Some Mapping on αc^{*}g-Open & Closed Maps in Topological Spaces

A. Pushpalatha

Department of Mathematics, Government Arts College Udumalpet-642 126, Tirupur District Tamil Nadu, India

Abstract

In this paper we have introduced the concept of Closed maps , Open maps , Irresolute and Homeomorphism on the αc^*g -closed set and study some properties on them.

1. Introduction

Malghan [1] introduced and investigated some properties of generalized closed maps in topological spaces. The concept of generalized open map was introduced by Sundaram[2]. In this paper we introduced the concepts of αc^*g -closed maps and αc^*g -open maps in topological spaces.

2. Premilinaries

Definition: 2.1: A subset A of a topological space (X, τ) is called (i) Generalized closed set (g-closed)[3] if cl(A) \subseteq U whenever A \subseteq U, and U is open in X. (ii) α -generalized closed set α g-closed[4] if α cl(A) \subseteq U whenever A \subseteq U, and U is open in X. (iii) α cg- closed set[5] if α cl(A) \subseteq U whenever A \subseteq U and U is C-set. The complement of α cg- closed set [5] if α cl(A) \subseteq U whenever A \subseteq U and U is C-set. The complement of α cg- closed set[5] if α cl(A) \subseteq U whenever A \subseteq U and U is C*-set. The complement of α c*g-closed set[5] if α cl(A) \subseteq U whenever A \subseteq U and U is C*-set. The complement of α c*g - closed set is α c*g - open set[5]. (v) α c(s)g- closed set[5] if α cl(A) \subseteq U whenever A \subseteq U and U is C(s) set. The complement of α c(s)g- closed set[5] if α cl(A) \subseteq U whenever A \subseteq U and U is C(s) set. The complement of α c(s)g- closed set is α c(s)g- open set[5].

Definition: 2.3:For a subset A of X is called (i) a C-set(Due to Sundaram)[2] if $A = G \cap F$ where G is g-open and F is a t-set in X. (ii) a C-set (Due to Hatir, Noiri and Yuksel)[9] if $A = G \cap F$ where G is open and F is an α^* -set in X. (iii) a C*set[11] if $A = G \cap F$ where G is g-open and F is an α^* -set in X.

Definition 2.4: A function $f: X \to Y$ is said to be (i) g-closed[3] in *X* for each closed set F in *Y*. A. Kavitha Department of Mathematics, Dr.Mahalingam College of Engineering and Technology, Pollachi-642003,Coimbatore District TamilNadu, India

(ii) α -generalized continuous (α g-continuous)[15] if $f^{-1}(F)$ is α g-closed in X for each closed set F in Y.

(iii) closed map[1] if for each closed set F in X, f(F) is closed in Y.

(iv) open map[1] if for each open set F in X, f(F) is open in Y.

3.αc^{*}g-Closed maps & αc^{*}g-Open maps in topological spaces

Definition3.1: A map $f: X \to Y$ from a topological space X into a topological space Y is called αc^*g -closed map if for each closed set F in X, f(F) is a αc^*g -closed set in Y.

Theorem 3.2: If a map $f: X \to Y$ is closed map then it is αc^* -closed map but not conversely.

Proof: Since every closed set is αc^*g -closed set then it is αc^*g -closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that

$$\begin{aligned} f: (X, \tau_1) &\to (Y, \tau_2). \quad \tau_1 = \{\varphi, Y, \{b, c\}\}, \\ \tau_2 &= \{\varphi, X, \{a\}, \{a, c\}, \{a, b\}\} \\ \text{Here} \\ C(Y, \tau_1) &= \{\varphi, Y, \{a\}\}, C(X, \tau_2) = \\ \{\phi, X, \{b, c\}, \{b\}, \{c\}\}. \\ ac^* g_C(Y, \tau_2) = \\ \{\phi, Y, \{b, c\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\} \\ \text{Then } f \text{ is } ac^* g_closed \text{ map but not closed map.} \\ \text{Since for the closed set } \{a\} \text{ in } (X, \tau_1), \\ f(\{a\}) = \{a\} \text{ is not closed in } Y. \end{aligned}$$

Theorem 3.4: If a map $f: X \to Y$ is g-closed map then it is αc^* g-closed map but not conversely.

