
SQLIA: Attack’s By SQL Injection Attack And Their Detection Mechanism

Pushkar Y Jane

M.Tech IV Sem. CSE

Smt.Bhagwati Chaturwedi College of Engg .Nagpur

M. S. Chaudhari

 Assst.Prof.& HOD CSE.

Smt.Bhagwati Chaturwedi College of Engg. Nagpur

Abstract

The uses of web application has become increasingly

popular in our daily life as reading news paper,

reading magazines, making online payments for

shopping etc. At the same time there is an increase in

number of attacks that target them. In particular,

SQL injection, a class of code injection attacks in

which specially crafted input strings result in illegal

queries to a database, has become one of the most

serious threats to web applications. This paper

proposes a novel specification-based methodology

for the prevention of SQL injection Attacks. The two

most important advantages of the new approach

against existing analogous mechanisms are that,

first, it prevents all forms of SQL injection attacks;

second, Current technique does not allow the user to

access database directly in database server. The

innovative technique “Web Service Oriented XPATH

Authentication Technique” is to detect and prevent

SQL Injection Attacks in database the deployment of

this technique is by generating functions of two

filtration models that are Active Guard and Service

Detector by using web service.

Keywords:Database security , world-wide web,

web application security, SQL injection attacks,

Runtime Monitoring.

1.Introduction:

Nowadays the world connected to every person

by the internet. In these situations the web

security is very important and it is a challenging

part of the web applications. A number of

techniques are in use for securing the web

applications. The most common way is the to

validatation process of a user and authentication

process through the username and password.

One of the major problems in the authentication

process is the input validation checking . There

are some major threads in web application

security for example SQL injection .A SQL

injection is the one of the type of code injection,

by which attacker used the malicious keyword

to get unauthorized access over the web

application.SQL injection is too much

vulnerable that it can bypass many traditional

security layers like Firewall, encryption, and

traditional intrusion detection systems. It can

also bypass the database mechanisms of

authentication and authorization. SQL injection

can not only be used for violating the security by

seeing the private data of the people but also can

be used for bypassing the authentication of user

which is a big flaw in the web security

applications..Major problem in the web

applications is the SQL injection, it is to be

considered that SQL injection is an easy attack

and every developer or internet user can easily

perform the attack by using malicious strings or

keywords that is the „SQL Injection‟ which is

the most worrying aspect of the today‟s world.

Login page is the most complicated web

application which give the permission to the

users to enter into the database after

authenticating him. In this stage, the user

provides his identity proof such as username and

password. There might be some invalid input

validations which can bypass the authentication

process using some method like SQL injection.

1945

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

2. Related Work:
In order to protect a Web application from SQL

Injection attacks, there are two major concerns.

Firstly, there is a great need of a mechanism to

detect and exactly identify SQL Injection

attacks. Secondly, knowledge of SQL Injection

Vulnerabilities (SQLIVs) is a must for securing

a Web application. So far, many frameworks

have been used and/or suggested to detect

SQLIVs in Web applications. Here, we mention

the some existing prominent solutions and their

working methods.

William G.J.Halfond et al.‟s Scheme[6]- This

approach works by combining static analysis

and runtime monitoring. In its static part,

technique uses program analysis to

automatically build a model of the legitimate

queries that could be generated by the

application. In its dynamic part, technique

monitors the dynamically generated queries at

runtime and checks them for compliance with

the statically-generated model. Queries that

violate the model represent potential SQLIAs

and are thus pre- vented from executing on the

database and reported.

SAFELI – Proposes a Static Analysis

Framework in order to detect SQL Injection

Vulnerabilities. SAFELI framework aims at

identifying the SQL Injection attacks during the

compile-time. This static analysis tool has two

main advantages. Firstly, it does a White-box

Static Analysis and secondly, it uses a Hybrid-

Constraint Solver. For the White-box Static

Analysis, the proposed approach considers the

byte-code and deals mainly with strings. For the

Hybrid-Constraint Solver, the method

implements an efficient string analysis tool

which is able to deal with Boolean, integer and

string variables.

