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Abstract—Highly complex and interconnected systems may suffer 

from intermittent or transient software failures. These are 

particularly difficult to diagnose without large quantities of test 

cases.  This research focuses on a hybrid method for generating 

test cases.  A genetic algorithm is first used to automatically 

generating large numbers of test cases to form a comprehensive 

test suite.  These test suites are then used to train a neural 

network for regression testing and test suite augmentation.  The 

results indicate that the genetic algorithm can produce a 

balanced test suite that, when combined with a neural network, 

can reduce the costs of software testing by reducing system run-

time and human interaction. 

Keywords— Software test data generation, genetic algorithms, 

neural networks, software testing component 

 

I.  INTRODUCTION (HEADING 1) 

In August 2003, a software flaw in an energy management 

system caused an alarm to fail in a regional control center.  

This set off a chain reaction that left many parts of the 

northeastern U.S. shrouded in darkness and cost the City of 

New York alone close to $1 billion in losses [1].  Ex post 

analysis of this widespread blackout indicates that an alarm 

system failure led to a delay in bringing up a back-up system, 

which subsequently failed when the large number of 

unprocessed system events created during the down-time 

overflowed the process input buffer [2].  Although this 

particular system failure drew worldwide attention due to its 

effects on business, government, and everyday lives, it was 

not an isolated incident.  Outages due to software failures have 

had an impact on every industry and inconvenienced millions 

of users worldwide. 

     Complex systems such as electric grids, telecommunication 

exchanges and military support systems are systems composed 

of systems created from component parts that may or may not 

have been designed to work together.  When tightly linked or 

coupled, reciprocal actions among the various elements of the 

overarching system can lead to failures that are both 

unpredictable and catastrophic [3].  As our systems grow in 

scale and rely increasingly on new technology, risk reduction 

via more comprehensive and thorough testing is imperative at 

every stage of the development lifecycle, including after every 

system update.  Unfortunately this isn‟t always the case, as the 

Royal Bank of Canada that a programming error in a routine 

update caused a delay in the processing of deposits, 

withdrawals and payments [4,5]. 

     There are many techniques for system testing, one of which 

involves generating suites of test data and noting anomalies as 

data is run through the system.  Sometimes, however, after 

system changes it may be impossible to generate test data for 

both legacy and new systems due to platform changes or 

because of the high cost of running parallel systems for 

testing.  The research presented here addresses this issue by 

focusing on techniques for generating test suites that can be 

used to model a system therefore reducing costs in parallel 

system runs.  This paper is an extension to earlier work 

completed at a unit testing level that used genetic algorithms 

(GA) to generate test suites rich in failure causing test cases 

[6] and to localize failures to facilitate system-level debugging 

[7].  The focus of this current work is to generate test suites to 

train neural networks (NN) to act as surrogates for the original 

(unchanged) system during regression testing.  In essence, the 

function of the NN is to augment the test suite with test cases 

that highlight any adverse consequences resulting from the 

system changes. 

     This paper is structured as follows: first, is a review of 

the relevant literature on software testing, with a focus on 

performance and regression testing issues, and places the work 

in context.  Next, the system under test is described and the GA 

is used to generate test suites for this system.  Finally, these test 

suites are used to train a NN to act as an oracle during systems 

testing and again for regression testing. 

II. SOFTWARE TESTING AT A SYSTEM LEVEL 

Testing at a systems level is less concerned the inputs to the 
system and is instead focused on workloads and physical 
resources [8] which is in other terms,  the behavior or 
performance of the system given some state [9].  As such, it is 
black-box or behavioral testing [10].  Although there is little 
agreement as to just which system behaviors to test,  a review 
of the relevant literature provides a number of strategies (see 
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[7, 11, 12, 13]).  These strategies include timing issues, 
network and tier loads, elapsed running time, as well as 
cyclical patterns such as month and day of the week.  Test 
cases are generated that consist of input parameters along with 
specific system environmental attributes.   The resulting set of 
test cases forms the test suite. 

