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Abstract—Inverted pendulum is a pendulum which has its 

mass above its pivot point and owing to its inherent non-linear 

nature the control of inverted pendulum is difficult and 

therefore suitable to test modern control algorithms.The main 

idea of this paper is to compare and analyse the performance of 

different control algorithms in order to balance the inverted 

pendulum in its upright position.  Pole placement technique and 

LQR methods are used to stabilize the pendulum. In this work, 

the inverted pendulum system was modelled and constructed 

using Simulink and the performance of the proposed controllers 

are compared through simulations using Mat lab. Simulation 

results shows that both LQR Controller and pole placement 

controller are far more superior in achieving desired response 

and are more robust when compared to conventional 

controllers. LQR controller provides better steady state 

response compared to state feedback controllers and state 

feedback controller improves transient characteristics. 

Keywords- LQR, Pole Placement, Rotary arm Inverted 

pendulum, Stabilization 

1.  INTRODUCTION  
 

   By the time of launching a rocket or space craft the main 

difficulty is to maintain the rocket in the upright position 

against gravity and keep it on a pre-specified trajectory by 

overcoming all external disturbances and internal non-

linearity present with the system. In the real world examples 

like balancing a broom stick on hand, Segway, Crane 

balancing, Robotics, air craft stabilization in the turbulent air 

flow etc. the stabilization about a desired point is a problem 

owing to the inherent non-linearity present with these 

systems. The risk behind these balancing problems can be 

studied with the help of Inverted pendulum models. Unlike 

simple pendulum an inverted pendulum has its centre of 

gravity over its axis of rotation and is highly nonlinear and an 

open loop unstable system that makes control more 

challenging and therefore it is well suited for verification and 

practice of ideas emerging in control theory and robotics. 

Rotary arm Inverted Pendulum (RIP) is one among the 

famous inverted pendulum model which is a simple structure, 

unstable non-minimum phase system subjected to many 

nonlinear characteristics. 

 

 

  Stabilization of RIP system using classical PID controller is 

still popular because of its ease of implementation. However 

in practical RIP system, there may be disturbances which 

come internally or externally. But for a classical PID 

controller it is difficult to limit these disturbances rapidly and 

hence difficult to achieve optimal performance. Only one of 

the system’s parameters can be controlled by PID controller 

at a time [1]. Therefore for a multivariable system like RIP, 

more than one PID controller is required. In order to control 

arm angle and pendulum angle at the same time we need two 

PID controllers [1] [3], one for controlling the position of arm 

angle and other for pendulum angle.  

       Placing poles at the pre-defined locations is another 

technique so that the characteristics of the system response 

can be controlled effectively. Dominant pole placement [4] 

[5] technique and LQR [1][2] methods are very powerful 

methods which can stabilize the pendulum with minimum 

control effort and time. The dynamics of the system can be 

controlled by these methods by changing the location of 

poles.  

 

     Figure.1 represents RIP system which consists of a PMDC 

servo motor and to the shaft of this motor an L-shaped rotary 

arm is attached. The position of the PMDC motor is 

measured by using a quadrature encoder. The pendulum 

rotates freely in a vertical plane about a shaft mounted on 

double ball bearings attached to the rotary arm. One end of 

the shaft (on which the pendulum is locked) drives a servo 

potentiometer via a shaft coupler. The servo potentiometer 

measures the position (or angle) of the pendulum in the 

vertical plane. In its middle, there is a proprietary coupling 

mechanism which transfers DC power to the servo 

potentiometer and also transfers a voltage corresponding to 

pendulum position or angle back to the terminal blocks on the 

circular base. The stabilizing controller will work only when 

the pendulum is about a few degrees apart from the vertical 

position. Once the pendulum is close to vertical position, 

stabilizing controller will take the control of the pendulum 

and keep it in upright position. In this paper two different 

method of stabilization of rotary arm inverted pendulum is 

discussed viz., Full State Feedback method and LQR. 
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Fig.1. Rotary arm Inverted Pendulum system 

 

The paper is organized as follows: Section 2 deals with 

the mathematical dynamic model of the system used both for 

the computer simulations (MATLAB) and for the 

mathematical design of the controllers. Section 3 goes 

through the main steps in the design of the control 

algorithms. Section 4 presents simulation results of the 

different method discussed, and finally several conclusions 

are drawn in Section 5. 
 

II. MATHEMATICAL MODELING OF RIP SYSTEM  

 

To analyze the system we need to obtain a mathematical 

model which describes the dynamics of RIP system. 

Derivation of mathematical model includes a non-linear 

model and a linear model of RIP system. The non-linear 

model describes the whole dynamics of the system. For 

designing a balancing controller linearized model is useful. 

