
Specialization in Swarm Robotics using Local 

Interactions 

 
Kazuaki Yamada 

Department of Mechanical Engineering 

Toyo University 

Saitama, Japan 

  
Abstract— This paper proposes the use of a novel response 

threshold model to implement autonomous specialization in 

swarm robotics. The response threshold model mimics the 

sensitivity of ants to external stimuli. An ant can specialize either 

as a worker or as a non-worker. This specialization is conducted 

autonomously, using the different sensitivity of different ants to 

external stimuli. The conventional response threshold model has 

used the ratio of workers in the colony as an external stimulus. 

However, individual agents cannot know the overall ratio because 

only local communication through pheromones is available. In 

contrast, the proposed response threshold model used the ratio of 

workers that an agent touched in a short term as the external 

stimulus. We investigated the efficiency of the proposed response 

threshold model through simulations of ant foraging behavior 

and verified that it allowed agents to effectively collect food by 

statistically adjusting the worker to non-worker ratio. 

Keywords— Swarm robotics, Social insects, Specialization, 

Response threshold model, Foraging problem 

I.  INTRODUCTION 

Multi-robot systems coordinate the actions of many 
autonomous robots, forming orderly systems through 
interactions between nearby robots, and can complete tasks that 
are difficult for a single robot to achieve. Multi-robot systems 
are also potentially robust against changes in their environment. 
However, the dynamics of multi-robot systems are complex, 
requiring interactions between many autonomous agents, and 
pre-programming of the appropriate action rules has proved 
challenging. Promising approaches include multi-agent 
reinforcement learning, evolutionary robotics, and swarm 
robotics [1-3]. Multi-agent reinforcement learning and 
evolutionary robotics address robot control using algorithms 
such as reinforcement learning and evolutionary computation, 
without the pre-programming of a controller with detailed rules. 
These approaches allow for discovery of design solutions that 
exceed the expectations of the designers [4,5]. However, they 
require appropriate evaluation functions to be designed for each 
problem, and therefore, they still depend on the skills of the 
designers. Swarm robotics, in contrast, is an approach that 
applies the mechanisms of social insects, such as ants and bees, 
to engineering problems. For example, the mechanisms of the 
foraging behavior of ants and bees have been applied to the 
optimization method [6-10] and have demonstrated their 
usefulness in traveling problems like the traveling salesman 
problem. 

Many studies in swarm robotics have applied the 
mechanisms of ant systems to engineering technologies 
[11,12]. Ants sustain large colonies using a social system that 
assigns different roles by social class [13]. The ant's perception 

functions and action rules are limited, and communication 
between them can only be conducted through chemical signals. 
The queen ant cannot monitor everything happened in a colony, 
and cannot give instructions to each ant directly. Yet, ants 
successfully allocate different roles, such as a care of larvae, 
colony protection, exploration for food, and foraging, without 
any centralized management system [14]. This division of labor 
allows for the adaptation of the colony to changing 
circumstances. For example, a colony needs to increase the 
number of ants exploring for new food sources when food 
becomes scarce and to increase the number of ants collecting 
food once a new source has been discovered. Rather than 
allocating roles in a top-down manner, ants assign roles strictly 
through local communication using pheromones. Bonabeau et 
al. [15] have modeled this autonomous specialization using a 
response threshold model. The response threshold model is an 
equation that describes the sensitivity of ants to pheromones. It 
is known that there are two types of ants [16]: one with high 
sensitivity to pheromones and the other with low sensitivity. 
The different sensitivities are thought to contribute to an 
autonomous specialization. However, the conventional model 
used the ratio of workers in an ant colony as the external 
stimulus, ignoring the crucial factor that social insects can 
assign roles through local communication. 

This paper proposes a new response threshold model that 
uses the ratio of workers as an external stimulus. We apply the 
proposed model to an ant foraging problem and show that the 
model can successfully mimic the assignment of roles in an ant 
colony by switching between the exploring and foraging 
behaviors. We show how ants assign roles strictly through local 
communication. 

This paper is organized as follows. Section 2 explains how 
to model an ant foraging problem. Section 3 shows the new 
response threshold model. Section 4 demonstrates the 
efficiency of the proposed method through simulation. 
Conclusions and future work are discussed in Section 5. 

