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ABSTRACT 
 

In this paper some exact, static spherically 

symmetric solution of Einstein’s field equations for the 

perfect fluid with equation of state p=a, where a[0,1] 

has been obtained taking suitable choice of g11 or g44 

(e.g. ke   or  nAre  ). Many previously known 

solutions are contained here in as a particular case. 

Various physical and geometrical properties have been 

also studied. 

Key words: Exact solution, Perfect fluid, Equation of 
state. Homogenous, Homaloidal. 

 
1. INTRODUCTION 
 

 Perfect fluid spheres with homogeneous density and isotopic 

pressure in general relativity were firstly considered by Schwarzschild 

[10] and the solutions of relativistic field equations were obtained. 

Tolman [16] developed a mathematical method for solving Einstein’s field 

equations applied to a static fluid sphere in such a manner as to provide 

explicit solutions in terms of known functions. A number of new 
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solutions were thus obtained and the properties of three of them were 

examined in detail. 

 No stationary inhomogeneous solutions to Einstein’s equation for 

an irrotational perfect fluid have featured equations of state. p= (Letelier 

[14], Letelier and Tabensky [15] and Singh and Yadav [23]). Solutions to 

Einsteins equation with a simple equation of state have been found in 

various cases, e.g. for +3p=constant (Whittaker [7]) for =3p (Klein [12], 

Singh and Abdussattar [11], Feinstein and Senovilla [1], Kramer [2]); for 

p=+constant (Buchdahl and Land [6], Alluntt [9]) and for 

app)a(  1 (Buchdahl [4]). But if one takes, e.g. polytropic fluid 

sphere nap

1
1

 (Klein [12], Tooper [18], Buchdahl [5]) or a mixture of 

ideal gas and radiation (Suhonen [3]), one soon has to use numerical 

methods. Yadav and Saini [20] have also studied the static fluid sphere 

with equation of state p= (i.e. stiff matter). Davidson [25] has presented 

a solution that provides a non stationary analog to the static case when 


3

1
p . 

 In the present paper, we have obtained some exact, static 

spherically symmetric solutions of Einstein’s field equations for the 

perfect fluid with equation of state p=a, where a [0,1]. We have also 

taken 1ke   in one case while nAre   in second case. For different 

values of a and n we get many previously known solutions. To overcome 
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the difficulty of infinite density at the centre, it is assumed that 

distribution has a core of radius ro and constant density o which is 

surrounded by the fluid with the specified equation of state. 

2. THE FIELD EQUATIONS AND THEIR SOLUTIONS 

 We take the line element in the form 

(2.1) 2222222 dte)dsind(rdreds    

where  and  are functions of r only. 

 The field equations 

(2.2) i

j

i

j

i

j T8R
2

1
R   

for (2.1) are [1] 

(2.3) 
22

1

1
r

1

r

1

r

'
eT8 











   

(2.4) 






 









 

r2

'

4

'

4

''

2

"
eT8T8

12
3

3

2

2  

(2.5) 
22

4

4
r

1

r

1

r

'
eT8 











   

where a prime denotes differentiation with respect to r. 

The energy momentum tensor for perfect fluid is given by 

(2.6)  .puu)b(T i

jj

ii

j   

 We choose the equation of state as 

(2.7) =ap 

where a is positive constant a[0,1] 

In this case we find that 
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 )ji(0T i

j   

We use commoving co-ordinate so that 

 0uuu 321   and 24 eu


  

The non-vanishing components of the energy momentum tensor are 

 pTTT 3

3

2

2

1

1   and 4

4T  

 We can then write 

(2.8)  
22 r

1

r

1

r

'
ep8 











  , 

(2.9) 






 









 

r2

'

4

'

4

''

2

"
ep8

12

, 

(2.10) 
22 r

1

r

1

r

'
e8 











   

Using equations (2.7), (2.8) and (2.10) we get 

(2.11) 
2222 r

1

r

1

r

'
e

r

a

r

1

r

'
ae 






















  . 

