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ABSTRACT 

 

 In this paper, we have considered some LRS Bianchi I 

cosmological models in the presence of zero-mass scalar fields 

associated with a perfect fluid distribution on it. We have also discussed 

various physical and geometrical features of the models. 
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1.  INTRODUCTION 

The study of scalar meson fields has attracted the attention of 

many workers. Brahamachary [2] considered the massive, whereas 

Bergmann and Leipnik [1]  considered the massless scalar field coupled 

to spherically symmetric gravitational fields. Janis et. al. [13] have 

further considered the problem from the point of view of singularities 

and Gautreau [9 ] and Singh [32] have extended the study to the case of 

non-spherical Weyl and plane symmetric fields respectively. Later on,  

the workers in the field, with a few exceptions (Stephenson [35] have 
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directed their efforts to the study of the massless scalar fields coupled to 

gravitational and electromagnetic fields (Mishra and Pandey [18]; Rao 

et. al. [24], [25]; Reddy [27], Singh [33]. The generalization of the 

Reissner-Nordstrom solution in the presence of a massless scalar field 

was done by Penny [20]. Janis et. al. [14] obtained the solutions of the 

Einstein-scalar and Brans-Dicke [3] field equations for static space time 

and also gave a procedure to generate static solutions of the coupled 

Einstein-Maxwell-scalar field equations. The solutions of axially 

symmetric Einstein-Maxwell-scalar field equations have been given by 

Eris and Gurses [8].  

Singh et. al. [34] have found a method to obtain solutions to 

the cylindrically symmetric gravitational field coupled to massless 

scalar and non-null Maxwell fields. They have shown that starting from 

any solution to the electrovacuum field equations it is possible to 

generate a whole class of solutions to the coupled Einstein-Maxwell-

scalar field equations by a suitable redefinition of one of the space-time 

metric coefficients. They have further applied the technique to the 

solution due to Chitre et. a1. [7] and have also obtained the dual 

solution by an extension of Bonnor's theorem [4]. 

As a matter of fact following the development of inflationary 

models, the importance of scalar fields (mesons) in cosmology has 
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become well known [15]. The study of interacting fields, one of the 

fields being a zero-mass scalar field is basically an attempt to look into 

the yet unsolved problem of the unification of gravitational and 

quantum theories [29, 30]. Considerable interest has been focused on a 

set of field equations representing zero-mass scalar-fields coupled with 

the gravitational field for the last three decades. Bergamann and 

Leipnik [1] and Brahmachary [2] have investigated the spherically 

symmetric fields  associated with zero-rest-mass. The static solutions for 

axially symmetric fields have been investigated by Buchdahl [5]. Janis 

et. al. [13-14], in an attempt to present an extension of Israel's idea of a 

singular even horizons [12] have considered the spherically symmetric 

solutions of the fie-ld equations of general relativity containing zero-

rest-mass meson fields. Penny [21] and Gautreau [9] have extended the 

study of the case of axially symmetric fields and have found that the 

scalar fields obey a flat space Laplace equation and a large class of 

solution exist. Singh [32], Patel [19] and Reddy [27] have investigated 

plane symmetric solutions of the field equations corresponding to zero- 

mass scalar fields. Stephenson [35], Rao et. al. [24], Chatterjee and Roy 

[6], Reddy and Rao [26], Verma [36], Shanthi and Rao [31], Pradhan et. 

al. [22] are some of the authors who have studied various aspects of 

interacting fields in the framework of general relativity. At the present 

state of evolution, the universe is spherically symmetric with isotropic 
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and homogeneous matter distribution. But in its early stages of 

evolution, it could have not had a smoothed out picture. Close to the 

big bang singularity, neither the assumption of spherically symmetric 

nor of isotropy can be strictly valid. So we, consider plane symmetry, 

which is less restrictive than spherical symmetry and provides an 

avenue to study in homogeneities. For simplification and description of 

the large scale behaviour of the actual universe, locally rotationally 

symmetric (LRS) Bianchi I space-time has been widely studied. 