Thomas et al.‟s Scheme[8] - Thomas et al., in

suggest an automated prepared statement

generation algorithm to remove SQL Injection

Vulnerabilities. They implement their research

work using four open source projects namely:

(i) Net-trust, (ii) ITrust, (iii) WebGoat, and (iv)

Roller. Based on the experimental results, their

prepared statement code was able to successfully

replace 94% of the SQLIVs in four open source

projects.

Ruse et al.‟s Approach[12] - Ruse et al. propose

a technique that uses automatic test case

generation to detect SQL Injection

Vulnerabilities. The main idea behind this

framework is based on creating a specific model

that deals with SQL queries automatically.

Adding to that, the approach identifies the

relationship (dependency) between sub-queries.

Based on the results, the methodology is shown

to be able to specifically identify the causal set

and obtain 85% and 69% reduction respectively

while experimenting on few sample examples.

Ali et al.‟s Scheme[11] - Adopts the hash

value approach to further improve the user

authentication mechanism. They use the user

name and password hash values SQLIPA (SQL

Injection Protector for Authentication)

prototype was developed in order to test the

framework. The user name and password hash

values are created and calculated at runtime for

the first time the particular user account is

created.

Parse Tree Validation Approach - Buehrer et al.

adopt the parse tree framework. They compared

the parse tree of a particular statement at runtime

and its original statement. They stopped the

execution of statement unless there is a match.

This method was tested on a student Web

application using SQLGuard. Although this

approach is efficient, it has two major

drawbacks: additional overheard computation

and listing of input (black or white).

Dynamic Candidate Evaluations Approach - In,

Bisht et al. propose CANDID. It is a Dynamic

Candidate Evaluations method for automatic

prevention of SQL Injection attacks. This

framework dynamically extracts the query

structures from every SQL query location which

are intended by the developer (programmer).

1946

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Hence, it solves the issue of manually modifying

the application to create the prepared statements.

2. Types Of SQLIA:

There are multiple methods by which a Web

application can be attacked. We discussed each

of these methods in detail in next section to

illustrate how each of them is used to attack the

database of the application.

a. Tautologies:

Tautology-based attack is to inject code in one

or more conditional statements so that they

always evaluate to true. The most common

usages of this technique are to bypass

authentication pages and extract data. If the

attack is successful when the code either

displays all of the returned records or performs

some action if at least one record is returned.

Example: In this example attack, an attacker

submits “ ‟ or 1=1 - -”.The Query for Login

mode is:

SELECT * FROM user_info WHERE

loginID=‟‟ or 1=1 -- AND pass1=‟‟ .

The code injected in the conditional (OR 1=1)

transforms the entire WHERE clause into a

tautology the query evaluates to true for each

row in the table and returns all of them. In our

example, the returned set evaluates to a not null

value, which causes the application to conclude

that the user authentication was successful.

Therefore, the application would invoke method

user_main.aspx and to access the application.

b. Union Query:

In union-query attacks, Attackers do this by

injecting a statement of the form: UNION

SELECT <rest of injected query> because the

attackers completely control the second/injected

query they can use that query to retrieve

information from a specified table. The result of

this attack is that the database returns a dataset

that is the union of the results of the original first

query and the results of the injected second

query.

Example: An attacker could inject the text “‟

UNION SELECT pass1 from user_info where

LoginID=‟secret - -” into the login field, which

produces the following query:

SELECT pass1 FROM user_info WHERE

loginID=‟‟ UNION SELECT pass1 from

user_info where LoginID=‟secret‟ -- AND

pass1=‟‟

Assuming that there is no login equal to “”, the

original first query returns the null set, whereas

the second query returns data from the

“user_info” table. In this case, the database

would return column “pass1” for account

“secret”. The database takes the results of these

two queries, unions them, and returns them to

the application.

In many applications, the effect of this operation

is that the value for “pass1” is displayed along

with the account information .

c. Stored Procedures:

SQL Injection Attacks of this type try to execute

stored procedures present in the database.

Today, most database vendors ship databases

with a standard set of stored procedures that

extend the functionality of the database and

allow for interaction with the operating system.