Case I 

We choose 1ke   (a constant) which reduces (2.11) to the form 

(2.12) 0
a

1
1)k1(

r

1
' 1 
















  

 Integrating w.r.t. r, we get 

(2.13) 










  a
)k(

rke

1
11

2

1

 

 where k2 is a constant. Now (2.8) and (2.9) lead to k1=2, so that 
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(2.14) 










  a

1
1

2rke  

 Hence the metric (2.1) can be cast into the form 

(2.15) 2a

1
1

2

222222 dtrk)dsind(rdr2ds










  

 Absorbing the constant k2 is the co-ordinate differential dt the 

metric (2.15) is reduced to the form. 

(2.16) 2a

1
1

222222 dtr)dsind(rdr2ds










  

 The non zero components of Reimann-Christoffel curvature tensor 

Rhijk for the metric (2.16) are 

(2.17) 














































2a

1
1

3434

1
a

1

23232

2424 sinr
a

1
1

4

1
Rr

a

1
1

2

R
sinR  

 Choosing the orthonormal tetrad 
i

j as 

(2.18) 
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



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
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
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




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


























a2

1a

i

4

i

3

i

2

i

1

r

1
,0,0,0

0,
sinr

1
,0,0

0,0,
r

1
,0

0,0,0,
2

1

  

 The physical components R(abcd) of the curvature tensor defined by 

 R(abcd) = hijk

k

)d(

j

)c(

i

)b(

h

)a( R  

are 
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(2.19) .
ar4

)1a(
RR

2

1a
R

2343423232424










 
  

 Since a is finite +ve constant, we see that  

  ras0R )abcd( . 

 Hence it follows that the space time is asymptotically homaloidal. 

For the metric (2.16) the fluid velocity ui is given by 

(2.20) a2

1a

4

a2

1a4321

321 ru,

r

1
uanduuu0uuu










 
 . 

 The scalar of expansion = i

i;u  is identically zero. The non 

vanishing components of the tensor of rotation ij is defined by 

(2.21) ij = ui;juj;i 

are 

(2.22) 14=41= 







 








  a2

a1

r
a2

1a
 

 The components of the shear tensor ij defined by  

(2.23) ij =   ij1;jj;i h
3

1
uu

2

1
  

 with the projection tensor 

(2.24) hij = gij uiuj 

are 

(2.25) 







 








 
 a2

a1

4114 r
a2

1a
.

2

1
. 

while other components are zero. 
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 For the particular values of constant a, several previously known 

solutions are contained here in. When a=1, results of this case reduce to 

that of Singh and Yadav [23]. Also in this case the relative mass m of a 

particle in the gravitational field of (2.16) is related to its proper mass mo 

(Narlikar [24]) through 

(2.26) 
2

2

o r

k

m

m
  

k being a constant.  As   the  particle  moves towards the origin, m 

increases and r, m 0 i.e. the relative mass goes on decreasing 

continuously. 

 The case when a=3 gives the distribution of disordered radiation 

already obtained by Singh and Abdussattar [11]. 

Case II 

 From (2.11) we see that if  is known,  can be obtained. So we 

choose 

(2.27) nAre   

where A is constant 

 Use of (2.27) reduces the equation (2.11) to the form 

(2.28) 1a)1r'aan(e  . 

 We put  ey so that equation (2.28) is transformed to 

(2.29) 
r

1a

r

y
)1aan(

dr

dy 
  

which is a linear differential equations whose solution is 
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(2.30) 
1aanr

E

1aan

1a
y







  

where E is integration constant. 

 Therefore we get 

(2.31) 
1aanr

E

1aan

1a
e



 



 . 

Consequently the metric (2.1) can be put into that form 

(2.32) )dsind(rdt
r

E

1aan

1a
dtArds 22222

1

1aan

2n2 

















 

 Absorbing the constant A in co-ordinate differential dt, the metric 

(2.32) goes to the form 

(2.33) )dsind(rdr
r

E

aan

a
dtrds

aan

n 22222

1

1

22

1

1



















 

 The non vanishing components of Reimann-Christoffel curvature 

tensor Rhijk for the metric (2.33) are 

















































 























































 
























