II. FORAGING PROBLEM 

This section models the ant foraging problem as a multi-
agent simulation following previous studies [17-20]. In this 
model, an ant is modeled as an agent. An agent has the 
following three functions: 

 Exploring behavior/foraging behavior 
An agent performs either an exploring behavior or a foraging 
behavior. When an agent discovers food, the agent performs a 
foraging behavior and carries the food to a nest. Otherwise, the 
agent explores for food. 
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 Homing pheromone/trail-marking pheromone 
An agent has homing and trail-marking pheromones. The 
agent lays homing pheromone while exploring for food, 
and trail-marking pheromone while carrying food back to 
the nest. Both pheromones are volatile substances and 
quickly diffuse and evaporate. 

 Worker/non-worker 
An agent can either be a worker or a non-worker. While 
exploring, an agent can perceive trail-marking pheromones 
if it is a worker but not if it is a non-worker. While carrying 
food, the agent can perceive homing pheromones in both 
worker and non-worker rules. 

TABLE 1.  RELATIONSHIP AMONG BEHAVIORS, PHEROMONES, 
AND WORKER/NON-WORKER. 

 worker non-worker 

exploring 

behavior 

Able to perceive the trail-

marking pheromone 

not able to perceive the 

trail-marking pheromone 

laying the homing pheromone 

foraging 

behavior 

able to perceive the homing pheromone 

laying the trail-marking pheromone 

TABLE 2.  THE RELATIONSHIP BETWEEN WORKER/NON-WORKER AND 

BEHAVIOR RULES. 

 

 
worker non-worker 

exploring 
behavior 

Rule 1 → Rule 2 Rule 2 

foraging 

behavior 
Rule 3 → Rule2 

 

Table 1 shows the relationship among exploring 
behavior/foraging behavior, worker/non-worker, and homing 
pheromone/trail-marking pheromone. Next, we describe the 
modeling of perception and action. As shown in Fig. 1, an 
agent can perceive the pheromone level in three adjacent cells 
and can select one of three action rules before moving to the 
next cell. The three action rules are as follows: 

(1) Pheromone trail 
An agent moves forward when it detects pheromone on the 
front cell (Fig. 1(a)). When the agent detects pheromones 
on the right front and the left front cell, it moves to the cell 
with highest pheromone level  (Fig. 1(b)). 

(2) 𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜉 Random walk 
When an agent can perceive no pheromones, it randomly 
selects one cell from three cells and moves to that cell. 

(3) Turn around 
When an agent cannot perceive a colony ahead, the agent 
turns through 180°. 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜉 An agent can perform an exploring 
behavior or a foraging behavior by changing the combination 
of rules (Table 2). During the exploring behavior, an agent 
moves according to Rule 1 if it is a worker and can detect the 
trail-marking pheromone, but an agent moves randomly 
according to Rule 2 if it is a non-worker. During the foraging 
behavior, both worker and non-worker agents follow Rule 3. 
If an agent detects a homing pheromone, it moves according to 

Rule 1. If it detects no homing pheromone, it moves according 
to Rule 2. 

III. RESPONSE THRESHOLD MODEL 

This section describes the proposed response threshold 
model, which uses the state of neighborhood agents as external 
stimuli. First, we explain the role that a response threshold 
model plays in autonomous specialization and introduce a 
conventional response threshold model. Next, we describe the 
proposed response threshold model. It is known that there are 
two types of ants: those sensitive to external stimuli and those 
insensitive to external stimuli. Sensitivity to external stimuli 
can be modeled using a parameter called a response threshold. 
An agent with a low response threshold becomes a worker with 
high probability even if external stimuli are weak, whereas an 
agent with a high response threshold does not become a worker 
even if external stimuli are strong. Thus, a response threshold 
can prevent outcomes in which all agents are workers or all 
agents are non-workers. In a conventional response threshold 
model, an agent changes from a worker to a non-worker with 
probability p and changes from a non-worker to a worker with 
a probability described by the following equation: 

𝑞 =
𝑠(𝑡)2

𝑠(𝑡)2 + 𝜃(𝑡)2
 

where θ and s show a response threshold and an external 
stimulus at time t, respectively. The response threshold is 
updated using (2-a) if the agent is a worker and using (2-b) if 
the agent is a non-worker. If the agent is a worker, the response 
threshold decreases and the sensitivity of the agent to external 
stimuli increases. If the agent is a non-worker, the response 
threshold increases and the sensitivity of the agent to external 
stimuli decreases. 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜉 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜓 

In the conventional model, a stimulus s is updated by the 
ratio of the number of workers n(t) to the total number of ants 
m(t) in an agent group, as in the following equation: 

  

𝑠(𝑡 + 𝑡) = 𝑠(𝑡) + 𝛿 − 𝛼
𝑛(𝑡)

𝑚(𝑡)
 

        
(a)                                                  (b) 

Fig. 1. Pheromone follow behavior rules. 

