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Abstract

In this paper we have introduced the concept of
Closed maps ,Open maps , Irresolute and
Homeomorphism on the ac g-closed set and study
some properties on them.

1. Introduction

Malghan [1] introduced and investigated some
properties of generalized closed maps in
topological spaces. The concept of generalized
open map was introduced by Sundaram[2]. In this
paper we introduced the concepts of ac g-closed
maps and ac g-open maps in topological spaces.

2. Premilinaries

Definition: 2.1: A subset A of a topological space
(X,7) is called

(i) Generalized closed set (g-closed)[3] if cl(A) cU
whenever A cU, and U is open in X,

(ii) a-generalized closed set ag-closed[4] if

acl(A) cU whenever A U, and U is open in X

(iii) acg- closed set[5] if acl(A) U whenever
A cU and U is C-set. The complement of

acg- closed set is acg- open set[5].

(iv) ac*g-closed set[5] if acl(A) cU whenever
A cU and U is C*-set. The complement of
ac*g - closed set is ac*g - open set[5].

(V) ac(s)g- closed set[5] if acl(A) cU whenever
A cU and U is C(s) set. The complement of
ac(s)g- closed set is ac(s)g- open set[5].

Definition: 2.3:For a subset A of X is called

(i) a C-set(Due to Sundaram)[2] if A= GNF where
Gisg-openand Fisat-setin X,

(ii) a C-set (Due to Hatir, Noiri and Yuksel)[9] if

A = GNF where G is open and F is an o*-set in X
(iii) a C*set[11] if A= GNF where G is g-open and
F is an a*-set in X

Definition 2.4: A function f: X = ¥ is said to be

(i) g-closed[3] in X for each closed set F in¥".
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(ii) a-generalized continuous (ag-continuous)[15] if
fP)is ag-closed in X for each closed set F in Y.
(iii) closed map[1] if for each closed set F in X,
f(F) isclosed in ¥.

(iv) open map[1] if for each open set F in X,
f(F) isopenin ¥,

3.0¢ g-Closed maps & ac g-Open maps in
topological spaces

Definition3.1: A map f:X—=Y from a
topological space X into a topological space ¥ is
called ac’g-closed map if for each closed set F in
X, f(F)isa ac'g-closed setin Y.

Theorem 3.2: If amap f: X — ¥ is closed map
then it is ac’g-closed map but not conversely.

Proof: Since every closed set is ac g-closed set
then it is ac g-closed map.

The converse of the above theorem need
not be true as seen from the following example.

Example 3.3: Let X = ¥ ={a, b, c}. Let f be
a identity map such that

X)) = (Y1) 4= {:,9, ¥, {b, c}}
T, = {:,5-, X {a},{a,c}.{a, b}} .

Here

cy,ry) ={p. V. {a}}.C(X,1,) =
{@.%,{b,c}, (). {c}}.

ac’g C(¥Y,1,) =

{¢.Y,{b,c}, {b}.{c]}.{a, b}, {a,c}}

Then f is ac'g-closed map but not closed map.
Since for the closed set {al} in (X, 7,),
f({a}) = {alisnotclosedin ¥.
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Theorem 3.4: Ifamap f: X — ¥ is g-closed map
then it is ac g-closed map but not conversely.
Proof: Let f: X — ¥ be a g-closed map. Then for

each closed set F' in X, f(F) is g-closed set in ¥.
Since every g-closed set is ac’'g-closed set.
Therefore f(F) is oac'g-closed set. Hence f is
ac’g-closed map.

The converse of the above theorem need
not be true as seen from the following example.

Example 35: Let X = ¥ = {a, b, c}. Let f be
a identity map such that f: (X, 7,) — (¥, 7, ).
ry = {@ X, {a}, {b}. {a b}}

.1, ={o.Y.{a}{a b} {a c}}Then [ s
ac g-closed but not g-closed because for the closed
set {a,c} in X, f({a.c}) ={a.c} is not g-
closed in ¥. Therefore f is not g-closed map.

