
  

 

Abstract: – Adequate spinning reserve is a basic 

requirement for maintaining reliable electrical power 

supply. As the wind power industry expands, it is 

important that these facilities are integrated in the existing 

generating capacity planning and operating protocols and 

procedures. An accurate short term prediction of spinning 

reserve requirements help the Independent System 

Operator (ISO) to make effective and timely decisions in 

managing the compliance and reliability of the power 

system. In addition, they play an important role in 

enabling operators to effectively schedule and sell power 

into the electricity markets, balance output on a regional 

or national scale. The work presented in this paper makes 

use of local linear wavelet neural network (LLWNN) to 

find the spinning reserve requirements for a given period, 

with a certain confidence level.    

 
Index Terms:- Spinning reserve (SR) , Spinning reserve 

requirements (SRRs), Operating reserve (OR), 

Independent system operator (ISO), local linear wavelet 

neural network (LLWNN), Gradient descent, artificial 

neural network (ANN),  Weekly mean absolute percentage 

error (WMAPE). 

 

I. INTRODUCTION 

WIND power has seen rapid growth in the past 

decade. Its zero-cost fuel and emissions-free output 

provide great benefits to consumers and society.  

The integration of large shares of wind generation 

requires an increase in the amount of reserves that 

are needed to balance generation and load. Studies 

described in [1] and [2] showed that large scale 

integration of wind generation does not create 

problems in terms primary reserve levels. So, the 

analysis should be considered in terms of the 

spinning reserve management only. The methods 

employed by the ISOs to define operating reserve 

requirements are generally deterministic, as can be 

seen in the survey presented in [3] about reserve 

categorization that reviews the criteria used across 

eight electrical systems.  

If wind power generation is viewed as a negative 

load [4], the uncertainty on this generation increases 

the uncertainty on the net demand that must be met 

by traditional forms of generation. This increased 

uncertainty must be taken into account when the 

requirement of spinning reserve is determined, since 

SR is intended to protect the system against 

unforeseen events such as generation outages, 

sudden load changes or a combination of both. 

Therefore one might expect that the integration of 

wind power might require a significant increase in 

the requirement of spinning reserve. Several ISOs 

have adopted deterministic criteria to access SR 

requirements. According to their operating rules, the 

operating reserve should be equal to the capacity of 

the largest on line generator plus a fraction of the 

peak load [5]. The operating reserve is made up of 

the spinning reserve or synchronous reserve as well 

as non-spinning reserve or supplemental reserve. 

The spinning reserve is the extra generating capacity 

that is available by increasing the power output of 

generators that are already connected to the power 

system. The non-spinning reserve is the extra 

generating capacity connected to the system but can 

be brought on line after a short delay. 

Determining the optimal amount of spinning 

reserve that must be provided as a function of the 

system conditions is thus an important and timely 

issue. The optimal amount of spinning reserve is 

such that the cost of providing an extra MW of 

reserve is equal to the benefit that this MW 

provides, where this benefit is measured in terms of 

the reduction in the expected cost of interruptions. 

Ideally the energy and SR amounts and repartitions 

should be optimized simultaneously. The main 

difficulties in solving such a problem are the 

stochastic nature of the net demand due to the 

demand and wind forecast errors, and the fact that 

there is no discrete capacity outage probability 

distribution in the optimization procedure. The 

stochastic and highly combinatorial nature of the 

problem led some researchers to find alternative 

solutions to the problem. 

Spinning Reserve Requirements Forecasting Using Local 

Linear Wavelet Neural Network In Wind Integrated 

Power System 
 

Prasanta Kumar Pany                      S. P Ghoshal 

NIT, Durgapur, West Bengal,                  NIT, Durgapur, West Bengal, India                                                                                                       

India. 

  

 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org



  

The determination of spinning reserve 

requirements has been analyzed using many 

different methodologies and can differ significantly 

from study to study. Most wind power integration 

studies run hourly simulations of bulk power system 

operations for a particular study area. Two important 

objectives that often form part of these studies are 

the cost or savings of integrating addition wind 

power [6],[7]. Many of the studies recommend the 

use of incremental operating reserves, which will 

also affect the total costs.  

