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Abstract 

 

 In this paper, we establish some properties and 

inequalities for the 𝜖- generalized functions which are 𝜖 - 

Gamma function, Beta function and Zeta function and has 

given some identities which they satisfy. This inequality 

leads to new inequalities involving the Beta, Gamma and 

Zeta functions and a large family of functions. The gamma 

and Beta functions belong to the category of the special 

transcendental functions and we will see that some 

mathematical constants are occurring in its study.  

 

Keywords:  𝜖- generalized Gamma function , 𝜖 – Beta 

function and 𝜖 - Zeta function. 

1. Introduction 

          The generalized  𝜖 - Gamma function Γ𝜖 𝑥  as  

 Γ𝜖 𝑥   =lim𝑛→∞
𝑛!𝜖𝑛  𝑛𝜖  

𝑥
𝜖−1 

 𝑥 𝑛 ,𝜖
 ,k>0,x ∈ 𝐶 − 𝜖𝑍−  (1.1) 

where  𝑥 𝑛,𝜖  is the 𝜖- Pochammer symbol and is given by 

 𝑥 𝑛,𝜖=x(x+ 𝜖)(x+2 𝜖)...(x+(n-1) 𝜖),x∈ 𝐶,𝜖 ∈ 𝑅,n∈ 𝑁+      

(1.2)                           

It is obvious that Γ𝜖 𝑥  → Γ 𝑥   𝑓𝑜𝑟 𝜖 →1, where Γ 𝑥   is 

known as Gamma function. Also for Re (x) > 0, it holds                  

Γ𝜖 𝑥  =   𝑡𝑥−1∞

0
𝑒−

𝑡𝜖
𝜖  𝑑𝑡                           (1.3) 

And it follows that 

Γ𝜖 𝑥  =𝜖
𝑥

𝜖
−1

Γ  
𝑥

𝜖
 .                                         (1.4) 

 In this paper [1],[2],[3] introduced the 𝜖- Beta function 

𝐵𝜖 𝑥, 𝑦  as 

 𝐵𝜖 𝑥, 𝑦 =
Γ𝜖 𝑥  Γ𝜖 𝑦  

Γ𝜖 𝑥+𝑦 
, Re(x )> 0,Re (y) > 0           (1.5) 

 And 𝜖-Zeta function as 

    𝜁𝜖 𝑥, 𝑠 =  
1

 𝑥+𝜗𝜖  𝑠
∞
 𝜗=0  ,   𝜖, 𝑠 > 0, s > 1               (1.6) 

The function 𝐵𝜖 𝑥, 𝑦   satisfies the equality 

𝐵𝜖 𝑥, 𝑦 = 
1

𝜖
 𝑡

𝑥

𝜖
−11

0
 1 − 𝑡 

𝑦

𝜖
−1𝑑𝑡                     (1.7) 

which follows 

𝐵𝜖 𝑥, 𝑦 = 
1

𝑘
𝐵  

𝑥

𝜖
,
𝑦

𝜖
 .                                        (1.8) 

We mention that lim
𝑛→∞

𝐵𝜖 𝑥, 𝑦 → 𝐵(𝑥, 𝑦) and 𝜖- Zeta 

function is a generalization of Hurwitz Zeta function 

𝜁 𝑥, 𝑠  =  
1

 𝑥+𝜗𝜖  𝑠
∞
𝜗=0  which is a generalization of the 

Reimann Zeta function 

 𝜁 𝑠  =  
1

 𝜗 𝑠
∞
𝜗=1 .    The motivation to study properties of 

generalized 𝜖 –Gamma and 𝜖- Beta functions is the fact 

that  𝑥 𝑛,𝜖  appears in the combinatorics of creation and 

annihilation operators[3].  Recently M. Mansour [4] 

determined the 𝜖 – generalized Gamma function by a 

combination of some functional equations.  

