
Software Testing Cost Reduction with Genetic

Algorithms and Neural Networks

A. Watkins

College of Business

University of South Florida St Petersburg

140 7
th
 Avenue South

St Petersburg, Florida 33701

Sergio Davalos

Milgard School of Business

University of Washington Tacoma

1900 Commerce St

Tacoma, WA 98402

Abstract—Highly complex and interconnected systems may suffer

from intermittent or transient software failures. These are

particularly difficult to diagnose without large quantities of test

cases. This research focuses on a hybrid method for generating

test cases. A genetic algorithm is first used to automatically

generating large numbers of test cases to form a comprehensive

test suite. These test suites are then used to train a neural

network for regression testing and test suite augmentation. The

results indicate that the genetic algorithm can produce a

balanced test suite that, when combined with a neural network,

can reduce the costs of software testing by reducing system run-

time and human interaction.

Keywords— Software test data generation, genetic algorithms,

neural networks, software testing component

I. INTRODUCTION (HEADING 1)

In August 2003, a software flaw in an energy management

system caused an alarm to fail in a regional control center.

This set off a chain reaction that left many parts of the

northeastern U.S. shrouded in darkness and cost the City of

New York alone close to $1 billion in losses [1]. Ex post

analysis of this widespread blackout indicates that an alarm

system failure led to a delay in bringing up a back-up system,

which subsequently failed when the large number of

unprocessed system events created during the down-time

overflowed the process input buffer [2]. Although this

particular system failure drew worldwide attention due to its

effects on business, government, and everyday lives, it was

not an isolated incident. Outages due to software failures have

had an impact on every industry and inconvenienced millions

of users worldwide.

 Complex systems such as electric grids, telecommunication

exchanges and military support systems are systems composed

of systems created from component parts that may or may not

have been designed to work together. When tightly linked or

coupled, reciprocal actions among the various elements of the

overarching system can lead to failures that are both

unpredictable and catastrophic [3]. As our systems grow in

scale and rely increasingly on new technology, risk reduction

via more comprehensive and thorough testing is imperative at

every stage of the development lifecycle, including after every

system update. Unfortunately this isn‟t always the case, as the

Royal Bank of Canada that a programming error in a routine

update caused a delay in the processing of deposits,

withdrawals and payments [4,5].

 There are many techniques for system testing, one of which

involves generating suites of test data and noting anomalies as

data is run through the system. Sometimes, however, after

system changes it may be impossible to generate test data for

both legacy and new systems due to platform changes or

because of the high cost of running parallel systems for

testing. The research presented here addresses this issue by

focusing on techniques for generating test suites that can be

used to model a system therefore reducing costs in parallel

system runs. This paper is an extension to earlier work

completed at a unit testing level that used genetic algorithms

(GA) to generate test suites rich in failure causing test cases

[6] and to localize failures to facilitate system-level debugging

[7]. The focus of this current work is to generate test suites to

train neural networks (NN) to act as surrogates for the original

(unchanged) system during regression testing. In essence, the

function of the NN is to augment the test suite with test cases

that highlight any adverse consequences resulting from the

system changes.

 This paper is structured as follows: first, is a review of

the relevant literature on software testing, with a focus on

performance and regression testing issues, and places the work

in context. Next, the system under test is described and the GA

is used to generate test suites for this system. Finally, these test

suites are used to train a NN to act as an oracle during systems

testing and again for regression testing.

II. SOFTWARE TESTING AT A SYSTEM LEVEL

Testing at a systems level is less concerned the inputs to the
system and is instead focused on workloads and physical
resources [8] which is in other terms, the behavior or
performance of the system given some state [9]. As such, it is
black-box or behavioral testing [10]. Although there is little
agreement as to just which system behaviors to test, a review
of the relevant literature provides a number of strategies (see

1448

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656

[7, 11, 12, 13]). These strategies include timing issues,
network and tier loads, elapsed running time, as well as
cyclical patterns such as month and day of the week. Test
cases are generated that consist of input parameters along with
specific system environmental attributes. The resulting set of
test cases forms the test suite.