Several ISOs have adopted deterministic criteria 

to access the spinning reserve requirements. As per 

the deterministic criteria, the operating reserve 

requirement is equal to 5% of the load to be supplied 

by hydroelectric resources plus 7% of load to be 

supplied by generation from other sources, plus 

100% of any interrupting imports or the single 

largest contingency [8]. The deterministic criteria, 

however, do not reflect the uncertainty in the 

forecast load. Probabilistic methods [9, 10] have 

therefore been proposed to evaluate the SR 

requirements in a more constant way. If SR 

requirements forecast are based on historical SR 

requirements time series data itself, forecast 

accuracy may improve. However, SR requirements 

time series data exhibits non-linear and non-

stationary characteristics. Therefore stationary and 

non-stationary time series models, which are linear 

predictors, can not capture the behavior of SR 

requirement signal completely. To overcome this 

difficulty, artificial intelligence methods were 

proposed [11]. There are enormous numbers of 

statistical models available for this type of 

application. The most popular models for SR 

requirements forecasting are artificial-intelligence-

based models such as Neural Networks (NNs), 

Fuzzy-neural networks, which are the advanced 

forecasting methods. However, to the best of the 

authors‟ knowledge, a Local Linear Wavelet Neural 

Network (LLWNN) has not yet been tested for SR 

requirements forecasting. In this paper an LLWNN 

model which smoothly maps the input-output space 

by adapting the shape of wavelet basis function of 

hidden layer neurons according to training data set is 

examined for SR requirements prediction of the 

Ontario electricity market [12]. The proposed model 

does not require external decomposer/composer. So 

risk of loosing high frequency components of SR 

signal is averted. It is found that prediction of SR 

requirements based on LLWNN model gives good 

performance because of its favorable property of 

modeling the non-stationary high frequency signals 

such as SR. 

The rest of the paper is organized as follows: 

Section II describes main characteristics of the SR 

data. SR requirements forecasting using LLWNN 

model is described in section III. Training of 

LLWNN model by standard back propagation (BP) 

gradient descent algorithm is described in section 

IV. Section V describes the statistical measures used 

to evaluate the forecasting performance. Section VI 

presents results and discussions on SR requirements 

forecast of Ontario electricity market. Finally, 

section VII provides concluding remarks. 

 

II. SPINNING RESERVE-DATA ANALYSIS 

 

Traditionally the SR requirement is based on 

criteria that protect against the loss of the largest 

online in feed. Such deterministic criteria take into 

account neither the accuracy of the demand and 

wind power forecast, nor the probability of largest 

generator or interconnection outage. G. Danny [13] 

investigated and quantified the technical 

consequences of the penetration of wind power on 

the primary, secondary and tertiary reserves. He 

concluded that the SR requirements increase 

proportionally to the installed wind power capacity. 

S. Persaud et al [14] state that the SR requirements 

are inversely proportional to the net demand 

forecasting accuracy. As a consequence, when the 

wind-based power generation is integrated in the 

power system, larger amount of SR would be 

required to maintain the same level of security in the 

system. To develop an appropriate model for SR 

requirements forecasting, we examine the main 

characteristics of the hourly SR series in this Section. To 

illustrate the forecasting procedure, the spinning reserve 

(synchronous reserve) requirement of Ontario electricity 

market from 1st Jan. 2006 to 14th July 2006 is used for 

prediction.  

The spinning reserve requirement presents high 

volatility and non constant mean. The abrupt changes and 

volatility of SR requirements can be reflected as a switch 

in the SRRs series dynamics owing to the discrete 

behaviors in competitors‟ strategies. . 

 

If SR requirement at hour h (Rh) is to be forecasted, the 

SRRs information of previous hours up to „m‟ hours is 

mhhh RRR .....,2,1  should be taken as a part of the 

input of SRRs forecasting model. The auto co-relation 

function (ACF) can be used to identify the degree of 

association between data in the SRRs series separated by 

different time lags i.e. previous SRRs.  The historical 

hourly data of 7 days prior to the day whose SRRs to be 

predicted have been considered to build the forecasting 

model. Hence the total data points are equal to 7 x 24 = 

168. Since the proposed model uses SRRs data 7 hours 

ago to predict the SRRs ,hR   168-7 =161 input vectors 

are used to develop the forecast model. 
. The historical hourly SR data used to construct 

LLWNN model which would be employed to forecast the 

SR requirements for test weeks are shown in table 1.The 

MATLAB 7.6 high level language has been used to 

implement the LLWNN model. 
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III.SPINNING RESERVE REQUIREMENTS 

FORECASTING USING LLWNN 

 

 In stead of using multi layered neural networks and 

its several variants, a LLWNN is used for 

forecasting the next hour, next day and next week 

SRRs in a deregulated environment. 