Therefore, once an attacker determines which

backend database is in use, SQLIAs can be

crafted to execute stored procedures provided by

that specific database, including procedures that

interact with the operating system. It is a

common misconception that using stored

procedures to write Web applications renders

them invulnerable to SQLIAs. Developers are

often surprised to find that their stored

procedures can be just as vulnerable to attacks as

their normal applications.

Additionally, because stored procedures are

often written in special scripting languages, they

can contain other types of vulnerabilities, such

as buffer overflows, that allow attackers to run

arbitrary code on the server or escalate their

privileges.

1947

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

CREATE PROCEDURE

BO.UserValid(@LoginID varchar2, @pass1

varchar2 AS EXEC("SELECT * FROM

user_info HERE loginID=‟" +@LoginID+ "‟

and pass1=‟" +@pass1+ "‟");GO

Example: This example demonstrates how a

parameterized stored procedure can be exploited

via an SQLIA.

The stored procedure returns a true/false value to

indicate whether the user‟s credentials

authenticated correctly. To launch an SQLIA,

the attacker simply injects “ ‟ ; SHUTDOWN; --

” into either the LoginID or pass1 fields. This

injection causes the stored procedure to generate

the following query:

SELECT * FROM user_info WHERE

loginID=‟secret‟ AND pass1=‟; SHUTDOWN; -

- At this point, this attack works like a piggy-

back attack. The first query is executed

normally, and then the second, malicious query

is executed, which results in a database shut

down. This example shows that stored

procedures can be vulnerable to the same range

of attacks as traditional

application codeThe stored procedure returns a

true/false value to indicate whether the user‟s

credentials authenticated correctly. To launch an

SQLIA, the attacker simply injects “ ‟ ;

SHUTDOWN; --”

into either the LoginID or pass1 fields. This

injection causes the stored procedure to generate

the following query:

SELECT * FROM user_info WHERE

loginID=‟secret‟

AND pass1=‟; SHUTDOWN; --

At this point, this attack works like a piggy-back

attack.

The first query is executed normally, and then

the second, malicious query is executed, which

results in a database shut down. This example

shows that stored procedures can be vulnerable

to the same range of attacks as traditional

application code.

d. Alternate Encodings :

Alternate encodings do not provide any unique

way to attack an application they are simply an

enabling technique that allows attackers to evade

detection and prevention techniques and exploit

vulnerabilities that might not otherwise be

exploitable. These evasion techniques are often

necessary because a common defensive coding

practice is to scan for certain known “bad

characters,” such as single quotes and comment

operators. To evade this defense, attackers have

employed alternate methods of encoding their

attack strings (e.g., using hexadecimal, ASCII,

and Unicode character encoding). Common

scanning and detection techniques do not try to

evaluate all specially encoded strings, thus

allowing these attacks to go undetected.

Contributing to the problem is that different

layers in an application have different ways of

handling alternate encodings. The

application may scan for certain types of escape

characters that represent alternate encodings in

its language domain. Another layer (e.g., the

database) may use different escape characters or

even completely different ways of encoding. For

example, a database could use the expression

char(120) to represent an alternately-encoded

character “x”, but char(120) has no special

meaning in the application language‟s context.

An effective code-based defense against

alternate encodings is difficult to implement in

practice because it requires developers to

consider of all of the possible encodings that

could affect a given query string as it passes

through the different application layers.

Therefore, attackers have been very successful

in using alternate encodings to conceal their

attack strings.

 Example: Because every type of attack could be

represented using an alternate encoding, here we

simply provide an example of how esoteric an

alternatively-encoded attack could appear. In

this attack, the following text is injected into the

login field: “secret‟; exec(0x73687574646f776e)

1948

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

- - ”. The resulting query generated by the

application is:

SELECT * FROM user_info WHERE

loginID=‟secret‟;

exec(char(0x73687574646f776e)) -- AND

pass1=‟‟ .