           In this paper , we use the definitions of the above 

generalized functions to prove a formula for Γ𝜖 2𝑥   

which is a generalization of the Legendre duplication  

formula for Γ 𝑥   and to prove inequalities for the 

function 𝐵𝜖 𝑥, 𝑦 , for x,y, 𝜖 > 0 and x + y ≠  𝜖 and the 

product  Γ𝜖 𝑥     Γ𝜖 1 − 𝑥  , for  0 < x, 𝜖 < 1.we also give 

monotonicity properties for 𝜓𝜖 𝑥 =  𝜕𝑥𝜓 𝜖, 𝑥  where 

𝜓 𝜖, 𝑥 = 𝑙𝑜𝑔Γ𝜖 𝑥   and  𝜁𝜖 𝑥, 𝑠  for s ∈ 𝑁 𝑎𝑛𝑑 𝑠 ≥ 2.   
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We  mention that using (1.4) the following inequalities 

hold: 

        Γ𝜖 𝑎 𝜖 =  𝜖𝑎−1Γ 𝑎 ,𝜖>0,a∈ 𝑅                 (1.9)                    

  Γ𝜖 𝑛 𝜖 =  𝜖𝑛−1(𝑛 − 1)!,  𝜖>0,n∈ 𝑁             (1.10) 

                         Γ𝜖  𝜖 = 1, 𝜖>0,                       (1.11) 

  Γ𝜖(  2𝑛 + 1 
𝜖

2
)=𝜖

2𝑛−1

2
 2𝑛 ! 𝜋

2𝑛𝑛!
, 𝜖>0,n∈ 𝑁          (1.12)         

also , using (1.5) and (1.8) the following equalities hold: 

𝐵𝜖 𝑥 + 𝜖, 𝑦 =
𝑥

𝑥+𝑦
𝐵𝜖 𝑥, 𝑦 ,𝐵𝜖 𝑥, 𝑦 + 𝜖  

              =
𝑦

𝑥+𝑦
𝐵𝜖 𝑥, 𝑦      x,y, 𝜖 > 0.                  (1.13) 

  𝐵𝜖 𝑥, 𝜖  = 
1 

𝑥
 and 𝐵𝜖 𝜖, 𝑦  = 

1

𝑦
,  x ,y, 𝜖 > 0.         (1.14) 

   𝐵𝜖 𝑎𝜖, 𝑏𝜖 =  
1

𝑥
𝐵 𝑎, 𝑏 , a,b, 𝜖 > 0                    (1.15)    

 𝐵𝜖 𝑛𝜖, 𝑛𝜖 =
1

𝜖

 𝑛−1 !2

 2𝑛−1 !
, 𝜖 > 0, n ∈ 𝑁                   (1.16) 

 

2. The Function 𝚪𝝐  𝒙  

Theorem2.1: let x, 𝜖 > 0 and 𝜓𝜖 𝑥  be the logarithmic 

derivative of Γ𝜖  𝑥 . Then the function 𝜓𝜖
′(𝑥) is 

completely monotonic. 

Proof: From (1.4) , we get       

 LogΓ𝜖  𝑥  =  
𝑥

𝜖
− 1 𝑙𝑜𝑔𝜖 + log Γ𝜖  𝑥/𝜖     or by setting    

𝜓 𝜖, 𝑥  = LogΓ𝜖  𝑥 , we obtain     

 𝜓 𝜖, 𝑥 = 
𝑥

𝜖
− 1 𝑙𝑜𝑔𝜖 + log Γ𝜖  𝑥/𝜖                        (2.1) 

We get  ,𝜕𝑥𝜓 𝜖, 𝑥 = 
1

𝜖
 𝑙𝑜𝑔𝜖 + 𝜓 𝑥/𝜖                      (2.2)                  

 We remind that 𝜓 𝑥/𝜖  = 𝜕𝑥  𝑙𝑜𝑔Γ𝜖  
𝑥

𝜖
  . from (2.2) 

taking the derivative with respect to x, we have                                           

                   𝜕𝑥
2𝜓 =  

1

𝜖
 𝜓𝜖

′(𝑥/𝜖)                             (2.3) 

𝜕𝑥
3𝜓 𝜖, 𝑥  =  

1

𝜖2 𝜓𝜖
′′(𝑥/𝜖) 

By induction, we obtain  𝜕𝑥
𝑛+1𝜓 𝜖, 𝑥  =  

1

𝜖𝑛
 𝜓𝜖

𝑛(𝑥/𝜖)   

Or if we call 𝜓𝜖 𝑥 =  𝜕𝑥𝜓 𝜖, 𝑥 , then the equation                    

           𝜓𝜖
𝑛 𝑥 =   

1

𝜖𝑛
 𝜓𝜖

𝑛(𝑥/𝜖)                            (2.4) 

 holds. It is known [1] that  𝜓𝜖
′(𝑥)  is completely 

monotonic for x > 0, so from (2.4) it follows the desired 

result.   

