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Abstract  
 

now a day’s permutation flowshop scheduling problem 

becomes interesting research area with different types 

of objective functions such as minimizing completion 

time also called as makespan time, total flow time, 

total weighted tardiness. The permutation flowshop 

scheduling problem is normally classified as a 

complex combinatorial optimization problem in which 

a set of n jobs have to be process on set of m machines 

in the same order. Many exact and heuristic 

algorithms have been proposed over the years Tabu 

Search, Partical Swarm Optimization, ant colony 

optimization, Genetic algorithm, Differential evolution 

algorithm for solving permutation flowshop scheduling 

problem. In this paper we implement improved 

differential evolutionary algorithm, differential 

evolution algorithm using classical NEH and iterated 

local search with enhanced swap operator and DE 

with position based crossover operator with the 

objectives of minimizing makespan.  Comparing 

results of these proposed   techniques improves the 

makespan value as well as the time complexity of an 

algorithm. 

 

 

1. Introduction  
Scheduling is a decision-making process for 

optimally allocating resources [1]. Efficient scheduling 

has become essential for manufacturing firms to 

survive in today's intensely competitive business 

environment [2, 3]. As one of the best known 

production scheduling problems, permutation 

flowshop sequencing problems (PFSPs) have long 

been a topic of interest for the researchers and 

practitioners in this field [4]. The goal of this 

scheduling problem is to find an optimal schedule for 

N jobs and M machines. Evolutionary algorithms 

(EAs), inspired by biological evolutionary mechanism 

in nature, have achieved great success on many 

numerical and combinatorial optimizations in diverse 

fields [24–26]. When implementing the EAs, users 

need to solve several points, for example, the 

appropriate encoding schemes, evolutionary operators, 

and the suitable parameter settings, to ensure the 

success of the algorithms.  

The earlier EAs have some disadvantages, such as 

complex procedure, stagnation, and poor search 

ability. To overcome such disadvantages, on one hand, 

some researchers proposed other related methods (e.g., 

particle swarm optimization (PSO) [27, 28], 

differential evolution (DE). which have better global 

search ability. DE is proposed by Storn and Price[23]. 

Differential evolutionary algorithm is one of 

optimization tool. It is based on population similar to 

genetic algorithm but there is difference between 

genetic algorithm and differential evolutionary 

algorithm. Differential evolutionary algorithm is based 

upon mutation factor and genetic algorithm is based on 

crossover operator. It soon became a popular tool for 

solving global optimization problems because of 

several attractive features like having fewer control 

parameters, ease in programming, efficiency etc. A DE 

contains the following ingredients: parameter setting, 

representation of chromosome, initial population and 

population size. Evaluation of initial population, 

generation of donor vector called as mutation strategy, 

crossover operation, selection of fittest value and a 

termination criterion. 

 

 

456

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159



2. Literature Review  

The flow-shop problem with make-span (Cmax) 

criterion can be denoted as either n/m /f /cmax or 

F//cmax , where both are related to a n- jobs and m- 

machines problem. This notation was firstly suggested 

by Conway et al. [7] and until now is handy. Pinedo 

[8] introduced the term Permutation Flow-shop 

Problem (PFSP) in which the processing sequence on 

the first machine is maintained throughout the 

remaining machines. Accordingly, the make-span 

criterion is denoted as /prmu/. Solution methods for 

flow shop scheduling range from heuristics developed 

by Palmer [9], Campbell et al. [10], and Dannenbring 

[11] to more complex techniques such as branch and 

bound [12], tabu search [13, 14, 15], genetic 

algorithms [16, 17] shifting bottleneck procedure [18], 

and ant colony algorithm [19].  

Wenbo Liu proposes an improved differential 

evolution (DE) for the permutation flowshop 

scheduling problem with the total flowtime 

minimization, an NP-complete problem. To enhance 

the exploration ability of DE, a hybrid method of 

simulated annealing and stochastic variable 

neighborhood search are incorporated. To improve the 

search diversification of DE, a population restart 

method based path relinking is applied to replace non-

promising solutions. Experimental results on 

benchmark instances show that the proposed DE 

algorithm is competitive to other metaheuristics 

proposed for the PFSP with total flowtime 

minimization in the literature. 