Even after initial testing and delivery of the system to the end

user, the responsibility of the developer is not complete. No

system exists without upgrades and each modification of the

system requires the retesting of the system to confirm that any

changes have not adversely affected the system. This type of

testing, regression testing, raises a number of issues that are

distinct from those associated with initial system testing, such

as strategies for generating new test cases that examine the

modifications, selecting a subset of existing test cases to

execute the modified program, and creating a new suite for use

on future versions of the software [14].

 To ascertain the effect of changes to the system, newly

generated test cases are typically executed on both the old and

new systems. In some cases, however, the original system

may be inaccessible or it may be too costly to run both the

new and old versions [15]. Nevertheless, given access to the

original test suite, it is possible to model the behavior of the

old system using a NN. For example, Anderson et al. [20]

successfully used a NN to automatically classify fault severity

by training the NN to recognize whether a test case would

produce a failure; if so, only then would the test case be

executed on the target system. The work of Aggarwal et al.

[17] took this a step further using a NN as a test oracle.

However the relatively low accuracy rate reported of 15.9%

suggests further work is needed in this area. It appears that a

key issue may be how the test suite is generated, the authors of

[20] used gradient analysis, while [17] generated test suites

randomly.

Clarke et al [18] argues that metaheuristics such as simulated
annealing, GAs and tabu search should be applied to software
engineering problems such as test data generation. (An
extensive survey of these testing techniques can be found in
[19] while [20] provides details of fitness function construction
and [6] provides background on the use of GAs for system
level testing.) Ahmed et al. [17] used a GA approach focused
on a multiple paths generator. Srivastava et al. [22] following
in this vein focused on the most critical paths. This enables
better performance but can result in local optima.Premal B.
Nirpal et al [23] also used this method with good results.
Khamis et al. [24] used a reduced set approach. However, the
reduced set can result in out of sample errors. McCart et al.
[25] examined three techniques for improving the performance
of GA test generation. In this research, we take a different
approach,combining neural network with GA generated test
suites. Comparisons of GA generated suites to those
generated randomly have shown in many cases that the GA can
produce a better suite for testing purposes – the question this
research seeks to answer is whether GA generated test suites
are better for training NNs on complex systems.

III. THE EXPERIMENTAL SYSTEM - LOBNET

The failure patterns of complex systems are difficult to

diagnose because the system can fail in unexpected ways due

to the interaction of the components. The complex system

used in this research is a lab-built, multi-tiered, distributed

system for targeting ballistic weapons called LOBNET.

LOBNETwas built to mirror the distributed systems that

characterize evolving network-centric warfare components.

The system has 40 input parameters and a test case for the

system includes the input parameters plus thirteen

environmental attributes that focus on prolonged periods of

execution, excessive load factors, and repetitive failures over

time [for a full list of the environmental attributes see 6]. In

order to investigate intermittent failures in the system, ten

exceptions of varying complexity were injected using the

system environmental attributes and input parameters. Each

of these throws an exception code (coded 1-10, with 0

indicating a successful execution) and Table I gives the

percentage of the search space covered by each exception.

Exceptions are not necessarily errors in code that need to be

fixed but rather represent system states that may require

attention. The solution in some situations may require

changes to the code; for example, a load-balancing algorithm

may need to be changed, the hardware might need to be

upgraded, or the system specification and/or expectations

might need to be revised [11].

TABLE I. EXCEPTION NUMBER AND PERCENT OF SEARCH SPACE

COVERED BY EXCEPTION.

Exception Number % of Search Space

1 1.19%

2 2.38%

3 0.22%

4 1.63%

5 0.05%

6 2.20%

7 2.00%

8 0.06%

9 0.08%

10 0.15%

 A GA is used to generate a test suite for testing LOBNET

that contains test cases which explore the exception-producing

regions of the code. In addition, the suite should be evenly

balanced over all exceptions – that is, have a comparable

number of test cases representing each exception. The GA

uses a failure pursuit (FP) fitness function to guide its search.

