
Solving Permutation Flowshop Scheduling Problem Using Improved

Differential Evolutionary Algorithm
Vanita G. Tonge, Pravin Kulkarni
M-tech IV Sem.(ComputerScience)

Rajiv Gandhi College of engg. Reasech and Technology, chandrapur,India

Information Technology

 Rajiv Gandhi college of engg. Reasech and Technology, chandrapur,India

Abstract

now a day’s permutation flowshop scheduling problem

becomes interesting research area with different types

of objective functions such as minimizing completion

time also called as makespan time, total flow time,

total weighted tardiness. The permutation flowshop

scheduling problem is normally classified as a

complex combinatorial optimization problem in which

a set of n jobs have to be process on set of m machines

in the same order. Many exact and heuristic

algorithms have been proposed over the years Tabu

Search, Partical Swarm Optimization, ant colony

optimization, Genetic algorithm, Differential evolution

algorithm for solving permutation flowshop scheduling

problem. In this paper we implement improved

differential evolutionary algorithm, differential

evolution algorithm using classical NEH and iterated

local search with enhanced swap operator and DE

with position based crossover operator with the

objectives of minimizing makespan. Comparing

results of these proposed techniques improves the

makespan value as well as the time complexity of an

algorithm.

1. Introduction
Scheduling is a decision-making process for

optimally allocating resources [1]. Efficient scheduling

has become essential for manufacturing firms to

survive in today's intensely competitive business

environment [2, 3]. As one of the best known

production scheduling problems, permutation

flowshop sequencing problems (PFSPs) have long

been a topic of interest for the researchers and

practitioners in this field [4]. The goal of this

scheduling problem is to find an optimal schedule for

N jobs and M machines. Evolutionary algorithms

(EAs), inspired by biological evolutionary mechanism

in nature, have achieved great success on many

numerical and combinatorial optimizations in diverse

fields [24–26]. When implementing the EAs, users

need to solve several points, for example, the

appropriate encoding schemes, evolutionary operators,

and the suitable parameter settings, to ensure the

success of the algorithms.

The earlier EAs have some disadvantages, such as

complex procedure, stagnation, and poor search

ability. To overcome such disadvantages, on one hand,

some researchers proposed other related methods (e.g.,

particle swarm optimization (PSO) [27, 28],

differential evolution (DE). which have better global

search ability. DE is proposed by Storn and Price[23].

Differential evolutionary algorithm is one of

optimization tool. It is based on population similar to

genetic algorithm but there is difference between

genetic algorithm and differential evolutionary

algorithm. Differential evolutionary algorithm is based

upon mutation factor and genetic algorithm is based on

crossover operator. It soon became a popular tool for

solving global optimization problems because of

several attractive features like having fewer control

parameters, ease in programming, efficiency etc. A DE

contains the following ingredients: parameter setting,

representation of chromosome, initial population and

population size. Evaluation of initial population,

generation of donor vector called as mutation strategy,

crossover operation, selection of fittest value and a

termination criterion.

456

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159

2. Literature Review

The flow-shop problem with make-span (Cmax)

criterion can be denoted as either n/m /f /cmax or

F//cmax , where both are related to a n- jobs and m-

machines problem. This notation was firstly suggested

by Conway et al. [7] and until now is handy. Pinedo

[8] introduced the term Permutation Flow-shop

Problem (PFSP) in which the processing sequence on

the first machine is maintained throughout the

remaining machines. Accordingly, the make-span

criterion is denoted as /prmu/. Solution methods for

flow shop scheduling range from heuristics developed

by Palmer [9], Campbell et al. [10], and Dannenbring

[11] to more complex techniques such as branch and

bound [12], tabu search [13, 14, 15], genetic

algorithms [16, 17] shifting bottleneck procedure [18],

and ant colony algorithm [19].

Wenbo Liu proposes an improved differential

evolution (DE) for the permutation flowshop

scheduling problem with the total flowtime

minimization, an NP-complete problem. To enhance

the exploration ability of DE, a hybrid method of

simulated annealing and stochastic variable

neighborhood search are incorporated. To improve the

search diversification of DE, a population restart

method based path relinking is applied to replace non-

promising solutions. Experimental results on

benchmark instances show that the proposed DE

algorithm is competitive to other metaheuristics

proposed for the PFSP with total flowtime

minimization in the literature.

