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Abstract—The aim of this paper is to demonstrate the 

suitability of recurrent neural networks (RNN) for state 

estimation and tracking problems that are traditionally solved 

using Kalman Filters (KF). This paper details a simulation study 

in which the performance of a basic discrete time KF is 

compared with that of an equivalent neural filter built using an 

RNN. Real time recurrent learning (RTRL) algorithm is used to 

train the RNN. The neural network is found to provide 

comparable performance to that of the KF in both the state 

estimation and tracking problems. The relative merits and 

demerits of KF vs RNN are discussed with respect to 

computational complexity ease of training and real time issues. 
 

Keywords—Recurrent Neural Network, KF, Real time 

recurrent learning, Tracking, State estimation. 

I. INTRODUCTION 

Traditionally, state estimation and tracking problems are 

solved using KFs (for example, see [1], [2]). Recurrent neural 

networks (RNN) have received much research attention 

because of their powerful capability to represent attractor 

dynamics and to preserve information through time [3]. KF is 

a well known recursive, linear technique that works optimally 

when the system equations are linear and the noises (system 

and measurement) are uncorrelated and white Gaussian [1]. 

Extended KF is formulated to deal with simple nonlinearities 

in the system equations. However, in general when the 

system and/or noise deviate from Kalman assumptions, the 

convergence and optimality results of KF are not guaranteed. 

Since neural networks of appropriate size are known to be 

capable of approximating a wider class of nonlinear functions 

[4], it is expected that neural networks, especially RNN, offer 

a better alternative for KF even when Kalman assumptions 

are violated. In this paper, we attempt to use RNNs to solve 

the estimation and tracking problems. 

In recent years, a variety of approaches have been 

proposed for training the RNNs, such as the back propagation 

through time (BPTT) [5], real time recurrent learning 

algorithm (RTRL), extended Kalman filter (EKF), etc. In this 

paper, the RTRL algorithm is used for training the recurrent 

network. We present an example state estimation problem 

and a tracking problem to illustrate the application of RTRL 

trained RNN for these problems. Further, we also simulated 

KFs for solving the same problems to enable a comparison of 

the performance of RNN and KF. Relative performance is 

compared in terms of prediction capability and tracking error. 

 An introduction to KF and RNN are presented first 

and then the description of the problems is given next.  

Finally the results are presented and a discussion of relative 

merits and demerits of these two methods is given. 

 

II. DESCRIPTION OF   KALMAN FILTER 

The Kalman filter is a technique for estimating the 

unknown state of a dynamical system with additive noise. 

The KF has long been regarded as the optimal solution to 

many tracking and state prediction tasks [1]. The strength of 

KF algorithm is that it computes on-line. This implies that we 

don’t have to consider all the previous data again to compute 

the current estimates; we only need to consider the estimates 

from the previous time step and the current measurement. 

Popular applications include, state estimation [6], navigation, 

guidance, radar tracking [2], sonar ranging, satellite orbit 

computation, etc. These applications can be summarized into 

various classes such as denoising, tracking and control 

problems. The basic KF is optimal in the mean square error 

sense (given certain assumptions), and is the best possible of 

all filters, if state and measurement inputs are Gaussian 

vectors and the additive noise is white and has zero mean [1].  

We now begin the description of the KF. The block 

diagram of basic discrete time kalman filter is shown in 

Figure 1. We assume that the system can be modelled by the 

state transition equation,  
 

kkkk WBUAXX 1                     (1) 
 

where  kX  is the state at time k, kU and kW are an input 

control vector and additive noise from either the system or 

the process respectively. B  is the input transition matrix and

A  is the state transition matrix.  
 

The measurement system can be represented by a linear 

equation of the form,  
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kkk VHXZ                                   (2) 

where kZ  is the measurement prediction made at time k, 

kV  is additive measurement noise and H is the observation 

matrix. The KF uses a feed-back control for process 

estimation. The KF algorithm consists of two steps:                   

a prediction step and an update step as described below.  