Samia kouki1, Mohamed Jemni1, Talel Ladhari2, 

proposed a parallel algorithm for solving the 

permutation flow shop problem. The algorithm is a 

basic parallel distributed algorithm deployed in a grid 

of computer (Grid’5000). The objective of this work is 

minimizing the total makespan of the tasks. The 

algorithm uses the exact Branch and Bound method to 

find optimal solutions of the problem through the 

distribution of the tasks among the available 

processors. Computational results of our parallel 

algorithm using well known Taillard’s benchmarks, 

showed encouraging results. In particular, we 

succeeded to solve two new instances neither to 

optimality which had never been resolved before 

neither in sequential nor in parallel.   

Quan-Ke Pana, Rubén Ruiz, proposed algorithm 

based on iterated local search and iterated greedy 

algorithm. It is simple, easy to implement and gives 

improved results. V. L. Huang, S. Z. Zhao, R. 

Mallipeddi and P. N. Suganthan, proposed Multi-

objective Self-adaptive Differential Evolution 

algorithm to solve numerical optimization problems 

with multiple conflicting objectives. Optimization 

problems with multiple conflicting objectives. The 

proposed approach learns suitable crossover parameter 

values and mutation strategies for each objective 

separately in a multi-objective optimization problem. 

Janez Brest, Member, IEEE, Viljem ˇ Zumer, Member, 

IEEE, and Mirjam Sepesy Mauˇcec, proposed a self-

adaptive differential evolution Algorithm where more 

DE strategies are used and control parameters CR and 

F are self-adapted[21] A. K. Qin, V. L. Huang, and P. 

N. Suganthan, proposed a differential evolution 

technique with strategy adaptation. In which both trial 

vector generation strategies and their associated 

control parameter values are gradually self-adapted by 

learning from their previous experiences in generating 

promising solutions. Consequently, a more suitable 

generation strategy along with its parameter settings 

can be determined adaptively to match different phases 

of the search process/evolution. [22] 

 

3. Differential Evolutionary Algorithm 

DE is a population-based stochastic search 

technique as well, but it is simpler and it can be 

implemented more easily than other EAs. Besides that, 

DE [29, 30] is an effective and versatile function 

optimizer. There are only three crucial control 

parameters, that is, scaling factor F, crossover rate CR, 

and population size NP, which are fewer than other 

EAs'. The appropriate settings of the three control 

parameters ensure successful functioning of DE. In 

most existing DEs, the population size remains 

constant over the run. However, there are biological 

and experimental reasoning to expect that a variable 

population size would work better. In a natural 

environment, population sizes of species change and 

incline to steady state due to natural resources and 

ecological factors. Technically, the population size in a 

biological system is the most flexible element. And it 

can be calibrated more easily than recombination. 

Calibrating the population size during iterative process 

could be more rewarding than changing the operator 

parameters.  

The crossover constant CR is used to determine if 

the newly generated individual is to be recombined. 

Storn and Price [23] suggested that a reasonable value 

for NP should be between 5D and 10D, and a good 

initial choice of F was 0.5. The effective range of F 

values was suggested between 0.4 and 1. The first 

reasonable attempt of choosing CR value can be 0.1. 

However, because the large CR value can speed up 

convergence, the value of 0.9 for CR may also be a 

good initial choice if the problem is near unimodal or 

fast convergence is desired. Moreover, if the 

population converges prematurely, either F or NP can 

be increased. Following diagram shows main stages of 

DE algorithm 
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Fig.1. Differential evolution stages 

Initially population NP generated randomly using 

following formula 

xij = xmin +( xmax− xmin) * r1)          (1) 

 

Where x min = lower bound and x max =upper 

bound and r1 is a uniform random number between 0 

and 1. In this paper we have used randperms matlab 

function to generate population randomly. 