Samia kouki1, Mohamed Jemni1, Talel Ladhari2,

proposed a parallel algorithm for solving the

permutation flow shop problem. The algorithm is a

basic parallel distributed algorithm deployed in a grid

of computer (Grid’5000). The objective of this work is

minimizing the total makespan of the tasks. The

algorithm uses the exact Branch and Bound method to

find optimal solutions of the problem through the

distribution of the tasks among the available

processors. Computational results of our parallel

algorithm using well known Taillard’s benchmarks,

showed encouraging results. In particular, we

succeeded to solve two new instances neither to

optimality which had never been resolved before

neither in sequential nor in parallel.

Quan-Ke Pana, Rubén Ruiz, proposed algorithm

based on iterated local search and iterated greedy

algorithm. It is simple, easy to implement and gives

improved results. V. L. Huang, S. Z. Zhao, R.

Mallipeddi and P. N. Suganthan, proposed Multi-

objective Self-adaptive Differential Evolution

algorithm to solve numerical optimization problems

with multiple conflicting objectives. Optimization

problems with multiple conflicting objectives. The

proposed approach learns suitable crossover parameter

values and mutation strategies for each objective

separately in a multi-objective optimization problem.

Janez Brest, Member, IEEE, Viljem ˇ Zumer, Member,

IEEE, and Mirjam Sepesy Mauˇcec, proposed a self-

adaptive differential evolution Algorithm where more

DE strategies are used and control parameters CR and

F are self-adapted[21] A. K. Qin, V. L. Huang, and P.

N. Suganthan, proposed a differential evolution

technique with strategy adaptation. In which both trial

vector generation strategies and their associated

control parameter values are gradually self-adapted by

learning from their previous experiences in generating

promising solutions. Consequently, a more suitable

generation strategy along with its parameter settings

can be determined adaptively to match different phases

of the search process/evolution. [22]

3. Differential Evolutionary Algorithm

DE is a population-based stochastic search

technique as well, but it is simpler and it can be

implemented more easily than other EAs. Besides that,

DE [29, 30] is an effective and versatile function

optimizer. There are only three crucial control

parameters, that is, scaling factor F, crossover rate CR,

and population size NP, which are fewer than other

EAs'. The appropriate settings of the three control

parameters ensure successful functioning of DE. In

most existing DEs, the population size remains

constant over the run. However, there are biological

and experimental reasoning to expect that a variable

population size would work better. In a natural

environment, population sizes of species change and

incline to steady state due to natural resources and

ecological factors. Technically, the population size in a

biological system is the most flexible element. And it

can be calibrated more easily than recombination.

Calibrating the population size during iterative process

could be more rewarding than changing the operator

parameters.

The crossover constant CR is used to determine if

the newly generated individual is to be recombined.

Storn and Price [23] suggested that a reasonable value

for NP should be between 5D and 10D, and a good

initial choice of F was 0.5. The effective range of F

values was suggested between 0.4 and 1. The first

reasonable attempt of choosing CR value can be 0.1.

However, because the large CR value can speed up

convergence, the value of 0.9 for CR may also be a

good initial choice if the problem is near unimodal or

fast convergence is desired. Moreover, if the

population converges prematurely, either F or NP can

be increased. Following diagram shows main stages of

DE algorithm

457

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159

Fig.1. Differential evolution stages

Initially population NP generated randomly using

following formula

xij = xmin +(xmax− xmin) * r1) (1)

Where x min = lower bound and x max =upper

bound and r1 is a uniform random number between 0

and 1. In this paper we have used randperms matlab

function to generate population randomly.

Randperms function consist two parameters one is

number of jobs and other is size of population. In DE

algorithm mutation is important step. In this step donor

vector is generated using DE strategies. From research

DE/rand/1/bin has powerful exploitation ability and

DE/best/1/bin has efficient exploration ability.

Generation of donor vector is given in following

formula.