In the FP approach, the notion of goodness of fit is relative

rather than absolute because it evolves with the population,

enabling subsequent generations to take advantage of any

insights gleaned in previous ones [6]. To accomplish this, a

fossil record (essentially a chronological database) was

established to capture all previously generated test cases and

information about the type of failure generated, if any, when

each test case was run. In addition, the search strategy of the

GA was devised in such a way that it uses a breadth first

strategy to give a higher reward to novel test cases when there

are too few different error causing cases and a depth first

strategy to build up failure cases when there are too few of a

specific error. The result is a much better balanced test suite

as shown in Figure 1, the chart on the left shows an example

1449

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656

distribution using a FP strategy without the breadth-depth

strategy while on the right incorporates FP with a breadth-

depth search. Suites generated by the FP-GA, as well as an

equivalent number generated randomly, were used by the NN

to create models of LOBNET.

Fig. 1.A comparison of the fitness function that emphasized a depth-first
approach (left) to a revised strategy (right) that emphasized depth and breadth.

The depth-breadth strategy generates more test cases for all the exceptions
instead of in-depth coverage of just a few.

IV. NEURAL NETWORK AS A SYSTEM MODEL

The literature identifies two different applications for NNs
within the software testing lifecycle: as an oracle for the system
and as a surrogate for the original system in regression testing.
In the following subsections, a NN is trained to determine
whether it is a viable strategy for system level testing in both
these approaches.

A. Using a NN as an Oracle

Aggarwal et al. [17] use the NN as a test oracle that gives

the correct output for a test case. This output is compared to

the actual system output. Its purpose is to replace the human

who must verify each test case to determine if the actual

output matches the expected output. Their research

investigated only a small unit testing problem, but highlighted

an interesting dilemma: in order for the neural network to be

used as an oracle, enough test cases must be generated and

executed in the target system to train the network. LOBNET is

a much larger system and it was necessary to determine how

large the test suite must be for accurately predicting the

outcome of a new test case.

We use test suites of the following sizes: 600 (10

generations), 1500 (25 generations), 3,000 (50 generations),

6,000 (100 generations), 12,000 (200 generations), 18,000

(300 generations), 24,000 (400 generations), and 30,000 (500

generations) to train the NN. After training, the NNs were

tested on a separately generated suite and the percentage of

correctly classified test cases was recorded. At 18,000 test

cases, the accuracy at classifying exception and non-exception

test cases was 85%, and a high of 88% was reached at 30,000

generations. In comparison, randomly test generated suite

only reached a high of 71% for 18,000 test cases.

The random suites training accuracies were lower because

they contained higher percentages of non-exception test cases.

This makes this method less effective at classifying exception

cases. For example, for test suites with 30,000 cases, the GA-

generated suite was able to classify correctly 80% of the

exception causing cases, while the randomly generated

suite only classified 25% of these cases correctly. Therefore,

larger GA generated test suites are better suited for training

the NN than the randomly generated ones. Fig. 2 presents The

accuracy percentages indicate how many test cases the model

correctly classified – for example at 500 generations the GA

generated test suite is 88% accurate while the randomly

generated is 69% accurate.

Fig. 2.A comparison of GA-generated and randomly generated test suites

when modeled with a neural network. The accuracy percentages indicate how
many test cases the model correctly classified – for example at 500

generations the GA generated test suite is 88% accurate while the randomly

generated is 69% accurate.

B. Regression Testing

Regression testing confirms that system modifications have
not aversely affected the system operations. However, running
two systems side by side for comparison purposes is not always
feasible whether because time is short, prohibitive costs, or the
original system is no longer available. In the following
experiments, it is assumed that the original system is
unavailable for side-by-side testing, but that the test suite from
the original system test is accessible. A model for regression
testing using GAs and NNs is shown in Fig. 3.