Randperms function consist two parameters one is 

number of jobs and other is size of population. In DE 

algorithm mutation is important step. In this step donor 

vector is generated using DE strategies. From research 

DE/rand/1/bin has powerful exploitation ability and 

DE/best/1/bin has efficient exploration ability. 

Generation of donor vector is given in following 

formula. 

 

Vi,G+1 = Xri1,G+1 + F · (Xri2,G+1 −Xri3,G+1)     (2) 

 

Where Vi,G+1 is a donor vector. Xri1,G+1, 

Xri2,G+1 , Xri3,G+1 are randomly selected vectors 

and F is a mutation factor. The range of mutation 

factor is in between 0 and 1. Crossover generates the 

trial vector. The aim of crossover operator is to 

generate the trial offspring by mixing the content of 

donor vector and target vector. Following formula 

shows generation of trial vector 

  

(3) 

 

 

Selection is depending upon the fittest value. The 

offspring which having fittest value can be selected 

and added to the original population and thus 

population is updated. Updated population is send to 

the next generation. The process is continuing till the 

given stopping criterion. 

    

4. Permutation Flowshop Scheduling 

Problem 
Scheduling theory is concerned with the optimal 

allocation of resources so that time required for their 

execution is minimum. Consider the example of 

central processing unit of computer that must process a 

sequence of jobs that arrive at time. In what order 

should the jobs be processed in order to minimize 

completion time. 

 
Fig. 1. Gantt chart for 2 jobs and 2 machines 

 

The schedule shown on the Gantt chart gives a 

detail plan: 

The lathe machine will be used by Job A12 on days 

1-4, and Job B23 on days 5-8. The grinding machine 

will be used by Job A12 on days 5-10 and Job B23 on 

days 11-14. 

With following assumptions 

1. No job uses more than one machine simultaneously 

2. No machine processes more than one job 

simultaneously. 

3. All jobs are ready for processing at time zero.  

4. The machines are continuously available from time 

zero onwards (no breakdowns).  

5. At any time, each machine can process at most one 

job and each job can be processed on at most one 

machine.  

No pre-emption is allowed (that is, once the 

processing of a job on a machine has started, it must be 

completed without interruption). Only permutation 

schedules are allowed (i.e. all jobs have the same 

ordering sequence on all machines).   

Permutation flowshop scheduling problem is an 

optimization problem used in various industries such 

as production, manufacturing industry. Better 

scheduling system has significant impact on cost 

reduction, increased productivity, customer satisfaction 

and overall competitive advantage. Thus, the flow 

shop problem (FSP) is one of the most important 

problems in the scheduling theory. This problem can 

be described as follows. Each job ji (i=1, 2… n) has to 

be processed on m machines Mj (j = 1 . . . m), 

following the same order in all machines. The 

processing time of job ji on machine Mj is pij. In this 

work, we focus on the minimization of the completion 

time of the last job of the last machine called 

makespan and denoted Cmax. The problem is denoted 

F|prmu|Cmax. The calculation of completion time for 

the n-job, m-machine problem is given as follows: 

 C (π1, 1) = Pπ1, 1          (4) 

C( πj ,1)  = C( πj-1 ,1) +  Pπj,1       j=2,….n       (5) 

C( π1 ,k)  = C( π1 ,k) +  Pπ1,k       k=2,….m      (6)       

C( πj ,k) = max {C( πj-1 ,k), C( πj ,k-1)+ Pπj, k} 

j=2,….n ; k=2,….m               (7) 

Then makespan can be defined as 

Cmax (π ) = C(πn ,m). 