Even after initial testing and delivery of the system to the end 

user, the responsibility of the developer is not complete.  No 

system exists without upgrades and each modification of the 

system requires the retesting of the system to confirm that any 

changes have not adversely affected the system.  This type of 

testing, regression testing, raises a number of issues that are 

distinct from those associated with initial system testing, such 

as strategies for generating new test cases that examine the 

modifications, selecting a subset of existing test cases to 

execute the modified program, and creating a new suite for use 

on future versions of the software [14].   

     To ascertain the effect of changes to the system, newly 

generated test cases are typically executed on both the old and 

new systems.  In some cases, however, the original system 

may be inaccessible or it may be too costly to run both the 

new and old versions [15].  Nevertheless, given access to the 

original test suite, it is possible to model the behavior of the 

old system using a NN.  For example, Anderson et al. [20] 

successfully used a NN to automatically classify fault severity 

by training the NN to recognize whether a test case would 

produce a failure; if so, only then would the test case be 

executed on the target system.  The work of Aggarwal et al. 

[17] took this a step further using a NN as a test oracle.  

However the relatively low accuracy rate reported of 15.9% 

suggests further work is needed in this area.  It appears that a 

key issue may be how the test suite is generated, the authors of 

[20] used gradient analysis, while [17] generated test suites 

randomly.  

Clarke et al [18] argues that metaheuristics such as simulated 
annealing, GAs and tabu search should be applied to software 
engineering problems such as test data generation.  (An 
extensive survey of these testing techniques can be found in 
[19] while [20] provides details of fitness function construction 
and [6] provides background on the use of GAs for system 
level testing.)   Ahmed et al. [17] used a GA approach focused 
on a multiple paths generator.  Srivastava et al. [22] following 
in  this vein focused on the most critical paths. This enables 
better performance but can result in local optima.Premal B. 
Nirpal et al [23] also used this method with good results.  
Khamis et al. [24] used a reduced set approach.  However, the 
reduced set can result in out of sample errors.  McCart et al. 
[25] examined three techniques for improving the performance 
of GA test generation.  In this research, we take a different 
approach,combining neural network with GA generated test 
suites.   Comparisons of GA generated suites to those 
generated randomly have shown in many cases that the GA can 
produce a better suite for testing purposes – the question this 
research seeks to answer is whether GA generated test suites 
are better for training NNs on complex systems. 

III. THE EXPERIMENTAL SYSTEM - LOBNET 

The failure patterns of complex systems are difficult to 

diagnose because the system can fail in unexpected ways due 

to the interaction of the components.  The complex system 

used in this research is a lab-built, multi-tiered, distributed 

system for targeting ballistic weapons called LOBNET.  

LOBNETwas built to mirror the distributed systems that 

characterize evolving network-centric warfare components.  

The system has 40 input parameters and a test case for the 

system includes the input parameters plus thirteen 

environmental attributes that focus on prolonged periods of 

execution, excessive load factors, and repetitive failures over 

time [for a full list of the environmental attributes see 6].  In 

order to investigate intermittent failures in the system, ten 

exceptions of varying complexity were injected using the 

system environmental attributes and input parameters.  Each 

of these throws an exception code (coded 1-10, with 0 

indicating a successful execution) and Table I gives the 

percentage of the search space covered by each exception.  

Exceptions are not necessarily errors in code that need to be 

fixed but rather represent system states that may require 

attention.  The solution in some situations may require 

changes to the code; for example, a load-balancing algorithm 

may need to be changed, the hardware might need to be 

upgraded, or the system specification and/or expectations 

might need to be revised [11]. 

TABLE I.  EXCEPTION NUMBER AND PERCENT OF SEARCH SPACE 

COVERED BY EXCEPTION. 

Exception Number  % of Search Space 

1 1.19% 

2 2.38% 

3 0.22% 

4 1.63% 

5 0.05% 

6 2.20% 

7 2.00% 

8 0.06% 

9 0.08% 

10 0.15% 
 

     A GA is used to generate a test suite for testing LOBNET 

that contains test cases which explore the exception-producing 

regions of the code.  In addition,  the suite should be evenly 

balanced over all exceptions – that is, have a comparable 

number of test cases representing each exception.  The GA 

uses a failure pursuit (FP) fitness function to guide its search.  