,                             (1) 

 .                        (2-b) 

           (2-a) 

         .                   (3) 
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However, ants cannot know the state of all other ants. The 
above equation cannot therefore represent that the mechanism 
by which ants are able to form orderly groups through local 
interactions. We therefor propose a novel equation as follows: 

𝑠(𝑡 + 1) = 𝛽
𝑁(𝑡)

𝑀(𝑡)
 

where N(t) is the number of foraging agents that an agent has 
touched during the η steps up to time t, and M(t) is the total 
number of agents that the agent has touched during the η steps 
up to time t. 

IV. SIMULATION 

We applied the proposed response threshold method to a 
foraging problem to investigate the effectiveness of the 
proposed model. The simulation results revealed the 
mechanisms that allow the appropriate ratio of workers to be 
maintained across fluctuations in food availability using only 
local information shared between adjacent agents. 

A. Simulation Setting 

As shown in Fig. 2, the experimental environment was a 
two dimensional grid space of 100×100 cells. The colony was 
placed at the center of the environment. In the initial state, food 
areas were randomly placed at two of the four corners. When 
the food in one area had been exhausted, the next food area was 
randomly placed in one of the corners. The two hundred agents 
were used in the simulation. A red cell showed a worker agent, 
and a blue cell showed a non-worker agent. When an agent 
touched food, it started to carry the food to the colony. A yellow 
cell contained a trail-marking pheromone. As the pheromone 
evaporated, and the level of the pheromone decreased, the color 
of the cell became lighter. The homing pheromone and the trail-
marking pheromone did not merge. Fig. 2 omits the homing 

pheromone for clarity. The initial pheromone level was set at 
five hundred, with the level reducing as the pheromones 
evaporated. The pheromones spread to an adjacent cell by 
diffusion, reducing by half in the process. If pheromones were 
already present in the cell when the diffusion took place, the 
strongest level of pheromone was selected. The simulation 
halted after 10000 steps. 

 In the response threshold model, the probability with which 
an agent changed from worker to non-worker was step at p = 
0.001. Both stimulus and response threshold ranged from 0 to 
1000. The initial response threshold was set at 500. The 
coefficients in (2) were ξ = 10.0 and ψ = 1.0. The coefficient in 
(4) were β = 1000. The number of steps across which an agent 
could retain a memory of touching another agent was set at 
η=10. 

 
Fig. 2. An ant system simulator. 

 
Fig. 3. The relationship between the ratio of workers and the quantity of 

obtained food. 

 

Fig. 4. The transition of the ratio of workers. 

 

Fig. 5. The relationship between the transition of the ratio of workers and 

the quantity of obtained food. 

,                            (4) 
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B. Simulation Results 

 Specialization using a response threshold model 
To determine the best ratio of workers, we fixed the ratio of 

workers before starting the experiment. Fig. 3 shows that agents 
obtained the most food when the ratio of workers was about 
60%. Fig. 4 shows the transition of the ratio of workers when 
agents changed roles by using the proposed response threshold 
model. The ratio of workers converged to approximately 60%, 
regardless of the initial ratio. Fig. 5 shows the transition in the 
ratio of workers and the quantity of food obtained. As can be 
seen, the ratio of workers decreased with the amount of food. 
The discovery of a new food area led to increases in both the 
food obtained and the ratio of workers. Using the proposed 
response threshold model, agents could adapt robustly to the 
fluctuation of food supplies, by switching roles. 

 Specialization process using the response threshold model 
In this section, we first explain the process by which an 

agent switched roles in the response threshold model. Fig. 6(a) 

shows the transition in the ratio of workers. Fig.6(b)，6(c), and 

6(d) show the strength of external stimuli, response thresholds, 
and the probability with which an agent switched roles, 
respectively. In Fig. 6(d), the red line shows the probability of 
switching from worker to non-worker, while the blue line 
shows the probability of switching from non-worker to worker. 
From Fig. 6(a) and 6(b), we can see that an agent received more 
external stimuli when the ratio of workers was high. In Fig. 
6(c), the agent became a non-worker after about 3500 steps, the 
response threshold increased, and the sensitivity of the agent to 
external stimuli decreased. Between about 3500 steps and 5800 
steps, the probability that an agent switched from non-worker 
to worker was zero (Fig. 6(d)). However, as shown in Fig. 6(b), 
the frequency with which an agent touched a worker increased 
at about 5800 steps. At this point, the probability that the agent 
switched from non-worker to worker was 50%. The probability 
of an agent switching from worker to non-worker was always p 
= 0.001. As shown in Fig. 6(d), the agent became a non-worker 
after about 6200 steps. We can see that an agent switched roles 
stochastically based on the ratio of neighboring workers that the 
agent touched. 