Vi,G+1 = Xri1,G+1 + F · (Xri2,G+1 −Xri3,G+1) (2)

Where Vi,G+1 is a donor vector. Xri1,G+1,

Xri2,G+1 , Xri3,G+1 are randomly selected vectors

and F is a mutation factor. The range of mutation

factor is in between 0 and 1. Crossover generates the

trial vector. The aim of crossover operator is to

generate the trial offspring by mixing the content of

donor vector and target vector. Following formula

shows generation of trial vector

(3)

Selection is depending upon the fittest value. The

offspring which having fittest value can be selected

and added to the original population and thus

population is updated. Updated population is send to

the next generation. The process is continuing till the

given stopping criterion.

4. Permutation Flowshop Scheduling

Problem
Scheduling theory is concerned with the optimal

allocation of resources so that time required for their

execution is minimum. Consider the example of

central processing unit of computer that must process a

sequence of jobs that arrive at time. In what order

should the jobs be processed in order to minimize

completion time.

Fig. 1. Gantt chart for 2 jobs and 2 machines

The schedule shown on the Gantt chart gives a

detail plan:

The lathe machine will be used by Job A12 on days

1-4, and Job B23 on days 5-8. The grinding machine

will be used by Job A12 on days 5-10 and Job B23 on

days 11-14.

With following assumptions

1. No job uses more than one machine simultaneously

2. No machine processes more than one job

simultaneously.

3. All jobs are ready for processing at time zero.

4. The machines are continuously available from time

zero onwards (no breakdowns).

5. At any time, each machine can process at most one

job and each job can be processed on at most one

machine.

No pre-emption is allowed (that is, once the

processing of a job on a machine has started, it must be

completed without interruption). Only permutation

schedules are allowed (i.e. all jobs have the same

ordering sequence on all machines).

Permutation flowshop scheduling problem is an

optimization problem used in various industries such

as production, manufacturing industry. Better

scheduling system has significant impact on cost

reduction, increased productivity, customer satisfaction

and overall competitive advantage. Thus, the flow

shop problem (FSP) is one of the most important

problems in the scheduling theory. This problem can

be described as follows. Each job ji (i=1, 2… n) has to

be processed on m machines Mj (j = 1 . . . m),

following the same order in all machines. The

processing time of job ji on machine Mj is pij. In this

work, we focus on the minimization of the completion

time of the last job of the last machine called

makespan and denoted Cmax. The problem is denoted

F|prmu|Cmax. The calculation of completion time for

the n-job, m-machine problem is given as follows:

 C (π1, 1) = Pπ1, 1 (4)

C(πj ,1) = C(πj-1 ,1) + Pπj,1 j=2,….n (5)

C(π1 ,k) = C(π1 ,k) + Pπ1,k k=2,….m (6)

C(πj ,k) = max {C(πj-1 ,k), C(πj ,k-1)+ Pπj, k}

j=2,….n ; k=2,….m (7)

Then makespan can be defined as

Cmax (π) = C(πn ,m).

Grinding machine

2 4 6 8 10 12

Days

14

Lathe machine Job A12

Job A12

Job B23

Job B23

458

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159

So, the PFSP with the makespan criterion is to find

a permutation π * in the set of all permutations Π such

that

Cmax (π*) ≤ C (πn, m) ∀ π ∈ Π

5. Proposed Techniques
In this proposed work we have done three different

techniques with DE

5.1 DE with Positioned based crossover

operator

First proposed technique consist simple De with

positioned based crossover operator. Following figure

shows proposed algorithm.

Step 1: The first step is the random initialization of

the parent population. Randomly generate a

population of NP vectors, each of n dimensions: xi,j=

xmin,j+ rand(0, 1)(xmax,j-xmin,j), where xmin,j and x

max are lower and upper bounds for jth component

respectively, rand(0,1) is a uniform random number

between 0 and 1.

Step 2: Calculate the objective function value f (Xi)

for all Xi.

Step 3: Select three points from population and

generate perturbed individual Vi using equation (1a).

Step 4: Recombine the each target vector xi with

perturbed individual generated in step 3 to generate a

trial vector Ui using equation (2).