Proof: Let $f: X \to Y$ be a g-closed map. Then for each closed set F in X, f(F) is g-closed set in Y. Since every g-closed set is αc^*g -closed set. Therefore f(F) is αc^*g -closed set. Hence f is αc^*g -closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \to (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^*g -closed but not g-closed because for the closed set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not gclosed in Y. Therefore f is not g-closed map.

Theorem 3.6: If a map $f: X \to Y$ is α -closed map then it is αc^* g-closed map but not conversely.

Proof: Let $f: X \to Y$ be a α -closed map. Then for each closed set F in X, f(F) is α -closed set in Y. Since every α -closed set is αc^*g -closed set. Therefore f(F) is αc^*g -closed set. Hence f is αc^*g -closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$.Then f is ac^{*}g-closed but not

a-closed because for the closed set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not a-closed in Y. Therefore f is not a-closed map.

Theorem 3.8: If a map $f: X \to Y$ is ag-closed map then it is αc^*g -closed map but not conversely.

Proof: Let $f: X \to Y$ be a α g-closed map. Then for each closed set F in X, f(F) is α g-closed set in Y. Since every α g-closed set is αc^* g-closed set. Therefore f(F) is αc^* g-closed set. Hence f is αc^* g-closed map. The converse of the above theorem need not be true as seen from the following example.

Example 3.9: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \to (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^{*}g-closed but not ag-closed because for the closed set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not ag-closed in Y. Therefore f is not ag-closed map.

Theorem 3.10: If a map $f: X \to Y$ is gs-closed map then it is αc^* -g-closed map but not conversely.

Proof: Let $f: X \to Y$ be a gs-closed map. Then for each closed set F in X, f(F) is gs-closed set in Y. Since every gs-closed set is αc^*g -closed set. Therefore f(F) is αc^*g -closed set. Hence f is αc^*g -closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \to (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^{*}g-closed but not gs-closed because for the closed set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not gs-closed in Y. Therefore f is not gs-closed map.

Definition3.12: A map $f: X \to Y$ from a topological space X into a topological space Y is called αc^*g -open map if f(F) is a αc^*g -open set in Y for every open set F in X.

Theorem 3.13: If a map $f: X \to Y$ is open map then it is αc^*g -open map but not conversely.

Proof: Let $f: X \to Y$ be a open map. Let F be any open set in X, f(F) is open set in Y. Then f(F) is αc^*g -open set. Since every open set is αc^*g -open set. Hence f is αc^*g -open map. The converse of the above theorem need not be true as seen from the following example.

Example 3.14: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^*g -open map but not open map because for the open set $\{b\}$ in $X, f(\{b\}) = \{b\}$ is not open in Y. Therefore f is not open map.

Theorem 3.15: If a map $f: X \to Y$ is g-open map then it is αc^* g-open map but not conversely.

Proof: Let $f: X \to Y$ be a g-open map. Let F be any open set in X, f(F) is g-open set in Y. Since every g-open set is αc^*g -open set. Then f(F) is αc^*g -open set. Hence f is αc^*g -open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.16: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^{*}g-open map but not

g-open map because for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not g-open in Y. Therefore f is not g-open map.

Theorem 3.17: If a map $f: X \to Y$ is ag-open map then it is αc^*g -open map but not conversely.

Proof: Let $f: X \to Y$ be a α g-open map. Let F be any open set in X, f(F) is α g-open set in Y. Since every α g-open set is α c^{*}g-open set. Then f(F) is α c^{*}g-open set. Hence f is α c^{*}g-open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.18: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^*g -open map but not ag-open map because for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not ag-open in Y. Therefore f is not ag-open map.

Theorem 3.19: If a map $f: X \to Y$ is α -open map then it is αc^*g -open map but not conversely.

Proof: Let $f: X \to Y$ be a α -open map. Let F be any open set in X, f(F) is α -open set in Y. Since every α -open set is αc^*g -open set. Then f(F) is αc^*g -open set. Hence f is αc^*g -open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.20: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^{*}g-open map but not

 α -open map because for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not α -open in Y. Therefore f is not α -open map.

Theorem 3.21: If a map $f: X \to Y$ is gs-open map then it is αc^* g-open map but not conversely.

Proof: Let $f: X \to Y$ be a gs-open map. Let F be any open set in X, f(F) is gs-open set in Y. Since every gs-open set is αc^*g -open set. Then f(F) is αc^*g -open set. Hence f is αc^*g -open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.22: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \to (Y, \tau_2)$. $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $, \tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is ac^*g -open map but not gs-open map because for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not gs-open in Y. Therefore fis not gs-open map. **Theorem 3.23:** If $f: X \to Y$ is αc^*g -continuous and αc^*g -closed and A is a αc^*g -closed set of X, then f(A) is αc^*g -closed in Y.

