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Abstract— The Mel-Frequency Cepstral Coefficients (MFCC) 

are widely used as acoustic features for speaker recognition 

algorithms, but they are not very robust in the presence of 

additive noise.  

In this paper, we present and test a robust text independent 

architecture for speaker recognition in noisy environments. The 

system uses Kohonen neural networks (Self-Organizing Maps - 

SOM) for speaker modelling and MFCCs as acoustic features. By 

using the Spearman distance as a metric function for computing 

the distortion between the known SOM speaker models and the 

unknown speech input data, we achieve a system recognition rate 

of 80% in noisy conditions. 

We compare the performance of the system for different noise 

sources and signal to noise ratios. 

Keywords— Robust speaker recognition; Self-Organizing Maps 

(SOMs); Mel-Frequency Cepstral Coefficients (MFCCs) 

 

I. INTRODUCTION  
The speaker identification represents the task of selecting 

the identity of the speaker from a known population by using 
their voices, based on the individual acoustic features included 
in the speech.  

There are two categories of speaker identification methods: 
text dependent and text independent methods. In text dependent 
systems the speaker is identified by using a specific phrase, like 
passwords, access code etc. On the other hand, text 
independent methods rely on the characteristics of the 
speaker’s voice for identification. 

 

Fig. 1. Speaker identification system 
 

All speaker identification systems contain three modules: 
acoustic feature extraction module, speaker modelling 
technique and feature matching module.  

The acoustic features extraction module converts the 
speech signal from a waveform into parametric representation. 
The speech is a quasi-stationary signal, so when it is examined 

over a short period of time (usually between 5 – 100 ms), its 
characteristics are stationary. As a result, a method to 
characterize the speech signal is the short-time spectral 
analysis. The most used representation of the short-term power 
spectrum of a human sound is the Mel-frequency cepstrum 
(MFC), which represents a linear cosine transform of a log 
power spectrum on a nonlinear Mel-scale of frequency. Mel-
Frequency Cepstral Coefficients (MFCCs) are coefficients that 
collectively make up an MFC. By using the Mel-scale, which is 
a perceptual scale of pitches judged by listeners to be equal in 
distance from one another, the MFC approximates the human 
auditory system more closely than the normal cepstrum. 

This paper describes a speaker identification system that 
uses as feature the MFCCs combined with DMFCCs and a 
speaker modelling technique based on SOMs. For determining 
the similarity, we compute the pair-wise distance between the 
feature vectors of the speech sample and the known speaker 
models. 

The paper is organized as follows. Section 2 is a 
presentation for the state of the art speaker identification 
algorithms and systems. In Section 3 we present the algorithm 
developed in our research. Section 4 is a case study, in which 
different parameters are tuned and the proposed algorithm is 
tested and validated. In this section we determine the optimal 
frame rate and a noise robust metric. Finally, Section 5 presents 
or conclusions. 

II. STATE OF THE ART  
The state-of-the-art speaker identification algorithms are 

based on statistical models of short-term acoustic 
measurements. The most popular feature extraction methods 
are: Perceptual Linear Coding (PLC) Linear Predictive Coding 
(LPC), Mel-Frequency Cepstral Coding (MFCC). Spectral 
methods, like MFCC, present an interesting property: they 
mimic the functional properties of the human ear by using a 
logarithmic scale. And by doing so, methods that use spectral 
analysis of the speech tends to present better performances.  

Modelling techniques used in speaker identification are: 
Gaussian Mixture Model (GMM), Hidden Markov Model 
(HMM), Support Vector Machines (SVM), Vector 
Quantization (VQ), Dynamic Time Warping (DTW) and, 
recently, Self-Organizing Maps (SOMs – Kohonen neural 
networks). 