In order to take the advantage of the local capacity 

of the wavelet basis functions while not having too 

many hidden layer units, the architecture of the 

LLWNN is proposed. The structure of an LLWNN 

model is shown in Fig. 1. 

 The LLWNN model has very good prediction 

properties. It is discrete and logical in nature. It can 

map input-output relations by simply learning 

historical samples. Connection weights are viewed 

as locally accurate piece wise constant models. It has 

higher convergence rate, easy estimating and 

adjusting model parameters and localized activation 

of the hidden layer units.  

The day-ahead hourly final SR requirements of 

Ontario grid for winter and summer seasons for the 

year 2006 are used in the case study. The historical 

data of day-ahead hourly SRR Ontario control grid 

of the 7 days previous to the day of the week whose 

SRRs are to be forecasted have been considered to 

build the forecasting model. After the one step ahead 

training, the next hour prediction is evaluated. 

Multiple steps ahead are reached via recursion i.e. 

by feeding input variables with model‟s outputs. The 

next hour forecasts are performed for every hour of 

the day. The model is retrained at the end of each 

day to incorporate the most recent information. The 

concatenation of 7 days training windows, for a 

particular day, is shifted one day-ahead and forecasts 

for the next 24 hours are computed. The 

performance of LLWNN model is demonstrated by 

using 2
nd

 week of winter and summer as test weeks. 

   
According to wavelet transformation theory, wavelet in 

the following form is a family of functions generated from 

one single function ψ(x) by the operation of dilation and 

translation. Ψ(x) which is localized in both time space and 

the frequency space is called a mother wavelet. 
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The parameters ia  and ib  are the scale and translation 

parameters, respectively. According to the previous 

researches, the two parameters can either be 

predetermined based on wavelet transformation theory or 

be determined by a training algorithm. 

In the standard form of wavelet neural network, the output 

of a WNN is given by 
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  The above wavelet neural network is a kind of basis 

function neural network in the sense of that the wavelets 

consists of the basis function. An intrinsic feature of the 

basis function networks is the localized activation of the 

hidden layer units, so that the connection weights 

associated with the units can be viewed as locally accurate 

piecewise constant models whose validity for a given 

input is indicated by the activation functions. Compared 

to the multilayer perceptron neural network, this local 

capacity provides some advantages such as the learning 

efficiency and the structure transparency. However, the 

problem of basis function networks is also led by it. Due 

to the crudeness of the local approximation, a large 

number of basis function units have to be employed to 

approximate a given system. A shortcoming of the wavelet 

neural network is that for higher dimensional problems 

many hidden layer units are needed. 

In order to take advantage of the local capacity of the 

wavelet basis functions while not having too many hidden 

units, LLWNN has been used as an alternative neural 

network. 

 

 The difference of a local linear wavelet neural network 

(LLWNN) with conventional wavelet neural network 

(WNN) is that the connection weights between the hidden 

layer and output layer of conventional WNN are replaced 

by a local linear model[15]. The output of LLWNN is 

given by 

 
m

i

ininii xxwxwwY
1

110 )().......(      (3)                 

   

Where, instead of the straight forward weight wi 

(piecewise constant model), a linear model    

niniii xwxwwv ..........110 is introduced. 

The activities of the linear models iv (i=1,2,--------n) are 

determined by the associated  locally active wavelet 

functions ψi(x) (i= 1,2,-------,n), thus iv  is only locally 

significant.  

The architecture of the   proposed model is shown in Fig.-

1.  
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 Fig.1. General Structure of a local linear wavelet neural network. 

                 

 

In this paper, the used mother wavelet is as follows: 
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IV. TRAINING ALGORITHM 

 

A neural learning algorithm to get all the unknown 

parameters of network i.e. translation and dilation 

coefficients, weights may be used for supervised 

training of an LLWNN. Since the function computed 

by the LLWNN model is differentiable with respect 

all the mentioned unknown parameters, a standard 

back propagation (BP) gradient descent training 

algorithm can be used for updating weights, dilation 

and translation parameters which are randomly 

initialized at beginning.  

It is possible to over fit the training data if the 

training session is not stopped at the right point. The 

unset of the over fitting can be detected through 

cross validation in which the available data set are 

divided in to training, validation and testing subsets. 

The training set is used to compute the gradients and 

update all the unknown parameters of the networks. 

The error on the validation set is monitored during 

the training session. In this work, the standard BP 

gradient descent training algorithm has been adopted 

and training is based on minimization of the cost 

function (E), given as: 
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Where D= desired output 

The parameter learning   based on BP gradient 

descent is performed as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 Layer weights (w) updation: 
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Where eta is the learning rate parameter and „e‟is the 

average error. 