The controlling parameters are motor position, pendulum 

angle and motor velocity. By adjusting these three parameters 

we control the RIP system. For deriving the mathematical 

model, pendulum is initially assumed in the direction of 

gravitational force i.e., in equilibrium state and therefore the 

initial conditions are taken as zero. Linear model shows close 

response to the non-linear model only for a particular range 

of pendulum angle and therefore stabilization controller take 

its role if the pendulum is of few degrees away from the 

vertical. Figure.2 shows the arm is rotating about z-axis and 

reference of arm position   is taken to the x-axis and the 

reference of pendulum angle   is taken from the upward 

vertical. Parameters of RIP system is shown in Table.1 

 

 

 

 

 

TABLE.I   SYMBOLS TO DESCRIBE EQUATION PARAMETERS 

Symbol Description Unit 

r Length of arm pivot to pendulum pivot m 

  Motor shaft position radians 

  
Angular velocity of motor m/s2 

  Pendulum angular deflection radians 

  
Pendulum angular velocity m/s2 

l p  Pendulum length m 

m Mass of pendulum kg 

L 
Length of pendulum center of  mass 

from pivot 
m 

g 

 
Gravitational acceleration m/s2 

v Input voltage volt 

 
Fig.2. Schematic representation of RIP system 

 

The governing differential equations of the system are as 

follows: 

  

(𝐽
𝑒𝑞

+ 𝑚𝑟2)𝜃̈ −
1

2
𝑚𝐿𝑟 cos 𝛼 𝛼̈ + 

1

2
𝑚𝐿𝑟 sin 𝛼 𝛼̇2 + 𝐵𝑒𝑞𝜃̇ = 𝑇𝐿                                          (1) 

 

 
1

2
𝑚𝐿2𝛼̈ −

1

2
𝑚𝐿𝑟 cos 𝛼 𝜃̈ −

1

2
𝑚𝑔𝐿 sin 𝛼 = 0         (2)

 
 
 

where,    

 

   𝑇𝐿 = 𝐾1𝑣 − 𝐾2𝜃̇                                                            (3) 

 

   𝐾1 =
𝐾𝑚

𝑅𝑎
 

 

           𝐾2 =
𝐾𝑚𝐾𝑡

𝑅𝑎
                 (4) 

or, 
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𝑎𝜃̈ − 𝑏 cos𝛼 𝛼̈ + 𝑏 sin 𝛼 𝛼̇2 + 𝐵𝑒𝑞𝜃̇ = 𝐾1𝑣 − 𝐾2𝜔 

 

       𝑐𝛼̈ − 𝑏 cos 𝛼 𝜃̈ − 𝑑 sin 𝛼 = 0                      (5) 

 

where, 

2
( )

1

2

1 2
(6)

3

1

2

a J mreq

b mLr

c mL

d mgL

 







 

Solving for   from equation (5), we have 

 

𝜃̈ =
𝑐

𝑏 cos𝛼
𝛼̈ −

𝑑

𝑏 cos𝛼
sin 𝛼          (7) 

       

 

 Substituting for   in (5) from (7) and solving for   and   

results in the following nonlinear equations  

 

𝛼̈ =
1

𝑓
[𝑎𝑑 sin 𝛼 − 𝑝𝑏 cos 𝛼 𝜃̇ − 𝑏2 cos 𝛼 sin 𝛼 𝛼̇2

+ 𝑏𝐾1 cos 𝛼 𝑣] 
 

𝜃̈ =
1

𝑓
[𝑏𝑑 cos 𝛼 sin 𝛼 − 𝑝𝑐𝜃̇ − 𝑐𝑏 sin 𝛼 𝛼̇2 + 𝑐𝐾1𝑣]          (8) 

 

where, 

2

2 2
cos (9)

p B Keq

f ac b 

 

 

  

A. Linearized model 

     Equation (8) can be linearized by considering the 

equilibrium state of the system. If we assume α is small (i.e., 

when the Inverted Pendulum is near its equilibrium point), we 

can linearize these equations.  

For small , sin( )   and cos( ) 1  . Also, for small α, 

square of pendulum angular velocity is negligible, and we get 

the following linearized equations 

 

 

𝑎𝜃̈ − 𝑏𝛼̈ + 𝐵𝑒𝑞𝜃̇ = 𝐾1𝑣 − 𝐾2𝜃̇                                   (10) 
 

          𝑐𝛼̈ − 𝑏𝜃̈ − 𝑑𝛼 = 0                                     (11) 

 

𝛼̈ =
𝑎𝑑

𝑒
𝛼 −

𝑝𝑏

𝑒
𝜃̇ +

𝑐𝐾1

𝑒
𝑣                                              (12) 

 

where, 

2

(13)
2

e ac b

p B Keq

 

 

 

The state space model is obtained from the linearized model. 