This example makes use of the char() function

and of ASCII hexadecimal encoding. The char()

function takes as a parameter an integer or

hexadecimal encoding of a

character and returns an instance of that

character. The stream of numbers in the second

part of the injection is the ASCII hexadecimal

encoding of the string “SHUTDOWN.”

Therefore, when the query is interpreted by the

database, it would result in the execution, by the

database, of the SHUTDOWN command.

e. Deny Database service:

 This attack used in the websites to issue a denial

of service by shutting down the SQL Server. A

powerful command recognized by SQL Server is

SHUTDOWN WITH NOWAIT. This causes the

server to shutdown, immediately stopping the

Windows service. After this command has been

issued, the service must be manually restarted by

the administrator.

 select password from user_info where

LoginId=';shutdown with nowait; --' and

Password='0'

The '--' character sequence is the 'single line

comment' sequence in Transact - SQL, and the ';'

character denotes the end of one query and the

beginning of another. If he has used the default

sa account, or has acquired the required

privileges, SQL server will shut down, and will

require a restart in order to function again. This

attack is used to stop the database service of a

particular web application.

 3. Proposed Technique:

This Technique is used to detect and prevent

SQLIA‟s with runtime monitoring. The solution

technique are that for each application, when the

login page is send to checking module , it was

to detect and prevent SQL Injection attacks

without stopping legitimate accesses. Moreover,

this technique may be efficient, a low overhead

on the Web applications. The contribution of

this system is as follows:

A new automated technique for preventing

SQLIA‟s where no code modification required,

Web service which has the functions of

db_2_XMLGenrerator and XPATH_Validator

such that it is an XML query language to select

specific parts of an XML document. XPATH

is simply the ability to traverse nodes from XML

and obtain information. It is used for the

temporary storage of sensitive data‟s from the

database, Active Guard model is used to detect

and prevent SQL Injection attacks. Service

Detector model allow the Authenticated or

legitimate user to access the web applications.

The SQLIA‟s are captured by altered logical

flow of the application. Innovative technique

monitors dynamically generated queries with

Active Guard model and Service Detector

model at runtime and check them for

compliance. If the Data Comparison violates the

model then it represents potential SQLIA‟s and

prevented from executing on the database. This

proposed technique consists of two filtration

models to prevent SQLIA‟S. 1) Active Guard

filtration model 2) Service Detector filtration

model. The steps are summarized and then

describe them in more detail in following

sections.

1. Active Guard Filtration Model: Active

Guard Filtration Model in application layer build

a Susceptibility detector to detect and prevent

the Susceptibility characters or Meta characters

to prevent the malicious attacks from accessing

the data‟s from unauthorized user of the

database.

2. Service Detector Filtration Model: Service

Detector Filtration Model in application layer

validates user input from XPATH_Validator

where the Sensitive data‟s are stored from the

Database at second level filtration model. The

1949

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

user input fields compare with the data existed

in XPATH_Validator if it is identical then the

Authenticated /legitimate user is allowed to

proceed.

3. Web Service Layer: Web service builds

two types of execution process that are

DB_2_Xml generator and XPATH_Validator.

DB_2_Xml generator is used to create a separate

temporary storage of Xml document from

database where the Sensitive data‟s are stored in

XPATH_ Validator, The user input field from

the Service Detector compare with the data

existed in XPATH_ Validator, if the data‟s are

similar XPATH_ Validator send a flag with the

count iterator value = 1 to the Service Detector

by signifying the user data is valid otherwise the

user is no.

Experimental Results:
The following modules shows the how the

injection attacks are performed and how the

susceptibility characters or malicious keyword

are detected in the login page module.In this

stage attacker will perform the SQL injection

attack on the LOGIN PAGE. And will try to get

unauthorized access over the database. Here the

attacker performing the attack in the LOGIN

PAGE: User Name :-- Pankaj

Password :-- pankaj

If the user name and password will match the the

user will be considered as a valid user and

permission will granted to enter into the

database. And the information will be shown to

him as per his requirement.Now if the user or

attacker performing the SQL injection attack

then all information of the database will be

shown to him.(Shown in diagram 02).

LOGIN PAGE: Attacker performing SQL

injection attack.