In the FP approach, the notion of goodness of fit is relative 

rather than absolute because it evolves with the population, 

enabling subsequent generations to take advantage of any 

insights gleaned in previous ones [6].  To accomplish this, a 

fossil record (essentially a chronological database) was 

established to capture all previously generated test cases and 

information about the type of failure generated, if any, when 

each test case was run.    In addition, the search strategy of the 

GA was devised in such a way that it uses a breadth first 

strategy to give a higher reward to novel test cases when there 

are too few different error causing cases and a depth first 

strategy to build up failure cases when there are too few of a 

specific error.  The result is a much better balanced test suite 

as shown in Figure 1, the chart on the left shows an example  

1449

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656



 

distribution using a FP strategy without the breadth-depth 

strategy while on the right incorporates FP with a breadth-

depth search.  Suites generated by the FP-GA, as well as an 

equivalent number generated randomly, were used by the NN 

to create models of LOBNET. 

 

Fig. 1.A comparison of the fitness function that emphasized a depth-first 
approach (left) to a revised strategy (right) that emphasized depth and breadth.  

The depth-breadth strategy generates more test cases for all the exceptions 
instead of in-depth coverage of just a few.  

 

IV. NEURAL NETWORK AS A SYSTEM MODEL 

The literature identifies two different applications for NNs 
within the software testing lifecycle: as an oracle for the system 
and as a surrogate for the original system in regression testing.  
In the following subsections, a NN is trained to determine 
whether it is a viable strategy for system level testing in both 
these approaches.  

A. Using a NN as an Oracle 

Aggarwal et al. [17] use the NN as a test oracle that gives 

the correct output for a test case.  This output is compared to 

the actual system output.  Its purpose is to replace the human 

who must verify each test case  to determine if the actual 

output matches the expected output.  Their research 

investigated only a small unit testing problem, but highlighted 

an interesting dilemma: in order for the neural network to be 

used as an oracle, enough test cases must be generated and 

executed in the target system to train the network.  LOBNET is 

a much larger system and it was necessary to determine how 

large the test suite must be for accurately predicting the 

outcome of a new test case.   

We use test suites of the following sizes: 600 (10 

generations), 1500 (25 generations), 3,000 (50 generations), 

6,000 (100 generations), 12,000 (200 generations), 18,000 

(300 generations), 24,000 (400 generations), and 30,000 (500 

generations) to train the NN.  After training, the NNs were 

tested on a separately generated suite and the percentage of 

correctly classified test cases was recorded.  At 18,000 test 

cases, the accuracy at classifying exception and non-exception 

test cases was 85%, and a high of 88% was reached at 30,000 

generations.  In comparison, randomly test generated suite 

only reached a high of 71% for 18,000 test cases.   

The random suites training accuracies were lower because 

they contained higher percentages of non-exception test cases.  

This makes this method less effective at classifying exception 

cases.  For example, for test suites with 30,000 cases, the GA-

generated suite was able to classify correctly 80% of the  

exception causing cases, while the randomly generated 

suite only classified 25% of these cases correctly.  Therefore, 

larger GA generated test suites are better suited for training 

the NN than the randomly generated ones.  Fig. 2 presents The 

accuracy percentages indicate how many test cases the model 

correctly classified – for example at 500 generations the GA 

generated test suite is 88% accurate while the randomly 

generated is 69% accurate. 

 

Fig. 2.A comparison of GA-generated and randomly generated test suites 

when modeled with a neural network.  The accuracy percentages indicate how 
many test cases the model correctly classified – for example at 500 

generations the GA generated test suite is 88% accurate while the randomly 

generated is 69% accurate.  

 

B. Regression Testing 

Regression testing confirms that system modifications have 
not aversely affected the system operations.  However, running 
two systems side by side for comparison purposes is not always 
feasible whether because time is short, prohibitive costs,  or the 
original system is no longer available.  In the following 
experiments, it is assumed that the original system is 
unavailable for side-by-side testing, but that the test suite from 
the original system test is accessible.  A model for regression 
testing using GAs and NNs is shown in Fig. 3.   
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Fig. 3. The regression testing model is broken into two stages; the second stage 
uses the NN as a surrogate model of the original system during the test suite 
augmentation process.  The augmented test suite is analyzed for modification 
changes and discrepancies reported.  