Mazumdar [16] has obtained solutions of an LRS Bianchi I space-time 

filled with a perfect fluid. Hajj-Boutros and Sfeila [10] and Sri Ram [28] 

have also obtained some solutions for the same field equations by using 

their solution -generating techniques. Pradhan et. al. [23] have studied 

LRS Bianchi I space-time with zero-mass scalar field. In fact 

cosmological models based on scalar fields of various kinds have had 

enormous success in solving cosmological problems among which are 

the causality, entropy, initial singularity and cosmological constant 

problem. 

Here in this paper, we have considered some LRS Bianchi I 

cosmological models in the presence of zero-mass scalar fields 

associated with a perfect fluid distribution in it. We have also discussed 

various physical and geometrical features of the models.  
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2. THE FIELD EQUATIONS: 

The metric for the LRS Bianchi I space-time is of the form 

[17]. 

(2.1)  )dzdy(dxdtds 2222222   

Where  and  are functions of the cosmic time t. The energy 

momentum tensor of a perfect fluid together with a zero - mass scalar 

field is given by 

(2.2)  
)s(
)ij(

)m(
ij TT  

Where  

(2.3)  ijjj
)m(

ij pguu)P(T   

is the energy momentum tensor corresponding to perfect fluid 

distribution with the four vector velocity ui satisfying ui ui = -1, p the 

pressure and  the mass - energy density. The energy momentum 

tensor )s(

ijT   corresponds to zero - mass scalar fields  and is   

(2.4)  ,b,a,gg
2

1
T ab

ijjij
)s(

ij
  

where (t) (a function of t only) is the zero - mass scalar field which 

satisfies the wave equation  

(2.5)  0g ij;
ij   
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The scalar field  is not directly coupled to matter. It interacts with 

matter indirectly through gravity. The Einstein's field equations  

(2.6)  ijijij kTRg
2

1
R   

together with energy momentum tensor defined by equation (2.2) give 

the following equations 

(2.7)  
2

2
2 2

Kp











 

(2.8)  















2Kp  

and 

(2.9)  
2

2
2 2

K











 

where k =8G, G the gravitational constant. The overdot indicates 

a derivative with respect to time t. The wave equation (2.5) 

yields  

(2.10)   

and the energy conservation equation for the matter 0T )m(

i,ij   

leads to 

(2.11)  0)p(
2





















  

3. SOLUTIONS OF THE FIELD EQUATIONS 

0
2











 







 
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 From equations (2.7) and (2.8) we obtain 

(3.1)  0
2

2



















 
 

 Which has first integral 

(3.2)  A2    

Where A is an integrating constant 

 Equation (3.2) is a linear differential equation in (t) and has an 

exact solution 

(3.3)   



)t(

df
AC

31  

 Similarly equation (3.2) is also a linear differential equation in 

(t), which has an exact solution, 

(3.4)   


)t(

df
A2C

3
22

2
2  

On integration, equation (2.10) yields 

(3.5)   


)t()t(

dtC
C

2
3

4  

Where C1,C2,C3 and C4 are integration constants. 

 Thus, for any arbitrary (t), equation (3.3) gives (t) and then  is 

known from equation (3.5). Similarly for an arbitrary (t) one can 

calculate (t) and  from equation (3.4) and (3.5). Then from equations 
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(2.7) and (2.9), p and  can be obtained and hence the solution of the 

field equations is completely known 

 To illustrate our problem, we choose .t
)f31(

2

1


  From eqns. (3.3) 

and (3.5) we obtain 

(3.6)   f3)f31(k
1 t

1f9

A2
tC


   

and   

(3.7)  









  )f31(f3)f31(k

1
2
3

2 t
)1f9(

A2
tCC  

where k and f (1) are real constants. So, in this case, the geometry of 

our universe is given by metric. 