Theorem 3.6: Ifamap f: X — ¥ is a-closed map
then it is ac’g-closed map but not conversely.

Proof: Let f: X = ¥ be a a-closed map. Then for
each closed set F in X, f(F) is o-closed set in V.

Since every a-closed set is oc'g-closed set.
Therefore f(F) is oc g-closed set. Hence f is
ac’g-closed map.

The converse of the above theorem need
not be true as seen from the following example.

Example 3.7: Let X = ¥ = {a, b, c}. Let f be
a identity map such that f: (X, 7] — (¥, 7, ).
r, = (@, X, {a}, {b}, {a, b}}

LT, = {:,9, ¥Y,{a}l{a, b} {a r:]-}.Then s

ac’g-closed but not
oa-closed because for the closed set {a,c} in X,

fl{a,c}) = fa,c} is not o-closed in ¥.
Therefore f is not a-closed map.

Theorem 3.8: If a map f: X — ¥ is ag-closed
map then it is ac g-closed map but not conversely.

Proof: Let f: X — ¥ be a ag-closed map. Then
for each closed set F in X, f(F) is ag-closed set
in ¥. Since every ag-closed set is ac’g-closed set.

Therefore f(F) is ac g-closed set. Hence f is
ac’g-closed map.
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The converse of the above theorem need
not be true as seen from the following example.

Example 3.9: Let X = ¥ = {a, b, c}. Let f be
a identity map such that f: (X, 7, ) = (V,7,).
r, = (@, X, {a}, {b}.{a, b}}

, T, = {:,5-, V,{a},{a, b} {a, c}}.Then s

ac g-closed but not
ag-closed because for the closed set {a,c} in X,

f{a,ch) = fa,c} is not ag-closed in Y.
Therefore f is not ag-closed map.

Theorem 3.10: If a map f: X — ¥ is gs-closed
map then it is ac g-closed map but not conversely.

Proof: Let f: X — ¥ be a gs-closed map. Then
for each closed set F in X, f(F) is gs-closed set
in ¥. Since every gs-closed set is oc g-closed set.

Therefore f(F) is oc g-closed set. Hence f is
ac g-closed map.

The converse of the above theorem need
not be true as seen from the following example.

Example 3.11: Let X = ¥ = {a, b, c}. Let f be
a identity map such that f: (X, 7, ) = (¥, 7,).
r, = (@, X, {a}, {b}.{a, b}}

, T, = {:,5-, V.{a} {a. b} {a, c}}.Then f s

ac g-closed but not
gs-closed because for the closed set {a,c} in X,

fl{a,c}) ={a,c} is not gsclosed in Y.
Therefore f is not gs-closed map.

Definition3.12: A map f:X —= ¥ from a
topological space X into a topological space ¥ is
called ac’g-open map if f(F) is a ac’'g-open set
in ¥ for every open set £ in X

Theorem 3.13: If amap f: X = ¥ is open map
then it is ac"g-open map but not conversely.

Proof: Let f: X — ¥ be a open map. Let F be
any open set in X, f{F) is open set in ¥. Then
F(F) is ac’'g-open set. Since every open set is
ac g-open set. Hence | is ac g-open map.
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The converse of the above theorem need
not be true as seen from the following example.

Example 3.14: Let X = ¥V ={a, b,c}. Let f be
a identity map such that f: (X, 7] — (¥, 7, ).
ry = {@, X, {a}, {b}. {a b}}

,Ty = {:,9, ¥Y,{a}l{a, b} {a r:]-}.Then s
ac’g-open map but not open map because for the
open set {&} in X, fF({b}) = {b}is not open in
¥. Therefore f is not open map.

Theorem 3.15: If a map f: X — ¥ is g-open map
then it is ac g-open map but not conversely.

Proof: Let f: X — ¥ be a g-open map. Let F be
any open set in X, f(F) is g-open set in ¥. Since
every g-open set is ac g-open set. Then f{F) is
ac g-open set. Hence f is ac g-open map.

The converse of the above theorem need
not be true as seen from the following example.