Proof: Let $f(A) \subseteq O$, where O is c^{*}-set of Y, Since f is α c^{*}g-continuous, $f^{-1}(O)$ is c^{*}-set containing A. Hence $cl(A) \subseteq f^{-1}(O)$ as A is α c^{*}g-closed. Since f is α c^{*}g-closed, f(cl(A)) is α c^{*}g-closed set contained in c^{*}-set O, which implies that $cl[f(cl(A))] \subseteq O$ and hence $cl(f(A)) \subseteq O$. So f(A) is α c^{*}g-closed in Y.

Corollary 3.24: If $f: X \to Y$ is continuous and closed map and if A is αc^*g -closed set in X, then f(A) is αc^*g -closed in Y.

Proof: Since every continuous map is αc^*g -continuous and every closed map is αc^*g -closed, by the above theorem the result follows.

Theorem 3.25: If $f: X \to Y$ is closed and $h: Y \to Z$ is αc^*g -closed then $h \circ f: X \to Z$ is αc^*g -closed.

Proof: Let $f: X \to Y$ is a closed map and $h: Y \to Z$ is αc^*g -closed map. Let V be any closed set in X. Since $f: X \to Y$ is closed, f(V) is closed in Y and since $h: Y \to Z$ is αc^*g -closed h(f(V)) is αc^*g -closed set in Z. Therefore $h \circ f: X \to Z$ is αc^*g -closed map.

Theorem 3.26: If $f: X \to Y$ is αc^*g -closed and A is closed set in X. Then $f_A: A \to Y$ is αc^*g -closed.

Proof: Let V be closed set in A. Then V is closed in X. Therefore f is αc^*g -closed set in Y. By theorem 1.24 f(V) is αc^*g -closed. That is $f_A(V) = f(V)$ is αc^*g -closed set in Y. Therefore $f_A: A \to Y$ is αc^*g -closed.

4. $\alpha c^* g$ -irresolute map in Topological Spaces

Crossely and Hildebrand[9] introduced and investigated the concept of irresolute function in topological spaces. Sundaram[2], Maheshwari and Prasad[10], Jankovic[11] have defined gcirresolute maps,

 α -irresolute maps and p-open maps in topological spaces.

In this section, we have introduced a new class of map called αc^*g -irresolute map and study some of their properties.

Definition 4.1: A map $f: X \to Y$ from topological space X into a topological space Y is called αc^*g -irresolute map in the inverse of every αc^*g - closed(αc^*g -open) set in Y is αc^*g -closed (αc^*g -open) in X.

Theorem 4.2: If a map $f: X \to Y$ is

 $\alpha c^* g$ -irresolute, then it is $\alpha c^* g$ -continuous, but not conversely.

Proof: Assume that f is αc^*g -irresolute. Let F be any closed set in Y. Since every closed set is αc^*g -closed, F is αc^*g -closed in Y. Since f is αc^*g -irresolute, irresolute, $f^{-1}(F)$ is αc^*g -closed in X. Therefore f is αc^*g -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Consider the topological space $X = Y = \{a, b, c\}$ with topology $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau_2 = \{\varphi, Y, \{a\}\}$ Let $f(X, \tau_1) \rightarrow (Y, \tau_2)$ be the identity map then f is αc^*g -continuous, because for the inverse image of every closed in Y is αc^*g -closed in X, but not αc^*g -irresolute. Because for the inverse image of every αc^*g -closed in Y is not αc^*g -closed in X. (ie) for the αc^*g -closed set $\{b\}$ in Y the inverse image $f^{-1}(\{b\}) = \{b\}$ is not αc^*g -closed in X.

Theorem 4.4: Let X,Y,and Z be any topological spaces. For any αc^*g -irresolute map $f: X \to Y$ and any αc^*g -continuous map $g: Y \to Z$ the composition $g \cdot f: X \to Z$ is αc^*g -continuous.

Proof: Let F be any closed set in Z. Since g is ac^*g -continuous, $g^{-1}(F)$ is ac^*g -closed in Y. Since f is ac^*g -irresolute $f^{-1}(g^{-1}(F))$ is ac^*g -closed $f^{-1}(g^{-1}(F)) = (g \cdot f)^{-1}(F)$. Therefore $g \cdot f$ is ac^*g -continuous.