(3.8)  2f3)f31(k
1

22 dxt
)1f9(

A2
tCdtds 










   

      22)f31(k2 dzdyt    

  For the metric (3.8) from the equations (2.7) – (2.9) find the 

expression for p and  

(3.9)  

2

)f31(f3)f31(k
1

2
3 t

)1f9(

A2
tCCKp

2













  

     
2t4

)f91(f31( 
  

(3.10)  

2

)f31(f3)f31(k
1

2
3 t

)1f9(

A2
tCCK

2



 










  
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



















)1f9(ktA2t4

)1f9()f31(C3t)f91)(f31(A2

1

)1f9(
2

1
2

2
1

)1f9(k

 

When 
2

1
k   we get solution due to Pradhan et. al. [23] by suitable 

adjustment of constants. However, when 
2

1
k   we get 

(3.11)  2f3
)f31(

2

1

1
22 dxt

)1f9(

A2
tCdtds


















 

      22)f31( dzdyt    

Also p and  are given by 

(3.12)  

2

)f31(f3
)f31(

2

1

1
2
3 t

)1f9(

A2
tCCKp

2


















  

     
2t4

)f91)(f31( 
  

(3.13)  

2

)f31(f3
)f31(

2

1

1
2
3 t

)1f9(

A2
tCCK

2



















  





















)1f9(CtA2t4

)1f9)(f31(C3t)f91)(f31(A2

1

)1f9(
2

1
2

1

)1f9(
2

1

 

When 
3

1
f  , p = = constant, whereas in the absence of scalar field we 
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get p==0 [16]. 

 The energy conditions [8(a)] 

(i) (+p)  0 

(ii) (+3p)0  and 

(iii) >0 

are satisfied when ,0A,0C1  and 
3

1
f

9

1
  and the 

dominant energy conditions [11]. 

(i) ( p)  0   and 

(ii) (+p) 0   

when 0C,0A 1  and  
9

2
f

9

1
  

The expansion scalar , the shear tensor  , the rotation   

and the acceleration vector a  for the velocity field u are defined by 

(3.14)  
 ;u  

(3.15)       ,uug
3

1
auau

2

1
uu

2

1
k;;    

(3.16)    


  uuuuug
3

1
u ;;  

and 
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(3.17)  


  ;uua  

 Here the semicolon indicates covariant differentiation. The spatial 

volume is given by 

 2V   

 For the velocity field u  these kinematical parameters are found 

to have the following expressions : 

(3.18)  
)1f9(

2

1

)1f9(
2

1

1

t)1f9(

At2)1f9(Ct

V





















  

(3.19)  


















)1f9(CtA2t2

)1f9)(f1(C3At4

1

)1f9(
2

1
1

)1f9(
2

1

 

(3.20)  






































)1f9(CtA2t

t)1f9(At2

6

1

1

)1f9(
2

1

)1f9(
2

1

 

and 

(3.21)   = 0 

(3.22)  ].0,0,0,0[a   

4. DISCUSSION 
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 From above equations [3.19 - 3.22] we see that our model is 

expanding, shearing and non-rotating. The acceleration vector a  is 

zero and consequently the stream links of the perfect fluid are geodetic 

As the shear tensor is not zero, the model is clearly anisotropic. 

 For 
3

1
f  , the metric (3.11) represents a non-static 

cosmological model filled with a stiff fluid, the pressure and density of 

which are given by 

(4.1)  
 21

2
3

AC

C
KKp


  

  The models with =p are important in relativistic 

cosmology for the description of very early stages of the universe 

Choosing f3
2

)f31(k
1 thth    and A=0 in equation [3.3], we find 

(4.2)  f6
3

)k1(f3k
2

)f31(k2
1

2 tgtgtg    

Where 2
2232122

2
121 hCg,hhC2g,hCg   

  Hence, in this case, the geometry of our universe is 

given by metric 

(4.3)    22f3
2

)f31(k
1

22 dxththdtds      

  22f6
3

)k1(f3k
2

)f31(k2
1 dzdytgtgtg    
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