Step 5: Perform positioned based crossover operator

on trial and Donor vector.

Step 6: Calculate the objective function value for

vector Ui.

Step 7: Choose better of the two (function value at

target and trial point) using equation (3) for next

generation.

Step 8: Check whether convergence criterion is met if

yes then stops; otherwise go to step 3

This algorithm consist modified mutation operator

which dynamically set the value of mutation factor.

5.2 DE with Classical NEH_Iterated Local

Search and Enhanced swap operator
The NEH heuristic algorithm made by Nawaz et al.

As one of the efficient algorithm in this field. Iterated

local search and enhanced swap operator are easy to

implement and very effective. Following figure shows

procedure on DE_NEH-ILS-ESP.

Step 1: Initialize target population randomly and

initial parmeters like CR and F

Step 2:. Evaluate target population

Step3:. nehR=classical NEH

Step 4:. Search:=ILS(nehR, tareget_vector)

Step 5:. while (not termination) do

Step 6:. Obtain mutant population

Step 7:. Obtain trial population

Step 8:. Evaluate trial population

Step 9:. Apply ESP

Step 10:. Make selection

Step 11: Apply local search LS()

Step 12: End while

End

5.3 Improved DE
Following are the steps used in this algorithm

Step 1: Generate the population randomly

Step 2: Evaluate the objective function for each

individual.

Step 3: Sort the objective value in ascending order.

Step 4: Select first value as target vector.

Step 5: Select first half population as a new population.

Step 6: Apply the DE algorithm

Repeat step 2-6 until the last single population with

minimum makespan value.

This module gives improved makespan value in

minmum time. It improves the time complexity of

algorithm. Modification in differential algorithm as

follows. After evaluating population we sort the

population in ascending order. First value will be the

minimum makespan value known as target vector.

Then population is divided into subpopulation. Apply

DE on subpopulation until we get minimum value.

Currently, there exists several mutation strategies

DE/rand/1/bin are used commonly. In this paper we

will use DE/rand/1/bin.

6. Experiments
To discover the effectiveness of the presented

techniques, the free available test data Car1 up to Car8

from OR library were used. This Flow shop instances

were investigated by many researchers who applied a

variety of techniques to solve it (and also there is a

known optimal value of objective function). Firstly,

the 100 simulation were carried out to determine the

effective setting of control parameters f and cr. The

best parameters obtained from combining these

parameters during experimentation are: CR = 0, 1 and

F = 0.2, 0.9. Dynamically generated value for F are -

0.1,1.1. Although those setting present a relative low

crossing rate and mutation, they seemed to be adequate

to guarantee evolution process. After all simulation we

can resume that we were able to achieve optimal

solution for all instances Car. Once all the trials were

done, we transformed the data and used as the response

variable of the experiment

the following:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑅𝑃𝐷) =
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑉𝑎𝑙−𝑂𝑏𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑙

𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑙
 (8)

459

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159

Where Optimal Value is the solution obtained by a

given algorithm alternative on a given instance and

Obtained value is the lowest makespan obtained in any

experiment of the same instance. The results are given

in Table 1:

Table1.Results for Improved DE algorithm

Following table shows experimental result of two

different techniques which we have used in project for

analysis of DE algorithm.

1. DE with positioned based crossover operator-

DEPCO.

2. Comparative results of GA, QIDE and DE with

classical NEH, iterated local search and enhanced

swap operator.

Table2.Results for DEPCO

Table 3. Comparative result of GA and QIDE with three

proposed algorithm

Fig.4 comparative graph of proposed techniques with GA

7. Conclusions
This paper consist implementation of differential

evolution algorithm consisting of positioned based

crossover operator, modified mutation operator,

classical NEH, iterated local search, enhanced swap

operator and finally some modification in algorithm.

Experimental results are shown in tables. Table 3

consist comparative results of these three techniques.

Comparison shows that improved algorithm is very

effective. In this algorithm size of population

automatically reduces. Variable population size work

better compared to constant population size.

Experiment shows that crossover factor greater than

0.5 gives better exploration and exploitation result.