Remark 2.1. (i) From (2.3) it follows that Γ𝜖  𝑥  is 

logarithmic convex on (0, ∞) which is proved in [2], (ii) 

Theorem 2.1 is a generalization of the known [1] result 

that the function 𝜓𝜖
′(𝑥) is completely monotonic. 

Result 2.1. For x > 0 the function  𝜓 𝜖, 𝑥 = log Γ𝜖  𝑥  

satisfies the differential  equation 

  −𝑥2𝜖𝜕2
𝜖𝜓 𝜖, 𝑥 + 2𝜖2𝜕𝜖𝜓 𝜖, 𝑥 + 𝜖3𝜕𝜖𝜓 𝜖, 𝑥 =

        −𝑥 − 𝜖                                                               (2.5) 

Proof: From (2.1) taking the first and second derivative of 

𝜓 𝜖, 𝑥  with respect to 𝜖, we obtain 

  𝜕𝜖𝜓 𝜖, 𝑥 =  
−𝑥

𝜖2 𝑙𝑜𝑔𝜖 +
𝑥

𝜖2 − 
1

𝜖
−

1

𝜖
𝜓 𝑥/𝜖              (2.6)   

 𝜕2
𝜖𝜓 𝜖, 𝑥 =

2𝑥

𝜖3 𝑙𝑜𝑔𝜖 −
3𝑥

𝜖3 +  
1

𝜖2 +
𝑥

𝜖2 𝜓 𝑥/𝜖 +

              
𝑥

𝜖3 𝜓𝜖
′(𝑥/𝜖)                                                     (2.7) 

From (2.3), (2.6) and (2.7), we get (2.5) 

Theorem2.2: The function Γ𝜖  𝑥  satisfies the equality 

 Γ𝜖  2𝑥 =  
𝜖

𝜋
 22

𝑥

𝜖 
−1

Γ𝜖  𝑥 Γ𝜖  𝑥 + 𝑘/2                   (2.8) 

  For  x ∈ 𝐶 with Re(x) > 0. 

Proof:  From (1.7) it follows that    

             𝐵𝜖 𝑥, 𝑥  = 
1

𝜖
 𝑡

𝑥

𝜖
−11

0
 1 − 𝑡 

𝑥

𝜖
−1𝑑𝑡 

Or by setting t = 
1+𝑟

2
,   𝐵𝜖 𝑥, 𝑥 = 

2

𝜖2
2
𝑥
𝜖 
−1
  1 − 𝑟2 

𝑥

𝜖
−11

0
𝑑𝑟    

or by setting 𝑟2 = 𝑢, 

 we obtain   𝐵𝜖 𝑥, 𝑥 =
1

𝜖2
2
𝑥
𝜖 
−1
 𝑢

1

2
−11

0
 1 − 𝑢 

𝑥

𝜖
−1𝑑𝑢 =

 
1

𝜖2
2
𝑥
𝜖 
−1
𝐵  

𝑥

𝜖
,
𝑥

𝜖
 =

1

2
2
𝑥
𝜖 
−1
𝐵𝜖  𝑥,

𝜖

2
       Or 

          𝐵𝜖 𝑥, 𝑥 =  
1

 2
2
𝑥
𝜖 −1

Γ𝜖  𝑥 Γ𝜖  
𝜖

2
 

Γ𝜖 𝑥+ 
𝜖

2
 

                          (2.9)  

from (1.9) for  a=1/2 , we get Γ𝜖   
𝜖

2
  =  

𝜋

𝜖
,   since Γ   

1

2
  = 

 𝜋 , from (2.9) and (1.5) , we get the equality (2.8). 
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Remark 2.3. Theorem 2.2 is a generalization of the 

legendre duplication formula of Γ(x). 

 

3. The Function  𝜻𝝐 𝒙, 𝒔  

Theorem3.1 (i) Let x, 𝜖 > 0 and s > 1. Then the positive 

function ζ
ϵ
 x, s  decreases with respect to x and also 

decreases with respect to ϵ.  (ii) let x > 0 and s > 1. Then 

the positive function ζ
ϵ
 x, s  decreases with respect to s 

for x > 1 and ϵ > 0, 𝜗 ≥ 0 and increases with respect to s 

for 𝜗 > 0, 0 < ϵ < 1/ ϵ and 0 < x < 1 - 𝜗 ϵ. 