Example 3.16: Let X = ¥V = {a, b,c}. Let f be
a identity map such that = (X, 7] — (¥, 7, ).
r, = {@, X, {a}, {b}, {a, b}}

LT, = {:,9, ¥Y,{a}l{a, b} {a r:]-}.Then I s

ac’g-open map but not
g-open map because for the open set {b} in X,

F({E}) = {b}is not g-open in ¥. Therefore f is
not g-open map.

Theorem 3.17: If a map f: X = ¥ is ag-open
map then it is ac g-open map but not conversely.

Proof: Let f: X — ¥ be a ag-open map. Let F be
any open set in X, f(F) is ag-open set in ¥. Since
every ag-open set is ac'g-open set. Then f{F) is
ac’g-open set. Hence f is ac’g-open map.

The converse of the above theorem need
not be true as seen from the following example.
Example 3.18: Let X = ¥ = {a, b, c}. Let f be
aidentity map such that f: (X, 7,) = (¥, 7).
r, = {0, X, {a}, {b}, {a, b}}

LT, = {:,9, ¥Y,{a}l{a, b} {a r:]-}.Then s
ac’g-open map but not

ag-open map because for the open set {b} in X,

F{b}) = {b} is not ag-open in ¥. Therefore f
is not ag-open map.

Theorem 3.19: Ifamap f: X — ¥ is a-open map
then it is ac g-open map but not conversely.

Proof: Let f: X — ¥ be a a-open map. Let F be
any open set in X, f(F) is a-open set in ¥. Since
every a-open set is ac g-open set. Then f(F) is
ac g-open set. Hence f is ac g-open map.

The converse of the above theorem need
not be true as seen from the following example.

Example 3.20: Let X = ¥ = {a, b, c}. Let f be
a identity map such that f: (X, 7, ) = (V,7,).
r, = {o X, {a}, (b}.{a, b}]

, T, = {:,9, V.{fa} {a. b} {a, c}}.Then f s

ac g-open map but not
o-open map because for the open set {b} in X,

f({b}) = {b} is not a-open in ¥. Therefore f is
not a-open map.

Theorem 3.21: Ifamap f: X — ¥ is gs-open map
then it is ac g-open map but not conversely.

Proof: Let f: X — ¥ be a gs-open map. Let F be
any open set in X, f(F') is gs-open set in Y. Since
every gs-open set is ac g-open set. Then f({F) is
ac g-open set. Hence f is ac g-open map.

The converse of the above theorem need
not be true as seen from the following example.

Example 3.22: Let X = ¥ = {a, b, c}. Let f be
aidentity map such that f: (X, 7,) = (¥, 75 ).
r, = {o X, {a}, (b}.{a, b}]

, T, = {:,9, Y, {a},{a, b} {a, c}}.Then f s

ac g-open map but not
gs-open map because for the open set {&} in X,

F({b}) = {b} is not gs-open in ¥. Therefore
is not gs-open map.
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Theorem 3.23: If f:X — ¥ is ac’g-continuous
and ac’g-closed and A is a ac’'g-closed set of X,
then f(A4) is ac'g-closed in ¥

Proof: Let f(A4) S O, where O is c'-set of ¥,
Since f is ac'g-continuous, f {0} is c’-set
containing A. Hence cl(A) S f~1(0) as 4 is
ac g-closed. Since f is ac’g-closed, f[:ci [4)} is
ac'g-closed set contained in c’-set &, which
implies that cl[f(cl(A4))] SO and hence
cl(f(A)) € 0.50 f(A) is ac'g-closed in Y.

Corollary 3.24: If f: X = ¥ is continuous and
closed map and if 4 is ac’g-closed set in X, then
F(A) is ac'g-closed in ¥

Proof: Since every continuous map is oc g-
continuous and every closed map is ac g-closed, by
the above theorem the result follows.

Theorem 3.25: If f:X —= 1 is closed and
h:Y = Zisac'g-closedthen b = f: X — Z'is

ac’g-closed.
Proof: Let f:X — Y is a closed map and

h:Y — Z is ac’g-closed map. Let 1" be any closed
set in X. Since f: X — Y is closed, f(17) s
closed in ¥ and since h: ¥ — Z is ac'g-closed
JA(F(V)) is oc'g-closed set in Z. Therefore
hof:X = Zisac g-closed map.