Grinding machine

2 4 6 8 10 12

Days

14

Lathe machine Job A12

Job A12

Job B23

Job B23
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So, the PFSP with the makespan criterion is to find 

a permutation π * in the set of all permutations Π such 

that 

Cmax (π*) ≤ C (πn, m) ∀ π ∈ Π 

 

5. Proposed Techniques 
In this proposed work we have done three different 

techniques with DE 

5.1 DE with Positioned based crossover 

operator 

First proposed technique consist simple De with 

positioned based crossover operator. Following figure 

shows proposed algorithm. 

Step 1: The first step is the random initialization of 

the parent population.  Randomly generate a 

population of NP vectors, each of n dimensions: xi,j= 

xmin,j+ rand(0, 1)(xmax,j-xmin,j), where xmin,j and x 

max are lower and upper bounds for jth component  

respectively, rand(0,1) is a uniform random number 

between 0 and 1.  

Step 2:  Calculate the objective function value f (Xi) 

for all Xi.  

Step 3: Select three points from population and 

generate perturbed individual Vi using equation (1a).  

Step 4: Recombine the each target vector xi with 

perturbed individual generated in step 3 to generate a 

trial vector Ui using equation (2).  

Step 5:  Perform positioned based crossover operator 

on trial and Donor vector.  

Step 6: Calculate the objective function value for 

vector Ui.  

Step 7: Choose better of the two (function value at 

target and trial point) using equation (3) for next 

generation.  

Step 8: Check whether convergence criterion is met if 

yes then stops; otherwise go to step 3 

This algorithm consist modified mutation operator 

which dynamically set the value of mutation factor. 

 

5.2 DE with Classical NEH_Iterated Local 

Search and Enhanced swap operator 
The NEH heuristic algorithm made by Nawaz et al. 

As one of the efficient algorithm in this field. Iterated 

local search and enhanced swap operator are easy to 

implement and very effective. Following figure shows 

procedure on DE_NEH-ILS-ESP. 

Step 1: Initialize target population randomly and 

initial parmeters like CR and F 

Step 2:.  Evaluate target population  

Step3:.  nehR=classical NEH  

Step 4:.  Search:=ILS(nehR, tareget_vector)  

Step 5:.  while (not termination) do  

Step 6:.  Obtain mutant population  

Step 7:.  Obtain trial population  

Step 8:.  Evaluate trial population  

Step 9:.  Apply ESP  

Step 10:.  Make selection  

Step 11:  Apply local search LS()  

Step 12:  End while  

End 

 

5.3 Improved DE 
Following are the steps used in this algorithm 

Step 1: Generate the population randomly  

Step 2: Evaluate the objective function for each 

individual. 

Step 3: Sort the objective value in ascending order. 

Step 4: Select first value as target vector. 

Step 5: Select first half population as a new population. 

Step 6: Apply the DE algorithm 

Repeat step 2-6 until the last single population with 

minimum makespan value. 

This module gives improved makespan value in 

minmum time. It improves the time complexity of 

algorithm.  Modification in differential algorithm as 

follows. After evaluating population we sort the 

population in ascending order. First value will be the 

minimum makespan value known as target vector. 

Then population is divided into subpopulation. Apply 

DE on subpopulation until we get minimum value. 

Currently, there exists several mutation strategies 

DE/rand/1/bin are used commonly. In this paper we 

will use DE/rand/1/bin. 

 

6. Experiments 
To discover the effectiveness of the presented 

techniques, the free available test data Car1 up to Car8 

from OR library were used. This Flow shop instances 

were investigated by many researchers who applied a 

variety of techniques to solve it (and also there is a 

known optimal value of objective function). Firstly, 

the 100 simulation were carried out to determine the 

effective setting of control parameters f and cr.  The 

best parameters obtained from combining these 

parameters during experimentation are: CR = 0, 1 and 

F = 0.2, 0.9. Dynamically generated value for F are -

0.1,1.1. Although those setting present a relative low 

crossing rate and mutation, they seemed to be adequate 

to guarantee evolution process. After all simulation we 

can resume that we were able to achieve optimal 

solution for all instances Car. Once all the trials were 

done, we transformed the data and used as the response 

variable of the experiment  

the following: 