 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

 𝑦 = 𝐶𝑥                                                                               (14) 

 

 

   The states of RIP system is chosen as 

 

𝑥(𝑡) = [𝜃 𝛼 𝜃̇ 𝛼̇]𝑇                      (15) 

 

The linear state space model is given by 

 

[

𝜃̇
𝛼̇
𝜃̈
𝛼̈

] =

[
 
 
 
 
0 0 1 0
0 0 0 1

0
𝑏𝑑

𝑒

−𝑝𝑐

𝑒
0

0
𝑎𝑑

𝑒

−𝑝𝑏

𝑒
0]
 
 
 
 

[

𝜃
𝛼
𝜃̇
𝛼̇

] +

[
 
 
 
 

0
0

𝑐𝐾1

𝑒
𝑏𝐾1

𝑒 ]
 
 
 
 

𝑣                                 (16) 

 

 

For obtaining state space model the frictional coefficient of 

both pendulum section and motor is assumed to be zero. 

After substituting the parameter values from Table II, the 

state space model is given by 

 

[

𝜃̇
𝛼̇
𝜃̈
𝛼̈

] = [

0 0 1 0
0 0 0 1
0 2.1440 −0.1417 0
0 82.5677 −0.19440 0

] [

𝜃
𝛼
𝜃̇
𝛼̇

] + [

0
0

1.0928
1.4991

] 𝑣 (17) 

  

 

1 0 0 0 0
(18)

01 0 0 0
y v




 
     
     
     

 

TABLE.II. TYPICAL CONFIGURATION OF RIP SYSTEM 

Symbol Description 
Value 

(SI unit) 

Kt  Motor torque constant 0.1331 

Km  Back emf 0.1298 

Jeq  Equivalent moment of inertia at load 0.0200484 

m Mass of pendulum 0.035 

L Length of pendulum center of  mass from pivot 0.1848 

r Length of arm pivot to pendulum pivot 0.169 

Ra Armature resistance of motor 6 
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III. CONTROLLER DESIGN 

A. Pole Placement Controller       

   In this paper, controllers used for balancing pendulum in 

upright position are linear state feedback controllers. The 

state feedback controller can be used only if the system is 

controllable and it tracks the input signal or improve damping 

of the system. Figure.3 shows the block diagram of a pole 

placement controller. For a given system, the state feedback 

gain matrix K is not same but depends on the desired closed 

loop pole location. This will also determine the speed and 

damping of the response.  

 
Fig.3. Block diagram of pole placement controller 

 

         The linearized state space model (17-18) is used to 

design        balance controller. The dominant pole is chosen 

so that the damping ratio is 0.7 and natural frequency 4 rad/s. 

For rest of the two poles, two real poles with very small time 

constants 0.125 second and 0.025 second are selected. The 

gain matrix obtained using Ackermann formula is 

 58.9063 501.4796 29.5578 57.2090K    . 

B. LQR controller 

  Linear Quadratic Regulator is an optimal controller used to 

achieve desired target value with minimum control effort and 

time. A performance index J is defined in this technique and 

the control engineer have to find a controller u Kx   

which will minimize the performance index. 

                     
( )T TJ x Q x u Ru dt   

where, Q and R are weighing matrices which allow the 

relative weighting of individual state variables and individual 

control inputs. 

    In MATLAB, the command [K] = lqr (A, B, Q, R) 

calculates the optimal feedback matrix K such that it 

minimizes the cost function subject to the constraint defined 

by the state equation. The response of system for different set 

of state feedback gain matrix is determined by varying Q 

values, keeping R=1, and chooses the one which give best 

performance. 

The different sets of Q chosen are as follows 

Q1=diag( 60 5 11 ), Q2=diag( 60 0.05 60 0.05 ),     

Q3=diag( 1000 2000 600 200 ) 

 

IV.  SIMULATION RESULTS 

The pole placement controller and LQR controller can be 

considered as robust controllers. The simulation results for 

pendulum position and arm position for pole placement and 

LQR controllers are shown in the figure 4(a), 4(b), 5(a), 5(b). 

 

  

 
 

         Fig.4(a)  Step response of  pendulum angle-Pole placement 

controller 

 

          Fig.4(b) Step response of pendulum angle for different set of Q-

LQR controller 

 
Fig. 5(a) Step response of arm position-Pole placement controller 
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Fig.5(b) Step response of arm position-LQR controller 

 

 

On observing above figures, LQR controller is better to 

settle the response with in less time than pole placement 

controller and pole placement controller is better in reducing 

the overshoot of the system. However by proper choice of 

weighing matrices Q and R, LQR response can further 

improved and is more dominant than state feedback controller. 

The gain matrix K chosen for the state feedback controller is 

almost perfect for stabilizing the pendulum. It is always not 

easy to obtain the gain matrix for state feedback controller 

easily. But in the case of LQR controller the gain matrix K can 

be tuned easily to obtain the desired response.  

 

                 V. CONCLUSION 

 In this paper state feedback and LQR control methods are 

discussed for the stabilization of Rotary arm Inverted 

pendulum system. From the simulation results, it is found that 

both pole placement technique and LQR method are efficient 

in satisfying the design requirements and are robust to the 

parameter variations. The LQR control shows better results in 

minimizing the steady state value when compared to state 

feedback control method while pole placement method is 

better to improve the transient response of the system. Both 

pole placement and LQR controllers are capable of 

maintaining the pendulum in its upright position. 
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