Theorem 3.26: If f: X — V¥ is ac’g-closed and 4

is closed setin X. Then f,: A = ¥is
ac g-closed.
Proof: Let I7 be closed set in A. Then V is closed

in X. Therefore f is ac'g-closed set in Y. By
theorem 1.24 f(17) is ac’g-closed. That is
FalV) = f(V) is ac"g-closed set in Y. Therefore
fi: A = ¥ is ac'g-closed.

4. ac'g -irresolute map in Topological
Spaces

Crossely and Hildebrand[9] introduced
and investigated the concept of irresolute function
in topological spaces. Sundaram[2] , Maheshwari
and Prasad[10], Jankovic[11] have defined gc-
irresolute maps,
a-irresolute maps and p-open maps in topological
spaces.

In this section, we have
introduced a new class of map called
ac'g -irresolute map and study some of their
properties.

Definition 4.1: Amap f: X — ¥ from topological

space X into a topological space Y is called

ac’g -irresolute map in the inverse of every oc'g -
closed(ac’g -open) set in Y is ac’g -closed

(ac’g -open) in X.

Theorem 4.2: Ifamap f: X = ¥ is

ac’g -irresolute, then it is ac’g -continuous, but not
conversely.

Proof: Assume that f is ac’g -irresolute. Let F be
any closed set in Y. Since every closed set is
ac'g -closed, F is ac’g -closed in Y. Since f is

ac’g -irresolute, irresolute, £ 2 (F) is ac’g -closed
in X. Therefore f is ac’g -continuous.

The converse of the above theorem need
not be true as seen from the following example.

Example 4.3: Consider the topological space
X=Y={abrc} with topology
r; = {e. X, {a}. {b}.{a b}} ,
r; ={e.V.{a]} Let f(X.7y) = (¥.72) be
the identity map then f is ac’g -continuous ,

because for the inverse image of every closed in Y
is ac'g -closed in X, but not ac’g -irresolute.
Because for the inverse image of every ac’g -closed
in'Y is not ac'g -closed in X. (ie) for the

ac'g -closed set {b} in Y the inverse image

FH{bY) = {blisnot ac'g -closed in X.

Theorem 4.4: Let X,Y,and Z be any topological
spaces.For any ac’g -irresolute map f: X —= ¥

and any ac’g -continuous map g:¥ — Z the
composition g - f: X — Z is ac’g -continuous.

Proof: Let F be any closed set in Z. Since & is
ac’g -continuous, g~ > (F) is ac’g -closed in Y.
Since f is ac'g -irresolute £~ (g (F)) is

ac’g -closed (g7 (F)) = (g £)(F).
Therefore g * f is ac’g -continuous.

Theorem 4.5: If f: X — ¥ from topological space
X into a topological space Y is bijective,

ac’g -open set and ac’g -continuous then f is

ac’g -irresolute.
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Proof: Let A be a ac'g -closd set in Y. Let
F71(A) S O,Where O is C*-set in X. Therefore

A = f(O)holds. Sincef () is ac'g —open set
and A is acg -closed in Y,
acl{A) € FLO), F~Hacl(A)) € FlO)

Since f is ac’g -continuous and acl(A) is closed

inY. acl(f *(acl(A) <O
and socl(f ™ (A)) <O .Therefore f ~*(A4) is

ac’g -closed in X. Hence f is ac’g -irresolute.

The following examples show that no
assumption of the above theorem can be removed.

Example 4.6:Consider the topological space
X=Y={abc} with topology
1—1 = {'::5'1 -'5{: {H}J{b}, {HJ b}} ’
T, = {:,9,?, {a}} Then the defined identity
mapf (X, 7,) = (Y.7,) is ac’g -continuous,
bijective and not ocg-open. So f is not acg-
irresolute. Since for the ac’g -closed set {a} in Y
the inverse image £ *({a}) = {alis not

ac’g -closed in X.