 

 

The model has two linked stages; the first involves the 
execution of the existing test suite on the modified system.  
The goal is to determine whether the system modifications 
caused any change to the case classification.  For example, 
determining whether a case that previously caused an exception 
is now a successful.  The test suite augmentation process in 
stage two begins upon completion of stage one,.  The goal is to 
build a body of evidence of these changes for assessment by 
the system designers and developers.    

A NN model of the original system is first built using the 
existing test suite, and, then, as each test case is generated,  it is 
executed on the modified system and the NN model.  The aim 
is to generate more test cases that have the following 
characteristics:  first, those that are successful in the model but 
cause exceptions in the revised system; and second, those that 
caused an exception but are now successful.  This means that 
the fitness function of the GA must put a greater emphasis on 
these characteristics.  Therefore, the fitness evaluation includes 
a severity scale where new exceptions are rewarded more than 
existing ones.  Using this scale, the augmented test suite will 
consist of more test cases that highlight system changes. 

To test the revised fitness function, the original LOBNET 

system was „fixed‟, that is one of the exceptions thrown by the 

system was removed, but when the exception was „fixed‟ a 

new exception was created.  The existing test suite is executed 

on the modified system and the exceptions found are recorded 

with their exception type, this revised suite is then used to 

create a NN model of the original systems.  Using the NN as a 

surrogate for the original system, additional test cases are 

generated by the GA (although it is possible to seed the first 

population of the GA with test cases that raised queries).  This 

new test suite augments the original but the bulk of its test 

cases are in the specific modified regions of the system but 

still engages in some exploration.   

Using this technique it is now possible to pinpoint the 

causes of the exceptions, fix them,  and retest the system.  Fig. 

4 and Fig. 5 show the test case distribution before and after 

augmentation,  Fig. 4 shows a number of test cases generated 

for the error region  and Fig. 5 demonstrates the greater 

amount of additional test data that can be generated for a 

specific exception region when combining the oracle and the 

new system. 

 

Fig. 4. The distribution of test cases prior to regression test suite generation.   
While there are many cases within the error region need further augmentation. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The distribution of test cases after augmentation.  Many more test 
cases are now within the new error region – indicated by the circle. 

 

V. CONCLUSION 

 

This paper demonstrates that the GA can be used to 

generate failure-rich test suites for system level testing.  Using 

these test suites, NNs are able to build a model of the system 

that can be used as either a system oracle or for regression 

testing.Other generation techniques, for example simulated 

annealing and tabu search, could be used as well and future 

research could compare these results. 

     Computationally intelligent techniques can assist software 

developers in the testing of complex, distributed systems.  

Exception causing test cases are not necessarily system 

failures, but unanticipated system limitations, uncovered only 

during the testing process.  We investigated the use of a neural 

network in the software testing process.  The GA and the NN 
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model performed well during regression testing and were 

successful in augmenting the test suite with test cases that 

focused on system modifications.  The NN is able to model 

the system under test, but an important consideration before 

use in other environments will be the risk tolerance level of 

the system. 

 

REFERENCES 

[1] D. Barrett, “Feds deny New York‟s request for more blackout aid, 
capping relief at $5 million,” The Associated Press State and Local 
Wire.  November 7, 2003. 

[2] U.S.- Canada Power Systems Outage Task Force Final Report., 
4/1/2004. 

[3] C. Perrow, Normal Accidents. Princeton University Press, New Jersey, 
1999. 

[4] Computerworld, 6/7/2004, 

[5] J. Langton,  “Royal Bank‟s Pain has Other Canadians Wary,”  The 
American Banker,  6/14/2004 

[6] A. Watkins, E. Hufnagel, D. Berndt, and L. Johnson, “Using Genetic 
Algorithms and Decision Tree Induction to Classify Software Failures,”   
International Journal of Software Engineering and Knowledge 
Engineering, 16(2), 2006, 269-291. 