.
r

E

1aan

1a

2

sinnr
R

,
r

E

1aan

1a

2

nr
R

,
r

E

1aan

1a
sinrR

,

r

E

1aan

1a
r4

)1aan(nE

4

nn2
rR

,

.
r

E

1aan

1a
r2

sin)1aan(E
R

,

r.
r

E

1aan

1a
2

)1aan(E
R

1aan

2n

3434

1aan

n

2424

1aan

22

2323

1aan

)}3a()1a(n{

2
2n

1414

1aan

1aan

2

1313

1aan

1aan

1212

  

(2.34) 
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Choosing the orthonormal tetrad 
i

j  as  

(2.35)
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


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
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
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































































2

n

i

4

i

3

i

2

2
1

1aan

i

1

r

1
,0,0,0

0,
sinr

1
,0,0

0,0,
r

1
,0

0,0,0,
r

E

1aan

1a

 

 the physical components R(abcd) of the curvature tensor are 

 

















































































































.
r

E

1aan

1a

r2

n
R

,
r

E

1aan

1a

r2

n
R

,
r

E

1aan

1a

r

1
R

,
r4

)1aan(nE

r

E

1aan

1a

r4

nn2
R

,
.r2

E)1aan(
R

,
r2

E)1aan(
R

1aan23434

1aan22424

1aan22323

3)1n(a1aan2

2

1414

3aan1313

3aan1212

 

 We see that R(abcd)0 as r. It follows that the space-time is 

asymptotically homaloidal. 

 Also the metric (2.33) the fluid velocity ui is given by 

(2.37) 
2/n

42/n

4321

321

r

1
u,ruanduuu0uuu  . 

(2.36) 
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 The scalar of expansion = i

i;u  is identically zero. The non 

vanishing components of the tensor of rotation ij are 

(2.38) 14 =41 =
1

2

n

r
2

n 

  

The non zero components of the shear tensor ij are  

(2.39) 14 =41 =
1

2

n

r
2

n 

. 

3. SOLUTION FOR THE PERFECT FLUID CORE 

 Pressure and density for the metric (2.33) are 

(3.1) 
21aan2 r

1

r

E

1aan

1a

r

1n

a

8
p8 



















  

 It follows from (3.1) that the density of the distribution tends to 

infinity as r tends to zero. In order to get rid of the singularity at r=0 in 

the density we visualize that the distribution has a core of radius ro and 

constant density o. The field inside the core is given by Schwarzschild 

internal solution. 

(3.2) 






























































2/1

2

2

2

2

2

2
2

2

2

R

r
1BA

A
R

r
1B3

.
R

1
p8

R

r
1BAe,

R

r
1e

 

Where A  and B  are constants and 



8

3
R 2 . 
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The continuity conditions for the metric (2.33) and (3.2) at the boundary 

gives  

(3.3)
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
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and the density of the core 

(3.4) 


















 1aan2o
r

E

1aan

an

r8

3
. 

which complete the solution for the perfect fluid core of radius ro 

surrounded by considered fluid. The energy condition Tij Ui Uj >0 and the 

Hawking and Penrose condition (Hawking and Penrose, 1970). 

,0uuTg
2

1
T j

i

ijij 







  

both reduces to >0 which is obviously satisfied. 

For different values of a and n, solutions obtained above in case II 

provide many previously known solutions. For a=1, n=1, we get the 

results due to Yadav and Saini [20]. For n=2 and by suitable adjustment 

of constant we get the solution due to Singh and Yadav [23]. Also for a=3 
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and n=2 we get the solution due to Yadav and Purushottom [21] and 

Yadav et al [22] by suitable adjustment of constants. 

4. DISCUSSION 

In this paper the equation of state for the fluid has been taken as 

p=a which (for a=1) describes several important cases, e.g. relativistic 

degenerate Fermi gas and probably very dense baryon matter (Zeldovich 

and Novikov [26]; Walecka [8]). The casual limit for ideal gas has also 

form =p (Zeldovich and Novkove [26]). 

Furthermore, if the fluid satisfies the equation of state p= and if 

in addition its motion is irrotational, then such a source has the same 

stress energy tensor as that of a m assless scalar field (Tabensky and 

Taub [19]). Also the solution in this case can be transformed to the 

solution of Brans-Dicke Theory in vacuum. (Dicke [17]). 
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