Example 4.7:Consider the topological -space

Remark 4.9: The following two examples show
that the concepts of irresolute maps and

ac'g -irresolute maps are independent of each
other.

Example 4.10: Consider the topological space
X =Y = {a, b, c} with topology

ry = {@ X {a}. {b}. {a. b}] ,
7, ={p,Y {a},{a,b}} Then the defined
identity map f(X,7,) — (Y.7,) is irresolute
but not ac’g -irresolute. Since {b} is ac'g -closed
setin Y has its inverse image £~ ({b}) = {blis
not ac g -closed in X.

Example 4.11: Consider the topological space
X =Y ={a, b, c} with topology

={p, X .{a}.{a,b}}

={p,Y {a},{b}.{a,b}} . Then the defined
|dent|ty map flX.7y) = (¥V.1,) is oc’g -

irresolute but not irresolute. Since the closed set
{ac} in Y has its inverse image

f *({a,c}) ={a,c} is not closed in X.
Remark 4.12:From the following diagram we can

conclude that ac'g -irresolute map is independent
with irresolute map.

ac’g -irresolute map4—’—> irresolute map

X=Y={abc} with topology

r, ={@ X, {a}, {b} {a b}} , 5. acg -homeomorphism maps in
r, = {% v, {a}}. Then the map Topological Spaces

f(X.71y) = (¥Y.15)be defined by Several  mathematicians  have  generalized
fla)=a f(b)=5b, f(c)=aThen f is homeomorphism in topological spaces.

ac’g -continuous, ac'g -open and not bijective. So
f is not ac’g -irresolute. Since for the ac’g -closed

set {b} in Y the inverse image f~*({b}) = {b]
is not ac’g -closed in X.

Example 4.8: Consider the topological space
X =Y = {a, b, ¢} with topology

;= {o.%,{a}, (b}, {a, b)) ,
7, ={p,Y {a},{a,b},{a,c}} Then the
defined identity map fF(X,7) = (Y.75) is
bijective, ac’g —open and not ac g -continuous,. So
f is not ac’g -irresolute. Since for the ac’g -closed

set {b} in Y the inverse image f *({0}) ={b} is

not acg -closed in X.

Biswas[14],Crossely and Hildebrand[9], Gentry
and Hoyle[13] and Umehara and Maki[12] have
introduced and investigated semi-homeomorphism,
which also a generalization of homeomorphism.
Sundaram[2] introduced g-homeomorphism and
gc-homeomorphism is topological spaces.

In this section we introduce the concept of
ac’g -homeomorphism and study some of their
properties.

Definition 5.1: A bijection f (X, 1) = (¥, 1)

is called ac g - homeomorphism if f is both
ac g -open and ac ¢ -continuous.

Theorem 5.2: Every homeomorphism is a

ac’g -homeomorphism but not conversely.

Proof: Since every continuous function is

ac’g -continuous and every open map is ac g -open
the proof follows.
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The converse of the above theorem need
not be true as seen from the following example.

Example 53: Let X =Y = {a,b,clwith
T, = {:,:JJ X, {a}, {b} {a, b}} T, =

{w, X, {a, b}}

then f(X,7y) = (¥V.1.) is ac’g -
homeomorphism but not homeomorphism.

Theorem 5.4: For any bijection f: X — ¥ the
following statements are equivalent.
i) f~1:¥ = Xisac’g -continuous.

ii) fisaac’g-open map.
iii) fisaac’g -closed map.

Proof: (i) = (iiJLet G be any open set in
X.Since f_1 is ac’g -continuous, the inverse
image of G under £ ~* namely (G ) is ac’g -open
in Y.So f is ac’g -open map.

(ii) = (iif) Let F be any closed set in X.Then
FC is open in X. Since f is ac’g -open map f(F <)
is ac’g -open map in Y.But f(F°) =¥ — f(F)
and so f{F) is ac’g -open map in Y.Therefore f

is a ac g -closed map.
(#ii) = (i) Let F be any closed set in X. Then

(F"Y)7IF = f(F) is ac’g -closed map in
Y.Therefore f ~2: ¥ — X is ac’g -continuous.