Proof: From (1.6) we obtain  

     𝜕𝑥  𝜁𝜖 𝑥, 𝑠   =    
1

 𝑥+𝜗𝜖  𝑠+1
∞
𝜗=0  ,    𝜖, 𝑥 > 0, s >1    

   Or   

              𝜕𝑥  𝜁𝜖 𝑥, 𝑠 = - 𝑠 𝜁𝜖 𝑥, 𝑠 + 1                           (3.1) 

 
          
 𝜕𝑥  𝜁

𝜖
 𝑥, 𝑠 =  

−𝜗𝑠

 𝑥+𝜗𝜖  𝑠+1
∞
𝜗=0  = -s  

𝜗

 𝑥+𝜗𝜖  𝑠+1
∞
𝜗=1  𝜖, 𝑥 > 0, 

s >1                                                                       (3.2) 

 Then (3.1) and (3.2) , prove the theorem 3.1(i)also the 

definition(1.6) gives 

 
     

     𝜕𝑠  𝜁
𝜖
 𝑥, 𝑠 =− 

ln⁡(𝑥+𝜗𝜖 )

 𝑥+𝜗𝜖  𝑠
∞
𝜗=0                                  (3.3) 

 If x >1 then x > 1- 𝜗𝜖, for  𝜗, 𝜖 > 0 thus ln(x + 𝜗𝜖 ) > 0 so 

from (3.3) it follows that the function  𝜁𝜖 𝑥, 𝑠  decreases 

with s > 1 and if 0 < 𝜖 < 1/ 𝜗 and  0 < x < 1- 𝜗𝜖 then ln(x 

+ 𝜗𝜖 ) < 0 from (3.3) it follows that the function  𝜁𝜖 𝑥, 𝑠  

increases with s > 1. 

Result 3.1: Let x > 0, 𝜖 > 0 and s > 1. Then the function 

 𝜁𝜖 𝑥, 𝑠 satisfies the identities: 

        𝜕𝑛𝑥  𝜁𝜖 𝑥, 𝑠 = −1 𝑛 𝑠 𝑛,1 𝜁𝜖 𝑥, 𝑠 + 𝑛         (3.4) 

          𝜁𝜖 𝑥, 𝑠 = −1 𝑛
𝜕𝑛 𝑥𝜓 𝜖,𝑥 

 𝑛−1 !
,𝑛 ≥ 2                 (3.5)  

  And           𝜁𝜖 𝑥 + 𝜖, 𝑠 = 𝜁𝜖 𝑥, 𝑠 − 1/𝑥𝑠          (3.6)                

   Proof:  From (3.1) we obtain 

 𝜕2
𝑥  𝜁𝜖 𝑥, 𝑠 = −𝑠  𝜕𝑥  𝜁𝜖 𝑥, 𝑠 + 1 =  −1 2𝑠 𝑠 +

1    𝜁𝜖 𝑥, 𝑠 + 2  

Repeating the same , we get (3.4) ,  

             since  s (s+1) …….(s+n-1) =  𝑠 𝑛,1. 

In[2]it was proved that           

                𝜕2
𝑥𝜓 𝜖, 𝑥 =   

1

 𝑥+𝜗𝜖  2 
∞
𝜗=0                 (3.7) 

From (1.6) for s + 2 and (3.7), we get   

                𝜕2
𝑥𝜓 𝜖, 𝑥 =   𝜁𝜖 𝑥, 2                        (3.8) 

Differentiating (3.7) with respect to x and using (3.1) 

 for s = 2, we get  

               𝜕3
𝑥𝜓 𝜖, 𝑥 =  −1 2 2 𝜁𝜖 𝑥, 3     

 and      𝜕4
𝑥𝜓 𝜖, 𝑥 =  −1 23!  𝜁𝜖 𝑥, 4  

By induction, we obtain (3.5). The  equation (3.6) follows 

from the definition(1.6), since  

 𝜁𝜖 𝑥, 𝑠 =
1

𝑥𝑠
+  

1

 𝑥 + 𝜖 + 𝜗𝜖 𝑠 

∞

𝜗=0

=  
1

𝑥𝑠
+  𝜁𝜖 𝑥 + 𝜖, 𝑠 . 