Dynamic mutation factor is used but effective choice

for mutation factor is between 0.2-0.9.

NP CR F
Optimal
Value

Obtaine

d

value

RPD CPU TIME

2500 0.8 0.7393 7038 7038 0 15.571602 sec.

400 0.6 -0.193 7166 7065 0.01429582 2.578329 sec.

2500 0.8 0.4606 7312 7032 0.03981797 15.608372 sec.

700 0.3 1.0584 8003 8003 0 4.518795 sec.

700 0.7 0.9395 7720 7680 0.00520833 4.137504 sec.

7000 0.6 1.1521 8505 8496 0.00105932 35.388487 sec.

9000 0.6 0.3126 6590 6328 0.04140329 52.126734 sec.

9000 0.6 -0.0351 8366 7889 0.06046394 53.803392 sec.

NP CR F
Optimal

Value
RPD CPU TIME

2500 0.8 0.5 7038 0 30.597825 seconds.

400 0.6 0.3 7166 0 7.177144 seconds.

2500 0.8 0.7 7312 0
31.033407 seconds.

700 0.3 0.9 8003 0 11.044217 seconds.

700 0.7 0.2 7720 0 8.844516 seconds.

7000 0.6 0.4 8505 0 85.114471 seconds

9000 0.6 0.9 6590 0 111.139205 seconds.

9000 0.6 0.5 8366 0 116.937168 seconds

Proble

m

Optima

l Value

GA QIDE DEPC

O

RP

D

DENE

HILS_ES

P

RPD Improve

d DE

RPD

11*3 7038 7038 7038 7038 0 7685 -

8.419

7038
0

13*4 7166 7166 7166 7166 0 7952 -

9.884

31

7065 0.01429

582

12*5 7312 7312 7312 7312 0 6995 4.531

808

7032 0.03981

797

14*4 8003 8003 8003 8003 0 8003 0 8003
0

10*6 7720 7720 7720 7720 0 7557 2.156

941

7680 0.00520

833

8*9 8505 8505 8505 8505 0 8505 0 8496 0.00105

932

7*7 6590 6590 6590 6590 0 6590 0 6328 0.04140

329

8*8 8366 8366 8366 8366 0 8345 0.251

648

7889 0.06046
394

460

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159

10. References
[1] K. C. Ying and S. W. Lin, Multi-heuristic desirability ant

colony system heuristic for nonpermutation owshop

scheduling problems, International Journal of Advanced

Manufacturing Technology, vol.33, no.7-8, pp.793-802,

2007.

[2] Y. Li, Y. Yang, L. Zhou and R. Zhu, Observations on

using problem-speci_c genetic algorithm for multiprocessor

real-time task scheduling, International Journal of Innovative

Computing, Information and Control, vol.5, no.9, pp.2531-

2540, 2009. 6610 S.-W. LIN, C.-Y. HUANG, C.-C. LU

AND K.-C.

[3] S. W. Lin and Y. C. Ying, Applying a hybrid simulated

annealing and tabu search approach to nonpermutation

owshop scheduling problems, International Journal of

Production Research, vol.47,no.5, pp.1411-1424, 2009.

[4] K. C. Ying, Solving non-permutation flowshop

scheduling problems by an effective iterated greedy

heuristic, International Journal of Advanced Manufacturing

Technology, vol.38, no.3-4, pp.348-354,2008.

[5] Wenbo Liu ,”An improved differential evolution for

permutation flowshop scheduling problem with total

flowtime criterion “,System Science, Engineering Design

and Manufacturing Informatization (ICSEM), 2012 3rd

International Conference on (Volume:1)

[6] Samia kouki1, Mohamed Jemni1, Talel Ladhari2,”

Solving the Permutation Flow Shop Problem with Makespan

Criterion using Grids”, International Journal of Grid and

Distributed Computing Vol. 4, No. 2, June, 2011

[7] Conway, R. W.; Maxwell, W. L.; Miller, L. W. Theory of

Scheduling,Addison-Wesley: Reading,MA 1967

[8] Pinedo, M. Scheduling: Theory, Algorithms and Systems.

Prentice Hall,NewJersey, second edition 2002.