Theorem 4.5: If $f: X \to Y$ from topological space X into a topological space Y is bijective, αc^*g -open set and αc^*g -continuous then f is αc^*g -irresolute. **Proof:** Let A be a αc^*g -closd set in Y. Let $f^{-1}(A) \subseteq O$, Where O is C*-set in X. Therefore $A \subseteq f(O)$ holds. Since f(O) is αc^*g -open set and A is αc^*g -closed in Y, $\alpha cl(A) \subseteq f(O), f^{-1}(\alpha cl(A)) \subseteq f(O)$

Since f is αc^*g -continuous and $\alpha cl(A)$ is closed in Y. $\alpha cl(f^{-1}(\alpha cl(A)) \subseteq O$

and so $\alpha cl(f^{-1}(A)) \subseteq O$. Therefore $f^{-1}(A)$ is

 $\alpha c^* g$ -closed in X. Hence f is $\alpha c^* g$ -irresolute.

The following examples show that no assumption of the above theorem can be removed.

Example 4.6:Consider the topological space $X = Y = \{a, b, c\}$ with topology $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau_2 = \{\varphi, Y, \{a\}\}$. Then the defined identity map $f(X, \tau_1) \rightarrow (Y, \tau_2)$ is αc^*g -continuous, bijective and not αcg -open. So f is not αcg -irresolute. Since for the αc^*g -closed set $\{a\}$ in Y the inverse image $f^{-1}(\{a\}) = \{a\}$ is not αc^*g -closed in X.

Example 4.7:Consider the topological space $X = Y = \{a, b, c\}$ with topology $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$ $\tau_2 = \{\varphi, Y, \{a\}\}.$ Then the map $f(X,\tau_1) \rightarrow (Y,\tau_2)$ be defined by f(a) = a, f(b) = b, f(c) = a. Then f is $\alpha c^* g$ -continuous, $\alpha c^* g$ -open and not bijective. So f is not αc^*g -irresolute. Since for the αc^*g -closed set {b} in Y the inverse image $f^{-1}(\{b\}) = \{b\}$ is not $\alpha c^* g$ -closed in X.

Example 4.8: Consider the topological space $X = Y = \{a, b, c\}$ with topology

$$\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$$

 $\tau_2 = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$ Then the defined identity map $f(X, \tau_1) \rightarrow (Y, \tau_2)$ is bijective, αc^*g -open and not αc^*g -continuous,. So f is not αc^*g -irresolute. Since for the αc^*g -closed set {b} in Y the inverse image $f^{-1}(\{b\}) = \{b\}$ is not αc^*g -closed in X.

Remark 4.9: The following two examples show that the concepts of irresolute maps and αc^*g -irresolute maps are independent of each other.

Example 4.10: Consider the topological space $X = Y = \{a, b, c\}$ with topology $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$

 $\tau_2 = \{\varphi, Y, \{a\}, \{a, b\}\}$ Then the defined identity map $f(X, \tau_1) \rightarrow (Y, \tau_2)$ is irresolute but not $\alpha c^* g$ -irresolute. Since $\{b\}$ is $\alpha c^* g$ -closed set in Y has its inverse image $f^{-1}(\{b\}) = \{b\}$ is not $\alpha c^* g$ -closed in X.

Example 4.11: Consider the topological space $X = Y = \{a, b, c\}$ with topology

$$\tau_1 = \{\varphi, X, \{a\}, \{a, b\}\}$$

$$\begin{split} \tau_2 = \{ \varphi, Y, \{a\}, \{b\}, \{a, b\} \} & \text{. Then the defined} \\ \text{identity map} & f(X, \tau_1) \to (Y, \tau_2) \text{ is } \alpha c^* g \text{ -} \\ \text{irresolute but not irresolute. Since the closed set} \\ \{a, c\} & \text{in } Y \text{ has its inverse image} \\ f^{-1}(\{a, c\}) = \{a, c\} \text{ is not closed in } X. \end{split}$$

Remark 4.12:From the following diagram we can conclude that αc^*g -irresolute map is independent with irresolute map.

$$\alpha c^*g$$
-irresolute map \checkmark irresolute map

5. αc^{*}g -homeomorphism maps in Topological Spaces

Several mathematicians have generalized homeomorphism in topological spaces. Biswas[14],Crossely and Hildebrand[9], Gentry and Hoyle[13] and Umehara and Maki[12] have introduced and investigated semi-homeomorphism, which also a generalization of homeomorphism. Sundaram[2] introduced g-homeomorphism and gc-homeomorphism is topological spaces.