Fig. 1 Login Page

Result of SQL injection attack:.

Fig. 2 After SQL injection attack

Detection Phase: In detection phase we are

detecting the SQL injection attack. If attacker

using the various methods of attacking to the

database then he will be unsuccessful in that and

does not get the permission to enter into the

database. The figures below shows the detection

phase. If the attacker trying to get access of

database by using SQL injective statement i.e

with the help of injective symbols , expression

1950

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

etc. ,then that a attack will be detected in this

module.

Result after implementing Active Guard

Filteration Model:

Fig 3. After applying Active guard Model

4.Conclusion:

It is obvious from above description that SQL

injection attacks are one of the largest classes of

security problems. Most existing technique

either require developers to manually specify the

interfaces to an application or, if automated, are

often inadequate when applied to

modern,complex web applications. We proposed

a new technique based on X-PATH

authentication method. We shown the results of ,

user get the access of database after the SQL

injection Attack ,that takes the access of

database directly after the injection. In the next

step we have shown the detection of SQL

injection attacker by applying method the

method of Active Guard filtration model. If

attacker trying to the SQL attack then that

attack will be detected.

References

[1] Indrani Balasundaram, Dr.E.Ramaraj “An Approach

to Detection of SQL Injection Attacks in Database Using

Web Services”(IJCSNS ,VOL. 11 No.1,January 2011).

[2] Rahul Shrivastava, Joy Bhattacharyji, Roopali Soni

“SQL INJECTION ATTACKS IN DATABASE USING

WEB SERVICE: DETECTION AND PREVENTION –

REVIEW” Asian Journal Of Computer Science And

Information Technology 2: 6 (2012) 162 – 165. Also

Available at

http://www.innovativejournal.in/index.php/ajcsit.

[3] Shubham Srivastava, Rajeev Ranjan Kumar Tripathi

“Attacks Due to SQL Injection & Their Prevention Method

for Web-Application” (IJCSIT) International Journal of

Computer Science and Information Technologies, Vol. 3

(2) , 2012,3615-3618.

[4]Prasant Singh Yadav, Dr pankaj Yadav, Dr. K.P.Yadav

“A Modern Mechanism to Avoid SQL Injection Attacks in

Web Applications” (IJRREST Volume-1 Issue-1, June

2012)

[5] V.Shanmughaneethi ,S.Swamynathan “Detection of

SQL Injection Attack in Web Applications using Web

Services” (ISSN : 2278-0661 Volume 1, Issue 5 (May-June

2012), PP 13-20).

[6] William G.J.Halfond and Alessandro Orso “AMNESIA:

Analysis and Monitoring for Neutralizing SQL-Injection

Attacks”

[7] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L.

Tao. A StaticAnalysis

Framework for Detecting SQL Injection Vulnerabilities,

COMPSAC 2007, pp.87-96, 24-27 July 2007.

[8] S. Thomas, L. Williams, and T. Xie, “On automated

prepared statement generation to remove SQL injection

vulnerabilities.” Information and Software Technology 51,

589–598 (2009).

[9] A.SRAVANTHI, K.JAYASREE DEVI,K.SUDHA

REDDY, A.INDIRA, V.SATISH KUMAR “DETECTING

SQL INJECTIONS FROM WEB APPLICATIONS”

[IJESAT Volume-2, Issue-3, 664 – 671].

[10] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan

“A SURVEY ON SQL INJECTION:

VULNERABILITIES, ATTACKS, AND PREVENTION

TECHNIQUES”

[11] Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA:An

authentication mechanism Against SQL Injection”

[12] M. Ruse, T. Sarkar and S. Basu. Analysis & Detection

of SQL Injection Vulnerabilities via Automatic Test Case

Generation of Programs. 10th Annual International

Symposium on Applications and the Internet pp. 31 – 37

(2010)

[13] Sruthi Bandhakavi,Prithvi Bisht,P. Madhusudan,V.N.

Venkatakrishnan “CANDID: Preventing SQL Injection

Attacks usingDynamic Candidate Evaluations.”

1951

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