Theorem 55: Let f(X,7)—= (V,o) be a

bijective and ac’g -continuous map the following
statement are equivalent.

i) f isa ac’g -open map.

ii) f is a ac’g -homeomorphism.

iii) fisaac’g -closed map.
Proof: The proof easily follows from definitions
and assumptions.

The following examples shows that the
composition of two ac g -homeomorphism need
not be ac g -homeomorphism.

1

Example 5.6: Let X = ¥ =Z = {a, b, ¢} with
tOpOlOgies 1'1 = {‘191 _-Sf, {H}J {b}.l {ﬂ_. b}} ¥

Ty = {‘:5': Y, {{‘I}, {HJ b}} Ty = {:‘!D’ Z, {:ﬂ‘ b}}

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3Issue 1, January - 2014

Let f and g be identity maps such that
f:X = ¥Yandg:¥ — Zthen f and g are

ac'g -homeomorphism, but their composition
g - f: X — Z is not ac'g -homeomorphism.

Theorem 5.7: Every a-homeomorphism is a
ac’g- homeomorphism.

Proof: Let f: X — ¥ be a a-homeomorphism then

f is a-continuous and o-closed. Since every
a-continuous is ac g -continuous and every

o -closed is ac'g -closed, f is ac’g -continuous
and ac’g -closed. Therefore f is

ac'g -homeomorphism.

The converse of the above theorem need
not to be true as seen from the following example.

Example 5.8:

Consider the topological space X =¥ = {a.b.c}
with topology

7y = {@. X {a}. b}, {a, b3} ,
. =le.v.{alh. (8} {a.c}].  Then the defined
identity map fFLX. 7.0 — (V.71 is

ac’g -homeomorphism but not
a-homeomorphism.Since for the open set {a} in X
the inverse image f'({a})={a} is not a-open in Y.

From the above observations we get the
following diagram:

homeomorphism ——35  a-homeomorphism

ac’g -homeomorphism

Definition 5.9 : A bijection (X, 1) — (Y.o) is
said to be (ac'g)” homeomorphism if f and its

inverse ~1are ac’g -irresolute map.

Notation 5.10: Let the family of all (oc @) -
homeomorphism from (X,T] onto itself be

denoted by (eec” g ) h(X, T) and the family of all
ac’g -homeomorphism from (X, T) onto itself be
denoted by (acg)h(X,T). The family of all
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homeomorphism from (X, 7] onto itself be
denoted by h (X, T).

Theorem 5.11: Let X be a topological space. Then
i) The set (ac’g)” h(X) is group under
composition of maps. (ii) h(x) is a subgroup of
(ae"g)" h(X)

(iii) (ac™g)" h(X) < (ac” g)h(X).

Proof for (i): Let f,g € (ac”g)” h(X), then
g f €(ac’g)” h(X) andso (ac™g)” h(X)
is closed under the composition of maps.The
composition of maps is associative. The identity

map I:X—X is a (¢ g ) -homeomorphism and
sol €E(ac*g) h(X) Also f-I=1-Ff=F
for every

fFeE(ac'g) h(X) . 1f € (xc'g)” h(X) ,
then f 1 € (ac”g)" h(X) and
f-ft=Ff1f=LHence (ac’g)" h(X)
is a group under the composition of maps.

Proof for (ii): Let f(X,7) = (¥,o) be a

homeomorphism. Then by theorem 4.5.Both of f
and ™1 are (ctc” g)’- irresolute and so f is a
(eec” g)"-homeomorphism. Therefore every
homeomorphism is a {c”g ) -homeomorphism
and so i(x) is asubsetof (@c™g)™ h(X).

Also h(x) is a group under composition of
maps.Therefore A(x) is a subgroup of group
(ac*g)* h(X).

Proof for (iii): Since every (@™ g ) -irresolute
map is cc’” g-continuous, (cec g)” h(X) is a
subset of (crc”g)” h(X).
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