In this section we introduce the concept of αc^*g -homeomorphism and study some of their properties.

Definition 5.1: A bijection $f(X, \tau_1) \rightarrow (Y, \tau_2)$ is called $\alpha c^* g$ - homeomorphism if f is both $\alpha c^* g$ -open and $\alpha c^* g$ -continuous.

Theorem 5.2: Every homeomorphism is a αc^*g -homeomorphism but not conversely. **Proof:** Since every continuous function is αc^*g -continuous and every open map is αc^*g -open the proof follows. The converse of the above theorem need not be true as seen from the following example.

Example 5.3: Let $X = Y = \{a, b, c\}$ with $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\varphi, X, \{a, b\}\}$ then $f(X, \tau_1) \to (Y, \tau_2)$ is αc^*g -

homeomorphism but not homeomorphism.

Theorem 5.4: For any bijection $f: X \to Y$ the following statements are equivalent.

- i) $f^{-1}: Y \to X$ is $\alpha c^* g$ -continuous.
- ii) f is a $\alpha c^* g$ -open map.
- iii) f is a $\alpha c^* g$ -closed map.

Proof: $(i) \Rightarrow (ii)$ Let G be any open set in X.Since f^{-1} is αc^*g -continuous, the inverse image of G under f^{-1} namely f(G) is αc^*g -open in Y.So f is αc^*g -open map.

(*ii*) \Rightarrow (*iii*) Let F be any closed set in X.Then F^c is open in X. Since f is αc^*g -open map $f(F^c)$ is αc^*g -open map in Y.But $f(F^c) = Y - f(F)$ and so f(F) is αc^*g -open map in Y.Therefore fis a αc^*g -closed map.

 $(iii) \Rightarrow (i)$ Let F be any closed set in X. Then $(f^{-1})^{-1}F = f(F)$ is αc^*g -closed map in Y.Therefore $f^{-1}: Y \to X$ is αc^*g -continuous.

Theorem 5.5: Let $f(X, \tau) \to (Y, \sigma)$ be a bijective and αc^*g -continuous map the following statement are equivalent.

- i) f is a $\alpha c^* g$ -open map.
- ii) f is a $\alpha c^* g$ -homeomorphism.
- iii) f is a $\alpha c^* g$ -closed map.

Proof: The proof easily follows from definitions and assumptions.

The following examples shows that the composition of two αc^*g -homeomorphism need not be αc^*g -homeomorphism.

Example 5.6: Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$,

$$\tau_2 = \{\varphi, Y, \{a\}, \{a, b\}\}, \tau_3 = \{\varphi, Z, \{a, b\}\}$$

Let f and g be identity maps such that $f: X \to Y$ and $g: Y \to Z$ then f and g are ac^*g -homeomorphism, but their composition $g \cdot f: X \to Z$ is not ac^*g -homeomorphism.

Theorem 5.7: Every α -homeomorphism is a αc^*g - homeomorphism.

Proof: Let $f: X \to Y$ be a α -homeomorphism then

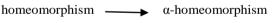
f is α -continuous and α -closed. Since every α -continuous is αc^*g -continuous and every α -closed is αc^*g -closed, f is αc^*g -continuous and αc^*g -closed. Therefore f is αc^*g -homeomorphism.

The converse of the above theorem need not to be true as seen from the following example.

Example 5.8:

Consider the topological space $X = Y = \{a, b, c\}$ with topology $\tau_1 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau_2 = \{\varphi, Y, \{a\}, \{b\}, \{a, c\}\}$. Then the defined identity map $f(X, \tau_1) \rightarrow (Y, \tau_2)$ is ac g -homeomorphism but not a-homeomorphism.Since for the open set $\{a\}$ in X the inverse image $f^{-1}(\{a\})=\{a\}$ is not α -open in Y.

From the above observations we get the following diagram:



 $\alpha c^* g$ -homeomorphism

Definition 5.9 : A bijection $f(X, \tau) \to (Y, \sigma)$ is said to be $(\alpha c^*g)^*$ homeomorphism if f and its inverse f^{-1} are αc^*g -irresolute map.