  )()()1( 111111 xeRkwkw  and so on. 

 

Dilation parameter (sigma) and translation 

parameter (c)   updation: 
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V. ACCURACY MEASURES 

To asses the prediction capacity of the LLWNN 

model, in addition to root mean square error 

(RMSE), mean absolute percentage errors (MAPEs) 

are computed as follows. 

N
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2
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               (14) 

 

 The absolute error (AE) is defined as  
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tf

t
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,
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  Where      Ra,t =Actual ORRs 

 

                    Rf,t =Forecasted ORRs 

 

The daily mean absolute error (DMAE) can be 

computed as follows. 

DMAE = 

24

124

1

t

tAE           (16) 

The daily mean absolute percentage error 

(DMAPE) =  

24

124

100

t

tAE              (17) 

The weekly mean absolute error  

(WMAE) = 

168

1168

1

t

tAE                (18) 

And 

The weekly mean absolute percentage error 

              (WMAPE) = 

168

1168

100

t

tAE                (19) 

To avoid the adverse effect of hourly SRRs close/equal to 

zero, the mean absolute percentage error (MAPE) can be 

redefined as mean error (M.E). So the denominator of 

right hand side of (15) is replaced by average SRRs. 
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              VI. RESULTS & ANALYSIS 

 

The effectiveness of the LLWNN model is 

demonstrated on SRRs prediction in Ontario 

electricity market for the year 2006. The forecasted 

SRRs obtained with proposed model during winter 

and summer test weeks with actual SRRs and errors 

are shown in Fig. 3.and Fig.5. respectively. It can be 

seen from Fig. 3 and Fig.5. that the predicted SRRs 

of the week are quite close to the actual one. 

  The relative errors for the test weeks are presented 

in table 2 and 3 respectively. These results in uneven 

accuracy distribution throughout the week that 

reflects reality. 

It is observed that WMAPE values of LLWNN 

model for the winter test week and summer test 

week are 2.8134 and 2.0478 respectively. Therefore 

accuracy is reasonable enough with a weekly mean 

absolute percentage error of less than 3.  
For comparison purposes, the weekly MAPEs of the 

spinning reserve forecast, using ANN approach which 

been included in MASCEM [16], ANN, Adaptive 

Wavelet Neural Network (AWNN) [17] are also presented 

in table-4. MASCEM is a multi-agent based electricity 

market simulator that uses sophisticated Artificial 

Intelligence based techniques for players modeling and 

decision support [16]. 

      

      

 

 
                             TABLE 1 

 

HOURLY SRR DATA FOR FORECASTING MODEL 

CONSTRUCTION AND TESTING. 

 

 

Sl.No. season Historical 

hourly 

SRRs data 

Test weeks 

01 Winter Jan.1-Jan7 Jan 8-Jan14 

02 Summer July1-

July7 

July8-July 14 

 

                                                                                           

 

 
TABLE -2 

 RESULTS OBTAINED BY PROPOSED MODEL FOR 24 

HOURS OF WINTER TRAINING AND TEST WEEKS. 

 
FOR TRAINING DATA SET       FOR TEST DATA SET 

                                        

(1st day)                               (1st day) 

Predicted 

hourly 

SRR  

Hourly  

Error  

Predicted 

hourly  

SRR 

Hourly   

Error 

0.7080 

0.6897 

0.6989 

0.7056 

0.6903 

0.6909 

0.6726 

0.6688 

0.6785 

0.6894 

0.6900 

0.6649 

-0.0137 

0.0077 

0.0005 

-0.0078 

0.0028 

-0.0011 

0.0151 

0.0192 

0.0137 

0.0051 

-0.0096 

0.0130 

0.7119 

0.7050 

0.7026 

0.7148 

0.7062 

0.6929 

0.6891 

0.6670 

0.6749 

0.6925 

0.6739 

0.6708 

-0.0232 

-0.0118 

-0.0051 

-0.0127 

-0.0123 

-0.0004 

-0.0004 

0.0262 

0.0326 

0.0157 

0.0245 

0.0276 
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0.6854 

0.7292 

0.6851 

0.6124 

0.5883 

0.5477 

0.5391 

0.5297 

0.5248 

0.5472 

0.5991 

0.6718 

 