In order to establish the identity, temple models techniques, 
like VQ or DTW, directly compare the training against the 
unknown feature vectors. The distortion between them 
represents their degree of similarity.   
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L. Wang et al., in [1], presents a method that combines 
MFCC and phase information in order to perform speaker 
identification in noisy environments. The speaker model is 
computed by combining two GMMs, one for MFCCs and the 
second one for phase information. By doing so, the error rate is 
reduced by 20% - 70%. On clean speech, the system has a 
detection rate of 99.3%, but it drops at 59.7% in a noisy 
environment with a signal to noise ratio (SNR) of 10dB. 

A method that uses Self-Organizing Maps for speaker 
modelling is presented in [2] by E. Monte et al. The system 
uses the VQ function of the SOM and its topological property, 
i.e. the fact that neighbouring code-words in the feature space 
are neighbours in the topological map. The feature vectors 
were computed using two methods: LPC and MFCC (24 
coefficients for both methods), and the analysis window has a 
duration of 30ms, with 10ms overlap between them. In the 
training stage, for each speaker an occupancy histogram is 
computed and then filtered, using a low pass filter. In the 
identification stage, the occupancy histogram of the unknown 
speaker is computed and compared with the known models 
from the database. Using the relative entropy, the system 
determines the degree of similarity between the unknown 
speaker’s histogram and the reference. 

The system performances were as follows: 98.2% for clean 
speech using LPC, 100% for clean speech using MFCC, 8% in 
noisy environment with a SNR of 10dB using LPC and 19.5% 
in noisy environment with a SNR of 10dB using MFCC. 

Another method was proposed by R. Hasan in [3]. It uses 
MFCC for feature vector extraction and VQ to create the 
speaker model. The system was tested on clean speech from 21 
speakers with different code book sizes and framing windows. 
It had a performance of 100% recognition rate for a code book 
size of 64. 

III. PROPOSED ALGORITHM  
The system that we propose uses the Mel-Frequency 

Cepstral Coefficients as feature vectors and Self-Organizing 
Maps for creating the speaker model. The training of the neural 
network is done using noise free recordings, while the testing 
of the system is performed using noise corrupted speech files. 

 

Fig. 2. Proposed algorithm 

The algorithm uses the VQ functionality of the self-
organizing maps in order to establish the identity of the 
speaker. In order to establish the identity of the unknown 
speaker, we compute the mean quantization distortion between 
the unknown speech input data and all the known speaker 
models from the database. The identity of the unknown speaker 
corresponds to the SOM for which the quantization distortion 
presents the smallest value.  

A. Feature extraction 
The feature extraction module generates a parametric 

representation for the speech waveform. In the proposed 
algorithm, we use Mel-Frequency Cepstral Coefficients 
(MFCCs) and delta MFCC (DMFCC), as speech features.  

There are many implementations of the original MFCC 
algorithm, introduced in 1980 by B. Davis and P. Mermelstein 
[4]. They mainly differ in the number of filters, the shape of the 
filters, the way the filters are spaced, the bandwidth of the 
filters and the manner in which the spectrum is warped. The 
algorithm used in this work is the one implemented by Slaney 
in [5].  

 

Fig. 3. Block diagram of MFCC extraction 

The speech waveform, sampled at 8 kHz 16 bit, is sent to a 
second order high pass filter, in the pre-emphasis stage. The 
aim of this stage is to increase the high-frequency components 
of the human voice that are suppressed during speech 
production. The used pre-emphasis filter is given by the 
following transfer function: 

  

After that, the signal is blocked into frames of N samples 
with a frame overlap of M samples. Typical values are 30ms 
frame width and 10ms overlap. The proposed algorithm uses a 
32ms frame, but the optimal overlap between frames is 
determined through testing. 