 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑅𝑃𝐷) =
𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝑉𝑎𝑙−𝑂𝑏𝑎𝑖𝑛𝑒𝑑  𝑣𝑎𝑙

𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑  𝑉𝑎𝑙
        (8) 
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Where Optimal Value is the solution obtained by a 

given algorithm alternative on a given instance and 

Obtained value is the lowest makespan obtained in any 

experiment of the same instance. The results are given 

in Table 1: 

Table1.Results for Improved DE algorithm 

 

Following table shows experimental result of two 

different techniques which we have used in project for 

analysis of DE algorithm. 

1. DE with positioned based crossover operator-

DEPCO. 

2. Comparative results of GA, QIDE and DE with 

classical NEH, iterated local search and enhanced 

swap operator. 

Table2.Results for DEPCO 

 

 
 

 

 

 

 

 

 

 

Table 3. Comparative result of GA and QIDE with three 

proposed algorithm 

 
Fig.4 comparative graph of proposed techniques with GA 

 

7. Conclusions 
This paper consist implementation of differential 

evolution algorithm consisting of positioned based 

crossover operator, modified mutation operator, 

classical NEH, iterated local search, enhanced swap 

operator and finally some modification in algorithm. 

Experimental results are shown in tables. Table 3 

consist comparative results of these three techniques. 

Comparison shows that improved algorithm is very 

effective. In this algorithm size of population 

automatically reduces. Variable population size work 

better compared to constant population size. 

Experiment shows that crossover factor greater than 

0.5 gives better exploration and exploitation result. 

Dynamic mutation factor is used but effective choice 

for mutation factor is between 0.2-0.9.                          

NP CR F 
Optimal 
Value 

Obtaine

d  

value 

RPD CPU TIME 

2500 0.8 0.7393 7038 7038 0 15.571602 sec. 

400 0.6 -0.193 7166 7065 0.01429582 2.578329 sec. 

2500 0.8 0.4606 7312 7032 0.03981797 15.608372 sec. 

700 0.3 1.0584 8003 8003 0 4.518795 sec. 

700 0.7 0.9395 7720 7680 0.00520833 4.137504 sec. 

7000 0.6 1.1521 8505 8496 0.00105932 35.388487 sec. 

9000 0.6 0.3126 6590 6328 0.04140329 52.126734 sec. 

9000 0.6 -0.0351 8366 7889 0.06046394 53.803392 sec. 

NP CR F 
Optimal 

Value 
RPD CPU TIME 

2500 0.8 0.5 7038 0 30.597825 seconds. 

400 0.6 0.3 7166 0 7.177144 seconds. 

2500 0.8 0.7 7312 0 
31.033407 seconds. 

 

700 0.3 0.9 8003 0 11.044217 seconds. 

700 0.7 0.2 7720 0 8.844516 seconds. 

7000 0.6 0.4 8505 0 85.114471 seconds 

9000 0.6 0.9 6590 0 111.139205 seconds. 

9000 0.6 0.5 8366 0 116.937168 seconds 

Proble

m 

Optima

l Value 

GA QIDE DEPC

O 

RP

D 

DENE

HILS_ES

P 

RPD Improve

d DE 

RPD 

11*3 7038 7038 7038 7038 0 7685 -

8.419 

7038 
0 

13*4 7166 7166 7166 7166 0 7952 -

9.884

31 

7065 0.01429

582 

12*5 7312 7312 7312 7312 0 6995 4.531

808 

7032 0.03981

797 

14*4 8003 8003 8003 8003 0 8003 0 8003 
0 

10*6 7720 7720 7720 7720 0 7557 2.156

941 

7680 0.00520

833 

8*9 8505 8505 8505 8505 0 8505 0 8496 0.00105

932 

7*7 6590 6590 6590 6590 0 6590 0 6328 0.04140

329 

8*8 8366 8366 8366 8366 0 8345 0.251

648 

7889 0.06046
394 
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