1450

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656

Fig. 3. The regression testing model is broken into two stages; the second stage
uses the NN as a surrogate model of the original system during the test suite
augmentation process. The augmented test suite is analyzed for modification
changes and discrepancies reported.

The model has two linked stages; the first involves the
execution of the existing test suite on the modified system.
The goal is to determine whether the system modifications
caused any change to the case classification. For example,
determining whether a case that previously caused an exception
is now a successful. The test suite augmentation process in
stage two begins upon completion of stage one,. The goal is to
build a body of evidence of these changes for assessment by
the system designers and developers.

A NN model of the original system is first built using the
existing test suite, and, then, as each test case is generated, it is
executed on the modified system and the NN model. The aim
is to generate more test cases that have the following
characteristics: first, those that are successful in the model but
cause exceptions in the revised system; and second, those that
caused an exception but are now successful. This means that
the fitness function of the GA must put a greater emphasis on
these characteristics. Therefore, the fitness evaluation includes
a severity scale where new exceptions are rewarded more than
existing ones. Using this scale, the augmented test suite will
consist of more test cases that highlight system changes.

To test the revised fitness function, the original LOBNET

system was „fixed‟, that is one of the exceptions thrown by the

system was removed, but when the exception was „fixed‟ a

new exception was created. The existing test suite is executed

on the modified system and the exceptions found are recorded

with their exception type, this revised suite is then used to

create a NN model of the original systems. Using the NN as a

surrogate for the original system, additional test cases are

generated by the GA (although it is possible to seed the first

population of the GA with test cases that raised queries). This

new test suite augments the original but the bulk of its test

cases are in the specific modified regions of the system but

still engages in some exploration.

Using this technique it is now possible to pinpoint the

causes of the exceptions, fix them, and retest the system. Fig.

4 and Fig. 5 show the test case distribution before and after

augmentation, Fig. 4 shows a number of test cases generated

for the error region and Fig. 5 demonstrates the greater

amount of additional test data that can be generated for a

specific exception region when combining the oracle and the

new system.

Fig. 4. The distribution of test cases prior to regression test suite generation.
While there are many cases within the error region need further augmentation.

Fig. 5. The distribution of test cases after augmentation. Many more test
cases are now within the new error region – indicated by the circle.

V. CONCLUSION

This paper demonstrates that the GA can be used to

generate failure-rich test suites for system level testing. Using

these test suites, NNs are able to build a model of the system

that can be used as either a system oracle or for regression

testing.Other generation techniques, for example simulated

annealing and tabu search, could be used as well and future

research could compare these results.

 Computationally intelligent techniques can assist software

developers in the testing of complex, distributed systems.

Exception causing test cases are not necessarily system

failures, but unanticipated system limitations, uncovered only

during the testing process. We investigated the use of a neural

network in the software testing process. The GA and the NN

1451

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656

model performed well during regression testing and were

successful in augmenting the test suite with test cases that

focused on system modifications. The NN is able to model

the system under test, but an important consideration before

use in other environments will be the risk tolerance level of

the system.

REFERENCES

[1] D. Barrett, “Feds deny New York‟s request for more blackout aid,
capping relief at $5 million,” The Associated Press State and Local
Wire. November 7, 2003.

[2] U.S.- Canada Power Systems Outage Task Force Final Report.,
4/1/2004.

[3] C. Perrow, Normal Accidents. Princeton University Press, New Jersey,
1999.

[4] Computerworld, 6/7/2004,

[5] J. Langton, “Royal Bank‟s Pain has Other Canadians Wary,” The
American Banker, 6/14/2004

[6] A. Watkins, E. Hufnagel, D. Berndt, and L. Johnson, “Using Genetic
Algorithms and Decision Tree Induction to Classify Software Failures,”
International Journal of Software Engineering and Knowledge
Engineering, 16(2), 2006, 269-291.