To minimize discontinuities between frames, a windowing 
function is applied to each frame. We use the Hamming 
window in this work: 

  

After applying the windowing function, each frame is 
converted from time domain into frequency domain using the 
DFFT algorithm. The power of the spectrum obtained in the 
last step is mapped on the Mel-scale using a filter bank. The 
algorithm uses a filter bank of 40 equal area filters (see Error! 
Reference source not found.), implemented by Slaney in [5]. 
It covers the frequency range of 133 – 6854 Hz and it consists 
of: 

• 13 linearly spaced filters, range 100 – 1000 Hz, with a 
step of 133.33 Hz 
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• 27 logarithmically spaced filters, range 1071 – 6854 Hz, 
with a logarithmic step of 1.0711703 

 

Fig. 4. MFCC filter bank 

In the final step, the logarithmic Mel-spectrum is converted 
back into time domain using the discrete cosine transformation 
(DCT). 

The proposed algorithm uses a feature vector of 64 
components, made up of the first 32 MFCCs and their 
corresponding DMFCCs, in order to add dynamic information 
for static Cepstral features. 

B. Speaker modeling  

For the speaker model, we use Kohonen neural networks or 
Self-Organizing Maps (SOMs), so for each of the speakers we 
train an 8x8 SOM, using the 64 components feature vectors. 

Self-Organizing Maps provide a way of representing 
multidimensional data in much lower dimensional spaces - 
usually one or two dimensions. They consist of components 
called nodes or neurons, arranged in 1D, 2D, usually hexagonal 
or rectangular grid, or higher order (not common) structures. 
Each node has a weight vector associated with it and a specific 
topological position in the output map space; the dimension of 
the weight matches the dimension of the data input vector. 
Distances between neurons are calculated from their positions 
with a distance function. 

 

Fig. 5. SOM architecture 

The main advantage of using Self-Organizing Maps is that 
they preserve the topological properties of the input space. 

Being a neural network, a SOM needs to be trained. The 
training is unsupervised and it uses a competitive learning 
algorithm. At each training step, an input vector is chosen and 
fed to the network. Using a distance function, a “winning” 
neuron is identified, and then the weights of the “winning” 
neuron and its neighbours are updated. Thus, the “winning” 
neuron and its close neighbours move towards the input vector. 
The training stage ends after a predefined number of epochs. 

The proposed algorithm associates each speaker an 8x8 
hexagonal SOM with 64 inputs. As distance function we use 
“linkdist”, the number of training epochs is set at 500. 

 

IV. CASE STUDY 
In the following section, we are going to determine the 

optimal frame step for MFCC extraction algorithm, identify a 
robust metric for computing the similarity between the 
unknown test speaker and the speaker models from the 
database and test the proposed algorithm for different type of 
noise and SNRs. 

The database used in this work is The CHAINS corpus [6]. 
It contains 36 speakers, with 2 recordings for each speaker. The 
different recording sessions are about two months apart and 
present different speaking styles. For our algorithm, we train 
the SOMs using the solo reading recordings, where subjects 
simply read a prepared text at a comfortable rate. The testing of 
the system is done using the retell recordings, where, after 
reading the Cinderella fable in the solo condition, subjects were 
asked to retell the story in their own words. The sound files are 
down-sampled from 44.1 kHz to 8 kHz, 16 bit mono PCM. 

A. Determining the optimal frame rate 
In order to compare two Self-Organizing Maps, a 

performance index must be defined. In this work, we are using 
the mean quantization error of the SOM as performance index. 
One of the goals of a SOM is to quantize the input values into a 
finite number of centroids or output vectors. The quantization 
error is defined as the distance between an input vector  and 
its nearest centroid. The sum of the quantization error over the 
input data represents the network distortion: 

  

As mentioned earlier, we are using the mean value of the 
distortion as performance index for the speaker model:  

  

Where: N represents the number of input vectors, d a 
distance function. 