[9] Palmer, D. S. Sequencing jobs through a multi-stage

process in the minimum total time – a quick method of

obtaining a near optimum, Operations Research. Q.

16(1965), 101-107.

[10] Campbell, H. G.; Dudek, R. A.; Smith, M. L. A

Heuristic Algorithm for the n Job, m Machine Sequencing

Problem, Management Science, 16 10(1970), 630-637.

[11] Dannenbring, David G. An Evaluation of Flow Shop

Sequencing Heuristics, Management Science, 23, 11(1977),

1174-1182.

[12] Brucker, P.; Jurisch, B.; Sievers, B. A branch and bound

algorithm for the job shop scheduling problem. Discrete

Applied Mathematics, 49 1(1994), 109–127.

[13] Gendreau, M.; Laporte, G.; Semet, F. A tabu search

heuristic for the undirected selective travelling salesman

problem, European Journal of Operational Research,

Elsevier, 106 2-3(1998), 539-545.

[14] Nowicki, E.; Smutnicki, C.Afast taboo search algorithm

for the job shop problem. Management Science, 42 6(1996),

797–813.

[15] Logendran, R.; de Szoeke, P.; Barnard, F.

Sequencedependent group scheduling problems in flexible

flow shops. International Journal of Production Economics

102 (2006),66–86.

[16] Manikas. A.; Chang,Y. L. Multi-criteria sequence-

dependent job shop scheduling using genetic algorithms

Computers & Industrial Engineering 56 (2009), 179–185.

[17] Murata, T.; Ishibuchi. H.; Tanaka, H. Genetic

Algorithms for Flow shop Scheduling Problems, Computers

& Industrial Engineering, 30, 4 (1996), pp. 1061-1071.

[18] Balas, E. and A. Vazacopoulos. Guided Local Search

with Shifting Bottleneck for Job Shop Scheduling.

Management Science, 44, 2(1998), 262-275.

[19] Blum, C.; Sampels, M. An Ant Colony Optimization

Algorithm for Shop Scheduling Problems. Journal of

Mathematical Modelling and Algorithms, 3, 3(2004), 285-

308

[20] V. L. Huang, S. Z. Zhao, R. Mallipeddi and P. N.

Suganthan,” Multi-objective Optimization Using Self-

adaptive Differential Evolution Algorithm”,

[21] Janez Brest, Member, IEEE, Viljem ˇ Zumer, Member,

IEEE, and Mirjam Sepesy Mauˇcec,” Self-Adaptive

Differential Evolution Algorithm in Constrained Real-

Parameter Optimization”, 2006 IEEE Congress on

Evolutionary Computation Sheraton Vancouver Wall Centre

Hotel, Vancouver, BC, Canada July 16-21, 2006

[22] A. K. Qin, V. L. Huang, and P. N. Suganthan,”

Differential Evolution Algorithm With Strategy Adaptation

for Global Numerical Optimization”, IEEE

TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, VOL. 13, NO. 2, APRIL 2009

[23] R.Storn, and K.Price, DE-a simple and efficient

adaptive scheme for global optimization over continuous

space, Technical Report TR-95-012, ICSI, March 1995.

Available via the Internet:

ftp.icsi.berkeley.edu/pub/techreports/ 1995/tr-95-012.ps.Z,

1995.

[24] Y. Tang, H. Gao, J. Kurths, and J. Fang, “Evolutionary

pinning control and its application in UAV coordination,”

IEEE Transactions on Industrial Informatics, vol. 8, pp. 828–

838, 2012. View at Publisher · View at Google Scholar

[25] A. Tuson and P. Ross, “Adapting operator settings in

genetic algorithms,” Evolutionary Computation, vol. 6, no. 2,

pp. 161–184, 1998. View at Scopus

[26] Y. Tang, Z. Wang, H. Gao, S. Swift, and J. Kurths, “A

constrained evolutioanry computation method for detecting

controlling regions of cortical networks,” IEEE/ACM

Transactions on Computational Biology and Bioinformatics,

vol. 9, pp. 1569–1581, 2012. View at Publisher · View at

Google Scholar.

461

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100159