[7] A. Watkins, D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and K.
Aebisher, “Breeding Software Test Cases for Complex Systems,” Proc.
37th Hawaii International Conf. on Systems Sciences, 2004, pp. 90303c.

[8] G. Denaro, A. Polini, and W. Emmerich, “Early Performance Testing of
Distributed Software Applications,” Proc. of WOSP, 2004, p 94 – 102.

[9] J. Musa, and A.F. Ackerman, “Quantifying software validations: when
to stop testing?” IEEE Software, 6(3), 1989, 19-27.

[10] B. Beizer, Black-box testing: techniques for functional testing of
software and systems. John Wiley & Sons, New York, 1995.

[11] E. Weyuker, “Testing component-based software: A cautionary tale,”
IEEE Software, 15(5), 1998, 54-59.

[12] E. Weyuker, and F. Vokolos, “Experience with performance testing of
software systems: Issues, an approach, and case study,” IEEE
Transactions on Software Engineering, 26(12), 2000, 1147 – 1156.

[13] J. Wegener, and M. Grochtmann, “Verifying timing constraints of real-
time systems by means of evolutionary testing,” Real-time Systems, 15,
1998, 275-298.

[14] P. Frankl, G. Rothermel, K.Sayre, and F.Vokolos, “An Empirical
Comparison of Two Safe Regression Test Selection Techniques,” Proc.
2003 International Symposium of Empirical Software Engineering,
2003.

[15] L. White, V. Narayanswamy, T. Friedman, M. Kirschenbaum, and
P.Piwowarski, M. Oha, “Test Manager: A Regression Testing
Tool,”Proc Conf. on Software Maintenance, 1993, 338-347.

[16] C. Anderson, A. Mayrhauser, and R. Mraz, “On the Use of Neural
Networks to Guide Software Testing Activities,”ProcInternational Test
Conference, 1995.

[17] K. Aggarwal, Y. Singh, A. Kaur, and O. Sangwan, “A Neural Net Based
Approach to Test Oracle,”ACM Software Engineering Notes, 29(4),
2004, 1-6.

[18] J. Clarke, J.J.Solado, M. Harman, R. Hierons, B. Jones, M.Lumkin, B.
Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating software engineering as a search problem,”IEE
Proceedings – Software, 150(3) 2003; 161-175.

[19] P. McMinn, “Search-based software test data generation: a
survey,”Software Testing, Verification and Reliability, 14, 2004, 105-
106.

[20] A. Watkins, and E.M. Hufnagel, “Evolutionary Test Data Generation: A
Comparison of Fitness Functions, Software: Practice and.
Experience,36(1), 2006, 95-116.

[21] Moataz A. Ahmed, and Irman Hermadi, GA-based multiple paths test
data generator, Computers & Operations Research, 35 (2008) 3107 –
3124

[22] Praveen Ranjan Srivastava and Tai-hoon Kim,“Application of Genetic
Algorithm in Software Testing,”International Journal of Software
Engineering and Its ApplicationsVol. 3, No.4, October 2009 87-95

[23] Premal B. Nirpal, and K. V. Kale, “Using Genetic Algorithm for
Automated Efficient Software Test Case Generation for Path Testing,“
Int. J. Advanced Networking and Applications 911 Volume: 02, Issue:
06, Pages: 911-915 (2011)

[24] Abdelaziz M. Khamis, Moheb R. Girgis. and Ahmed S.
Ghiduk,“Automatic Software Test Data Generation For Spanning Sets
Coverage Using Genetic Algorithms,” Computing and Informatics, Vol.
26, 2007, 383–401

[25] McCart, James; Berndt, Donald; and Watkins, Alison, "Using Genetic
Algorithms for Software Testing: Performance
ImprovementTechniques," AMCIS 2007 Proceedings. Paper 222, 2007.

1452

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656