Notation 5.10: Let the family of all $(\alpha c^*g)^*$ -homeomorphism from (X, τ) onto itself be denoted by $(\alpha c^*g)^*h(X, \tau)$ and the family of all αc^*g -homeomorphism from (X, τ) onto itself be denoted by $(\alpha cg)h(X, \tau)$. The family of all

homeomorphism from (X, τ) onto itself be denoted by $h(X, \tau)$.

Theorem 5.11: Let X be a topological space. Then i) The set $(\alpha c^*g)^* h(X)$ is group under composition of maps. (ii) h(x) is a subgroup of $(\alpha c^*g)^* h(X)$

(iii) $(\alpha c^* g)^* h(X) \subset (\alpha c^* g)h(X).$

Proof for (i): Let $f, g \in (\alpha c^*g)^* h(X)$, then $g \cdot f \in (\alpha c^*g)^* h(X)$ and so $(\alpha c^*g)^* h(X)$ is closed under the composition of maps. The composition of maps is associative. The identity map I:X \rightarrow X is a $(\alpha c^*g)^*$ -homeomorphism and so $I \in (\alpha c^*g)^* h(X)$. Also $f \cdot I = I \cdot f = f$ for every

 $f \in (\alpha c^*g)^* h(X)$. If $\in (\alpha c^*g)^* h(X)$, then $f^{-1} \in (\alpha c^*g)^* h(X)$ and

 $f \cdot f^{-1} = f^{-1} \cdot f = I$.Hence $(\alpha c^*g)^* h(X)$ is a group under the composition of maps.

Proof for (ii): Let $f(X,\tau) \to (Y,\sigma)$ be a homeomorphism. Then by theorem 4.5.Both of fand f^{-1} are $(\alpha c^* g)^*$ - irresolute and so f is a $(\alpha c^* g)^*$ -homeomorphism. Therefore every homeomorphism is a $(\alpha c^* g)^*$ -homeomorphism and so h(x) is a subset of $(\alpha c^* g)^* h(X)$.

Also h(x) is a group under composition of maps. Therefore h(x) is a subgroup of group $(\alpha c^*g)^* h(X)$.

Proof for (iii): Since every $(\alpha c^*g)^*$ -irresolute map is αc^*g -continuous, $(\alpha c^*g)^*h(X)$ is a subset of $(\alpha c^*g)^*h(X)$.

REFERENCES

[1] Malghan, S. R., Generalized closed maps, J.Karnataka Univ. Sci., 27(1982), 82-88.

[2] Sundaram, P., Studies on Generalizations of Continuous maps in topological spaces, Ph. D., Thesis, Bharathiar University, Coimbatore. (1991).

- [3] Levine , N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970),89-96.
- [4] Maki., Devi, R., and Balachandran, K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.

[5] Kavitha.A., αcg, αc*g, αc(s)g-closed sets in Topological spaces, In the 99th Indian Science Congress, Bhubaneswar(2012),.

[6] Balachandran, K. Sundaram, P. and Maki, H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12(1991), 5-13.

[7] Mashhour, A. S., Hasanein, I. A. and El-Deeb, S. N., α -continuous and α - open mappings, Acta. Math. Hunger., 41(1983), 213-218.

[8] Pushpalatha .A., Kavitha.A., A New class αcg-set weaker form of closed sets in Topological Spaces, International Journal of computer Application Vol 54-No 26 September 2012.

[9]Crossley, S. G. and Hildebrand, S.K., Semitopological properties, Fund. Math., 74(1972), 233-254.

[10] Maheshwari, S.N. and Prasad, R., Onαirresolute maps, TamkangJ. Math., 11(1980), 209-214.

[11] Jankovic, D. S., Mappings of extremely disconnected spaces, Acta. Math.Hungar., 46(1985), 83-92.

[12] Umehara, J. and Maki, H., A note on the homeomorphic image of a

Mem. Fac. Sci. Kochi Univ. (Math)., 10(1989), 39-45.

[13] Gentry, K. R. And Hoyle, H. G., Somewhat continuous functions, Czechoslovak Math. J., 21(1971), 5-12.

[14] Biswas, N., On some mappings in topological spaces, Bull. Cal. Math. Soc., 61(1969), 127-135.

[15] Maki, H., Devi, R., and Balachandran, K., Associated topologies of generalized α -closed sets and α - generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15 (1994), 51-63.