To determine the optimal frame rate, we will generate 
speaker models using several frame overlaps (12.5 ms, 10 ms, 
8 ms, 6 ms, 5 ms, 4 ms and 3 ms) and, afterwards, compute for 
each of the models, the mean quantization error for the training 
data. The SOM performance index is computed using the 
following metrics: Euclidean distance, Cityblock distance, 
Chebychev distance and Spearman distance. 
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Given a data matrix , treated as  row 

vectors , and a data matrix , 

treated as  row vectors, the distance between the 

vectors  and  is defined as: 

• Euclidean distance 

  

• Cityblock distance  

  

• Chebychev distance  

  

• Spearman distance 

  

Where: 

 is the rank of  take over  

 is the rank of  take over  

  

  

The evolution of the average quantization error for each of 
the speaker models is presented in figures 6 to 9. By analysing 
them, we can observe that increasing the frame rate (decreasing 
the frame overlap), the quantization errors for each metric 
functions decreases. But with the increase of the frame rate, the 
number of MFCCs also increases, thus the system’s processing 
time is affected. In order to determine an optimal frame rate, 
we must define an optimization criterion.  

We propose the following optimization criterion: 

  

Where:  represents the variation (in %) of performance 

index defined in (4);  the variation (in %) of MFCCs due to 
frame rate increase 
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Fig. 6. Quantization error using Euclidian distance 
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Fig. 7. Quantization error using Cityblock distance 
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Fig. 8. Quantization error using Chebychev distance 
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Fig. 9. Quantization error using Spearman distance 
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The mean quantization error for each speaker model, as can 
be seen from the previously figures, decreases with the frame 
rate (for higher frame rates we have a lower quantization error). 
This fact can also be observed from figure 10, where the 
evolution of the mean performance index, for all the speaker 
models, is shown. 
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Fig. 10. Optimisation criteria vs. frame rate 

From figure 11, which illustrates the evolution of the 
optimization criterion in relation to the frame rate, we can 
conclude that the optimal frame rate for extracting the MFCCs 
is 200 fps (frame overlap of 5ms). The Spearman metric 
presents a maximum when the frame rate is 200 fps; all the 
other metrics wave a downward trend, the performance 
increases slower than the number of Mel-Frequency Cepstral 
Coefficients. 
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Fig. 11. Optimization criterion evolution 

B. Noise robust metric identification 

To determine a noise robust metric, we test the speaker 
models with a noise corrupt version of the training data. 
Because the CHAINS corpus database is recorded in a sound-
proof booth (no noise is present), we have manually altered the 
training recordings by adding Gaussian white noise with 
different SNRs (40 dB, 35 dB, 30 dB, 25 dB, 20 dB, 15 dB, 10 
dB, 5 dB and 0 dB). In these tests we use a frame width of 
32ms and a frame overlap of 5ms, as determined in section A. 

By analysing the system outputs, figure 12 (blue represents 
lower values - red higher values) for the case where the input 
data is without noise, we can observe that the minimum values 
for the mean quantization error are obtained when the speech 

data and the speaker model are from the same person (the 
minimum values are on the minor diagonal), thus we have a 
recognition rate of 100 %. 
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(a) Euclidian norm  (b) Cityblock norm 
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(c) Chebychev norm (d) Spearman norm 

Fig. 12. Systems mean quantization error no noise 

By adding noise, the minimum values for the performance 
index no longer appear on the minor diagonal (where the 
speaker model and speech sample correspond to the same 
person), as can be seen from figure 13 where we have the 
system outputs for a SNR of 20 dB, and so the identification 
rate decreases. 
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(a) Euclidian norm  (b) Cityblock norm 
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(c) Chebychev norm   (d) Spearman norm 

Fig. 13. Systems mean quantization error SNR 20 dB 

By analyzing figure 12(a – d) and figure 13(a – d) we can 
establish that one of the four norms that are used to compute 
the performance index, is less influenced by the noise. When 
the mean quantization error is computed using the Spearman 
metric as a distance function, the systems present roughly the 
same distribution of the output values for the two presented 
cases (no noise figure 12 (d), 20db SNR figure 13 (d)). 