0.0189 

-0.0247 

-0.0315 

-0.0080 

-0.0195 

0.0013 

-0.0013 

0.0110 

0.0124 

0.0156 

0.0191 

-0.0206 

    

 

0.6815 

0.6986 

0.6782 

0.6101 

0.5862 

0.5486 

0.5425 

0.5345 

0.5261 

0.5455 

0.5821 

0.6694 

0.0331 

0.0124 

-0.0195 

-0.0032 

-0.0212 

-0.0017 

-0.0044 

- 0.0010 

0.0064 

0.0029 

0.0284 

0.0113 

 
TABLE -3 

 RESULTS OBTAINED BY PROPOSED MODEL FOR 24 

HOURS OF SUMMER TRAINING AND TEST WEEKS. 

 
FOR TRAINING DATA SET       FOR TEST DATA SET 

                                        

(1st day)                               (1st day) 

Predicted 

hourly 

SRR  

Hourly  

Error  

Predicted 

hourly  

SRR 

Hourly   

Error 

0.7102 

0.6951 

0.6979 

0.7041 

0.6909 

0.6824 

0.6803 

0.6782 

0.6810 

0.6890 

0.6893 

0.6624 

0.6777 

0.7258 

0.6901 

0.6062 

0.5808 

0.5511 

0.5343 

0.5300 

0.5384 

0.5513 

0.5922 

0.6604 

 

-0.0162 

0.0023 

0.0015 

-0.0063 

0.0022 

0.0075 

0.0074 

0.0098 

0.0112 

0.0055 

-0.0090 

0.0155 

0.0267 

-0.0213 

-0.0364 

-0.0017 

-0.0120 

-0.0021 

0.0034 

0.0040 

-0.0027 

-0.0120 

-0.0021 

0.0034 

 

 

0.7007 

0.7520 

0.7393 

0.7559 

0.7603 

0.7609 

0.7514 

0.7534 

0.7519 

0.7639 

0.8015 

0.8457 

0.8052 

0.7929 

0.7854 

0.7438 

0.6872 

0.6276 

0.6129 

0.5947 

0.5614 

0.5728 

0.5757 

0.6185 

0.0268 

-0.0061 

0.0144 

0.0015 

0.0008 

-0.0034 

0.0054 

0.0030 

0.0117 

0.0253 

0.0276 

-0.0199 

0.0005 

-0.0068 

-0.0290 

-0.0332 

-0.0306 

-0.0014 

-0.0026 

-0.0064 

0.0191 

0.0050 

0.0259 

0.0415 

 

                      TABLE-4 
       WMAPE COMPARATIVE RESULTS 

 
MODELS ANN AWNN ANN 

(MASCEM) 

With load 

ANN 

(MASCEM) 

Without 

load 

Proposed 

model 

WMAPE 4.106 3.710 3.674 3.729 2.0478 

 

 

Table 2 &3 provide the predicated hourly SRRs in 

terms of maximum SRRs (2574MW) along with 

hourly error for 1
st
 day of the test week and month. 

.We believe, these results are reasonably accurate 

for a study spanning of one week and month. Very 

less training time(less than 2seconds) shows the 

higher convergence rate of LLWNN model to 

predict the SRRs with higher accuracy. A LLWNN 

performs satisfactory, because both smooth global 

and sharp local variations of SRRs signal can be 

effectively represented by the wavelet basis 

activation function for hidden layer neurons without 

any external decomposer / composer and also not 

having too many hidden units. 

 

  VII. CONCLUSION 

In this paper, SRRs forecasting by using a local 

linear wavelet neural Network (LLWNN) model is 

used. The characteristic of the network is that the 

straight forward weight is replaced by a local linear 

model and thereby it needs only smaller wavelets for 

a given problem than the common neural networks. 

It is also observed that reasonably accuracy is 

attained by LLWNN model with high convergence 

rate and out performed in the forecasting the SRRs 

compared to other models because of its favorable 

property for modeling the non-stationary and high 

frequency signal such as spinning reserve 

requirements. 
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Fig-2.a. Dynamic system output and model output 

for winter training data set 
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Fig-2.b. Hourly error for  winter training data set 
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Fig-3.a. Dynamic system output and model 

output for winter  test week data set. 
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Fig-3.b Hourly error for winter test week data set 
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Fig.4. a. Dynamic system output and model output for   

summer training  data set 
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Fig.4.b. Hourly error for summer  training data set. 
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Fig.5.a. Dynamic system output and model output for summer 

test   data set.. 
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Fig.5.b.Hourly error for summer test data Set        
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