 Next, we explain how agents could assign roles 
appropriately, based on the short term ratio of workers touched, 
without requiring a centralized administrative system. Fig. 7 
shows the relationship between the ratio of workers in an agent 
group and the mean of the ratio of foraging agents that an agent 
touched during ten steps. We can see that there is a correlation 
between the two, suggesting that the agents could assign roles 
appropriately against the fluctuation of food supplies. 

 The influence of different parameters on autonomous 
specialization 
This section repots how the number of agents and the length 

of memory affect autonomous specialization. First, to 
investigate the effect of the number of agents, we modeled the 
transition of the ratio of workers when the number of agents 
was 80, 100, 120, 140, and 200 (Fig. 8), from an initial ratio of 
50%. We can see that the ratio of workers converged to about 
60% when the number of agents was 140 and 200. When the 
number of agents was smaller than 120, the fluctuations in the 
ratio became bigger. This suggests that agents could not assign 
roles appropriately when the number of agents because the 
frequency with which agents touched each other was too low. 

Next, we investigated how the number of agents and the 
length of memory affected autonomous specialization. Fig. 9 
shows the mean of the ratio of workers when changing the two 
parameters. In practice, we used the mean of the ratio of 
workers after 5000 steps as the analysis data because the 
fluctuation in the ratio of workers was large in the early steps. 
When the number of agents was over 180, agents successfully 
maintained the ratio of workers at about 60%. When the number 
of agents was 120 to 160, the ratio of workers decreased as the 
length of memory was shorter. When the number of agents was 

 
(a) The ratio of workers. 

 
(b) External stimulus s. 

 
(c) Response threshold θ. 

 
(d) Probability q. 

Fig. 6. The relationship between the ratio of workers and the quantity of 

obtained food. 
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120 and the length of memory was one, the ratio of agents 
decreased to about 50%. When the number of agents was less 
than 120, the ratio of agents decreased below 50% even if when 
the length of memory was extended. Population density was 
critical to the maintenance of an appropriate ratio of workers. 
This was because the increase in the number of times that 
agents touched neighboring workers was more significant than 
the shorter length of memory. When the population density was 
low, the agents could not maintain an appropriate ratio of 
workers. These results demonstrate that if the population 
density is sufficiently high, the proposed response threshold 
model is robust, regardless of the length of memory. 

V. CONCLUSIONS 
This paper proposed a novel response threshold model to 

implement autonomous specialization in swarm robotics. The 
response threshold model is the computational model that 
represents the sensitivity of social insects to pheromone 
signals. An ant with high sensitivity becomes a worker, even 
if external stimuli are low. Conversely, an ant with low 
sensitivity does not become a worker, even if external stimuli 
are high. The difference in sensitivity prevents outcomes 
wherein all ants are workers or all ans are non-workers. The 
conventional response threshold model uses the ratio of 
workers in the group as external stimuli. However, individual 
ants cannot know the overall ratio of workers in the colony 
because only local communication through pheromones is 
available. In contrast, the proposed response threshold model 
used the ratio of foraging agents that an agent touched in a 
short term as an external stimulus. 

Our simulations confirmed that, by using the proposed 
method, agents could maintain an appropriate ratio of workers 
and could collect food effectively. Based on the ratio of 
foraging agents that an agent touched in the short term, we 
analyzed the autonomous specialization process of an agent 
and revealed the mechanisms through which agents could 
assign roles adaptively during fluctuations in the food supply. 
We further investigated how the number of agents and the 
length of memory affect the autonomous specialization of 
agents, showing that the proposed method was robust against 
environmental changes, regardless of the length of memory. 

In future studies, we will investigate whether the proposed 
response threshold model can be adapted to fluctuations in the 
number of agents. We will also apply the proposed method to 
crowdsourcing [21], to investigate its efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. The relationship between the ratio of workers in the colony and 

the ratio of foraging agents that an agent touched during ten step. 

 
Fig. 8. The relationship between the ratio of workers and the number of 

agents. 

 

Fig. 9. The relationship between the ratio of workers and the length of 

memory. 
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