 

 4. Inequalities For 𝑩𝝐 𝒙, 𝒚 , 𝚪𝝐  𝒙 𝚪𝝐 𝟏 − 𝒙  

Theorem 4.1: let x,y, ϵ > 0 and x + y ≠ 𝜖. Then the 

function Bϵ x, y  satisfies the inequalitie 

         
2

2−
𝑥+𝑦
𝜖

𝑥+𝑦−𝜖
<  Bϵ x, y <  

1−2
2−

𝑥+𝑦
𝜖

𝑥+𝑦−𝜖
                   (4.1) 

  Lemma 4.1: The function B(x,y) satisfies the 

inequalities 

  
22−(𝑥+𝑦)

𝑥+𝑦−1
<  B(x, y) <  

1−22−(𝑥+𝑦)

𝑥+𝑦−1
 , x,y > 0, x+y ≠ 1 (4.2) 

                                                                     

Proof:      The function B(x,y) is defined [1] by the integral   

     B(x,y) =    𝑡𝑥−11

0
 1 − 𝑡 𝑦−1𝑑𝑡   

Which can be written as  

B(x,y)=  𝑡𝑥−11/2

0
 1 − 𝑡 𝑦−1𝑑𝑡 +  𝑡𝑥−11

1/2
 1 − 𝑡 𝑦−1𝑑𝑡          

                                                                             (4.3)                                                        

If 0 < t < ½ then t < 1- t , so that the following inequalities 

hold     𝑡𝑥+𝑦−2
1

2
0

𝑑𝑡 <   𝑡𝑥−1
1

2
0

 1 − 𝑡 𝑦−1𝑑𝑡 <  

                               1 − 𝑡 𝑥+𝑦−21/2

0
𝑑𝑡                        (4.4) 
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and if ½ < t < 1 then 1 – t < t,  so that the following 

inequalities hold 

   1 − 𝑡 𝑥+𝑦−21

1/2
𝑑𝑡 <   𝑡𝑥−11

1/2
 1 − 𝑡 𝑦−1𝑑𝑡  <

                                                𝑡𝑥+𝑦−21

1/2
𝑑𝑡                   (4.5) 

From (4.3), using the inequalities (4.4) and (4.5) and 

evaluating the integrals on the left and right side of the 

above  inequalities , we obtain the inequalities (4.2) . 

 

Proof of theorem 4.1:By setting x / 𝜖 and y/ 𝜖, instead of x 

and y respectively in (4.2) and taking in account the 

relation (1.8) we get the inequalities (4.1). 

Corollary 4.1: Let x,y, 𝜖 > 0. Then the function Bϵ x, y  

satisfies the inequalities:  

     
2

1−
𝑥+𝑦
𝜖

𝑥
<  Bϵ x, y <  

1−2
1−

𝑥+𝑦
𝜖

𝑥
                              (4.6) 

  Or         
2

1−
𝑥+𝑦
𝜖

𝑦
<  Bϵ x, y <  

1−2
1−

𝑥+𝑦
𝜖

𝑦
                     (4.7) 

Proof:  The above inequalities follow from (4.1) by setting 

x + 𝜖 (or y + 𝜖) instead of x (or y) and taking in account 

relations (1.13). 

Corollary 4.2:  Let  0 < x < 1 and 0 < 𝜖 < 1. Then the 

following inequalities for the product  Γ𝜖  𝑥 Γ𝜖  1 − 𝑥  

holds 

  

 
2

𝜖
 

1−1/𝜖
Γ 1/𝜖 

1−𝑥
<  Γ𝜖  𝑥 Γ𝜖  1 − 𝑥 <  

 
2

𝜖
 

1−1/𝜖
Γ 1/𝜖  2

1
𝜖
−1
−1 

1−𝑥
    

                                                                                       

                                                                              (4.8) 

Proof:  By setting y =  𝜖 + 1 – x instead of y in (4.1) we 

obtain  

            21−1/𝜖 < Bϵ x, 𝜖 + 1 − 𝑥 < 1 − 21−1/𝜖       (4.9) 

   Using (1.5) the inequalities (4.9) become 

      21−1/𝜖 <
Γ𝜖  𝑥 Γ𝜖  𝜖+1−𝑥 

Γ𝜖  𝜖+1 
<  1 − 21−1/𝜖              (4.10) 

   From (1.4) we obtain  

       Γ𝜖  𝜖 + 1 − 𝑥 = (1 − 𝑥)Γ𝜖  1 − 𝑥         

  and     Γ𝜖  𝜖 + 1  = Γ𝜖  1  = 𝜖
1

𝜖
−1

Γ𝜖  1/𝜖 . 

From (4.10) using the above equalities we obtain the 

inequalities (4.8). 
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