The identification rate for a SNR of 20 dB is 97% when 
Spearman metric is used; for the other metrics the rate is below 
50%. 
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Figure 14 shows the evolution of the identification rate, for 
all the four metric functions, in relation to the SNR value. It 
can be easily seen that:  

• the performance of the system, when the Chebychev 
metric is used, it is heavily influenced by the Gaussian 
white noise 

• using the Cityblock metric, the system outperforms the 
case when the performance index is computed using the 
Euclidian metric 

• the Spearman metric is the least affected by noise. 
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Fig. 14. Identification rate vs. SNR using training data as input 

C. System validation 
We evaluate the system performance using the retell 

recordings of the CHAINS corpus database and different noise 
sources (Gaussian white noise, airport noise, restaurant noise 
and street noise) with multiple SNRs. The Mel-Frequency 
Cepstral Coefficients are extracted using a frame width of 
32ms and a frame overlap of 5ms (section A). The quantization 
error is computed using the Spearman metric as distance 
function.  

As benchmark, to compare the degradation of the systems 
performance with noise, we determine the systems mean 
quantization error using the retell speech files without noise 
corruption. Afterwards, the input files are mixed with different 
noise sources using multiple signal to noise ratios. All the files 
are down-sampled to 8000 Hz, near telephone line quality. 
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Fig. 15. Mean quantization error for retell recordings (without noise) 

Looking at figures 15 and 12 (d), we see that the systems 
quantization error is nearly the same in the two cases (input 
data retell sound files and solo reading sound files). 
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Fig. 16. Identification rate vs. SNR using retells recordings 

Figure 16 shows the evolution of the systems identification 
rate for different types of noise sources and signal to noise 
ratios. We can see that the system presents a 100% 
identification rate, even for a SNR value of 25 dB and for all 
types of noise sources. The system is influenced more by the 
Gaussian white noise, the identification rate drops at 85% at 
SNR of 20 dB and the performance decrease is more rapid for 
this type of noise.  In the other cases, the system presents an 
identification rate of 100% until a SNR of 15dB … 10 dB. The 
highest rate at 0 dB SNR is nearly 65%, using street noise as 
corruption source; the lowest value is 15%, when using GWN. 
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(a) airport noise  (b) restaurant noise 
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(c) street noise  (d) street noise 
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Fig. 17. System mean quantization error using retell sound files and SNR 20 
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Fig. 18. Influence of noise on the mean Spearman distance between the 

speaker model and corresponding test data 

According to (8), the Spearman distance is one minus the 
sample Spearman's rank correlation between observations, 
treated as sequences of values. The rank correlation coefficient 
is between -1 and 1: 

• −1 if the correlation between the two rankings is 
perfect; one ranking is the reverse of the other. 

• 0 if the rankings are completely independent. 

• 1 if the correlation between the two rankings is perfect; 
the two rankings are the same 

An increased rank correlation coefficient implies a high 
correlation between the rankings of the two observations. The 
two observations, the speaker model and the speech feature 
vectors, have similar shapes. 

V. CONCLUSIONS 
Mel-Frequency Cepstral Coefficients (MFCCs) are the 

most popular speech features, used in speaker identification 
algorithms, but they are not very robust with noise. The 
degradation of the MFCC values, due to noise, implies the 
degradation of the system performance.  

Using the Spearman distance, in order to compute the mean 
distortion between the known speaker models and the unknown 
speech input data, the systems identification rate is less 
influenced by noise. This is due to the fact that the Spearman 
distance is computed on the ranks of the vectors, not their 
values. 

For a low SNR (15 dB … 0 dB), the mean distance is 
greater than 0.5, which indicates a moderate correlation 
between the input data (speaker retell recording) and the 
speaker model. 

Analysing the above-mentioned results, we can conclude 
that the system presented in this work is noise robust and has a 
high identification rate.  

When the input data corruption is performed using real 
noise sources (like airport, restaurant and street noise), the 
system outperforms those presented in [1] and [3]. 

Depending on the noise source and SNR value, the system 
presents an identification rate greater than 80% (SNR greater 
than 10dB). The identification drops to 20%, when the speech 
is corrupted using airport noise with SNR value of 0 dB. 
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