testing) expended by programmer. Ep is calculated as:

 Ep = a + b.KSLOC

where a and b are constant calculated with the best fit method. The second portion of the

model Ec represents the cost of coordinating multiple programmers’ effort. Ec is calculated

as:

 Ec = c.P
d

Where P is the average number of personnel, and c and d are constants calculated with

the best fit method.

The COPMO model incorporates the simple intuition that the effort required to develop a

system increases with the system’s size. The COPMO model, in addition to the size

component, explicitly accounts for the communication and management overhead

associated with the large development staffs.

FUNCTION POINT ANALYSIS (FPA)

FPA begins with the decomposition of a project or application into its data and

transactional functions. The data functions represent the functionality provided to the user

by attending to their internal and external requirements in relation to the data, whereas

the transactional functions describe the functionality provided to the user in relation to

the processing this data by the application.[3]

The data functions are:

1. Internal Logical File (ILF)

2. External Interface File (EIF)

The transactional functions are:

1. External Input (EI)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

2. External Output (EO)

3. External Inquiry (EI)

Each function is classified according to its relative functional complexity as low, average

or high. The data functions relative functional complexity is based on the number of data

element types (DETs) and the number of record element types (RETs). The transactional

functions are classified according to the number of file types referenced (FTRs) and the

number of DETs. The number of FTRs is the sum of the number of ILFs and the number

of EIFs updated or queried during an elementary process. The actual calculation process

consists of three steps:

1. Determination of unadjusted function points (UFP)

2. Calculation of value of adjustment factor(VAF)

3. Calculation of final adjusted functional points.

Advantages of FPA:

 Standards are established and reviewed frequently.

 Resulting metrics are logical and straightforward.

 Counting resources are available from requirements stage and applicable for full

life-cycle analysis.

 Technology, platform, and language independent.

 Objectively defines software application from the user’s perspective.

Drawbacks of FPA:

 Largely a manual process.

 Accurate counting requires in-depth knowledge of standards.

 Some variations exist that are not standardized (Mark II, 3D, full, feature points,

object points, etc.).

 Not as much historical data available as SLOC.

 Sometimes backfiring, derived from SLOC can be inaccurate and misleading.

V. SUMMARY

Overall, Cost Estimation models are good for budgeting, tradeoff analysis, planning and

control, and investment analysis. As they are calibrated to past experience, their primary

difficulty is with unprecedented situations. Table 2 summarizes few activities of various

Cost models. [8]

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

8www.ijert.org

Table2.Activities Covered/Factors Explicitly Considered by Various Cost Models.
Group Factors

SLIM PRICE-S SEER-SEM COCOMO II

Size Attributes Source Instructions YES YES YES YES

Function Points YES YES YES YES

OO-related metrics YES YES YES YES

Program Attributes Type/Domain YES YES YES NO

Complexity YES YES YES YES

Language YES YES YES YES

Reuse YES YES YES YES

Required Reliability ? YES YES YES

Computer

Attributes

Resource Constraints YES YES YES YES

Platform Volatility ? ? YES YES

Personal Attributes Personnel Capability YES YES YES YES

Personnel Continuity ? ? ? YES

Personnel Experience YES YES YES YES

Project Attributes Tools and Techniques YES YES YES YES

Breakage YES YES YES YES

Schedule Constraints YES YES YES YES

Process Maturity YES YES YES YES

Team Cohesion ? YES YES YES

Security Issues ? YES YES NO

Multisite Development ? YES YES YES

Activities Covered Inception YES YES YES YES

Elaboration YES YES YES YES

Construction YES YES YES YES

Transition and

Maintenance

YES YES YES YES

 A question mark indicates that the authors were unable to determine from

available literature whether or not a corresponding factor is considered in a given

model.

VI. FUTURE WORK

The future work can further replicate this study for industrial software. We plan to

replicate our study to predict effort prediction models based on other machine

learning algorithms such as genetic algorithms. We may carry out cost benefit analysis

of models that will help to determine whether a given effort prediction model

would be economically viable.

REFERENCES:

1. Lee Fischman, Karen McRitchie, and Daniel D. Galorath “Inside SEER-SEM”,

The Journal of Defense Software Engineering April 2005.

2. Dennis Kafura, Salley Henry and Mark Gintner “The Comparison and

Improvement of Effort Estimates from Three Software Cost Models”.

3. Harish Mittal, Pradeep Bhatia “A comparative study of conventional effort

estimation and fuzzy effort estimation based on Triangular Fuzzy Numbers”

4. Wei Lin Du1, Danny Ho2, Luiz Fernando Capretz 3 “Improving Software

Effort Estimation UsingNeuro-Fuzzy Model with SEER-SEM”, Global

Journal of Computer Science and Technology, October 2010.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

9www.ijert.org

5. G.H. Subramanian , P.C. Pendharkar and M.Wallace, ―An empirical study

of the effect of complexity, platform, and program type on software

development effort of business applications”, Empirical Software

Engineering, vol. 11, pp. 541-553, Dec. 2006.

6. N.H. Chiu and S.J. Huang, ― “The adjusted analogy-based software

effort estimation based on similarity distances” , The Journal of Systems

and Software, vol. 80, pp. 628-640, 2007.

7. J. W. Bailey and V. R. Basili, “A meta model for software development

resource expenditure”, in Proceedings of the International Conference on

Software Engineering, pp. 107–115, 1981.

8. Barry Boehm, Chris Abts, “Software Development Cost Estimation

Approaches – A Survey”, University of Southern California, Los Angeles, CA

90089-0781.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

10www.ijert.org