[7] A. Watkins, D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and K. 
Aebisher,  “Breeding Software Test Cases for Complex Systems,”  Proc. 
37th Hawaii International Conf. on Systems Sciences, 2004, pp. 90303c. 

[8] G. Denaro, A. Polini, and W. Emmerich, “Early Performance Testing of 
Distributed Software Applications,” Proc. of WOSP, 2004, p 94 – 102. 

[9] J. Musa, and A.F. Ackerman, “Quantifying software validations: when 
to stop testing?” IEEE Software, 6(3), 1989, 19-27. 

[10] B. Beizer, Black-box testing: techniques for functional testing of 
software and systems. John Wiley & Sons, New York, 1995. 

[11] E. Weyuker, “Testing component-based software:  A cautionary tale,” 
IEEE Software, 15(5), 1998, 54-59. 

[12] E. Weyuker, and F. Vokolos, “Experience with performance testing of 
software systems:  Issues, an approach, and case study,” IEEE 
Transactions on Software Engineering, 26(12), 2000, 1147 – 1156. 

[13] J. Wegener, and M. Grochtmann, “Verifying timing constraints of real-
time systems by means of evolutionary testing,”  Real-time Systems, 15, 
1998, 275-298. 

[14] P. Frankl, G. Rothermel, K.Sayre, and F.Vokolos,  “An Empirical 
Comparison of Two Safe Regression Test Selection Techniques,” Proc. 
2003 International Symposium of Empirical Software Engineering,  
2003. 

[15] L. White, V. Narayanswamy, T. Friedman, M. Kirschenbaum, and 
P.Piwowarski, M. Oha, “Test Manager: A Regression Testing 
Tool,”Proc Conf. on Software Maintenance, 1993, 338-347. 

[16] C. Anderson, A. Mayrhauser, and R. Mraz, “On the Use of Neural 
Networks to Guide Software Testing Activities,”ProcInternational Test 
Conference, 1995. 

[17] K. Aggarwal, Y. Singh, A. Kaur, and O. Sangwan, “A Neural Net Based 
Approach to Test Oracle,”ACM Software Engineering Notes, 29(4), 
2004, 1-6. 

[18] J. Clarke, J.J.Solado, M. Harman, R. Hierons, B. Jones, M.Lumkin, B. 
Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,  
“Reformulating software engineering as a search problem,”IEE 
Proceedings – Software, 150(3) 2003; 161-175. 

[19] P. McMinn, “Search-based software test data generation: a 
survey,”Software Testing, Verification and Reliability, 14, 2004, 105-
106. 

[20] A. Watkins, and E.M. Hufnagel, “Evolutionary Test Data Generation: A 
Comparison of Fitness Functions, Software: Practice and. 
Experience,36(1), 2006, 95-116. 

[21] Moataz A. Ahmed,  and Irman Hermadi,  GA-based multiple paths test 
data generator, Computers & Operations Research, 35 (2008) 3107 – 
3124 

[22] Praveen Ranjan Srivastava  and Tai-hoon Kim,“Application of Genetic 
Algorithm in Software Testing,”International Journal of Software 
Engineering and Its ApplicationsVol. 3, No.4, October 2009 87-95 

[23] Premal B. Nirpal, and K. V. Kale, “Using Genetic Algorithm for 
Automated Efficient Software Test Case Generation for Path Testing,“ 
Int. J. Advanced Networking and Applications 911 Volume: 02, Issue: 
06, Pages: 911-915 (2011) 

[24] Abdelaziz M. Khamis, Moheb R. Girgis. and Ahmed S. 
Ghiduk,“Automatic Software Test Data Generation For Spanning Sets 
Coverage Using Genetic Algorithms,” Computing and Informatics, Vol. 
26, 2007, 383–401 

[25] McCart, James; Berndt, Donald; and Watkins, Alison, "Using Genetic 
Algorithms for Software Testing: Performance 
ImprovementTechniques," AMCIS 2007 Proceedings. Paper 222, 2007. 

 

1452

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031656