 

Prediction (time-update): This predicts the state and process 

covariance at time k+1 dependent on information at time k.  

 

Update (measurement update): This updates the state, process 

covariance and  Kalman gain at time k+1 using a 

combination of the predicted state and the observation at time 

k+1.  
 

Summary of Kalman Filter Equations are given below: 

Step1: Predicted Sate  

kkkkk XAX //1   

Step2: Predicted Measurement 

kkkkk XHZ /1/1    

Step3: Predicted Sate Covariance 

k

T

kkkkkk QAPAP  //1  

Step4: Predicted Kalman Gain 

  1

/1/11



  k

T

kkkk

T

kkkk RHPHHPK  

Step5: Actual Measurement  

1kZ  

Step6: Updated (Estimated or Corrected) Sate  

)( /111/11/1 kkkkkkkk ZZKXX    

Step7: Updated (Estimated or Corrected) Sate Covariance  

kkkkkk PHKP /111/1 )1(    

 

The above seven equations constitute Kalman Filter 

Algorithm [1]. By knowing the initial conditions (State X and 

its Covariance P) and the noise covariance matrices (Process 

noise Q and Measurement noise R) the steps 1 to 4 can be 

executed. As soon as measurement is available steps 6 & 7 

can be executed and cycle can be repeated for next 

measurement. 

 

 

 

Fig.1 Block Diagram of  Kalman Filter 
 

III. RECURRENT NEURAL NETWORK 

STRUCTURE 

Recurrent Neural Networks (RNN) form a much wider 

class of neural networks, as they allow feedback connections 

between neurons, making them dynamical systems. The 

behavior of a recurrent network is dependent on all its  

previous inputs. Recurrent neural networks have been used in 

a number of identification and control scenarios [7].  

The work reported in this paper differs from a previous 

attempt at comparison of KF with RNN in several ways 

[6].The feedback in our RNN is both from the output and 

hidden layers to the input layer unlike from only output to 

input layer in [6] and the learning method adopted here is 

RTRL as opposed to conjugate gradient method in earlier 

paper [6]. A simplified and more detailed representation of 

Recurrent Network is shown in Figure 2. 

Units of the input layer I and the recurrent layer H and 

the output layer O  are fully connected through weights 

HIW and 
OHW , respectively. The current output of the 

recurrent units at time t is fedback to the context units at time 

t+1 through recurrent connections so that 
)()1( tt HC 
. 

Hence, every recurrent unit can be viewed as an extension of 

input to the recurrent layer. As they hold contextual 

information from previous time steps, they represent the 

memory of the network.  

 

Given the input pattern at time t,   

),,,,(
)(

||

)()(

1

)( t

I

t

i

tt IIII  , and recurrent activates  

),,,,(
)(

||

)()(

1

)( t

H

t

j

tt HHHH   the recurrent 

unit’s net input 
)(ˆ t

iH  and output activity 
)(t

inet are 

calculated as 
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 
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i HWIWH )1()()(ˆ          (3) 

 

)ˆ( )()( t

i

t

i Hfnet                                (4) 

 

where I , H  and O  are the number of input, hidden 

and output units, respectively, and f  is the activation  

function. In this work we are using the symmetrical transfer 

function xxf tanh)(  . 

A. Learning Algorithm for RNN:  

There are several algorithms available to train recurrent 

networks based on streams of input-output data. Perhaps the 

most widely used are real-time recurrent learning (RTRL) 

and back propagation through time (BPTT) [5]. 

 

 
Fig. 2 RNN Architecture 

 

In this paper RTRL algorithm is used for recurrent network 

training because of its good convergence property and its     

on-line nature [3]. Real-time recurrent learning (RTRL) has 

been independently derived by many authors, although the 

most commonly cited reference for it is Williams and Zipser 

[3]. This algorithm computes the derivatives of states and 

outputs with respect to all weights as the network processes 

the sequence, that is, during the forward step. The supervised 

learning process uses the ’Teacher Forcing’ technique [3]. 

The advantage of using RTRL is the ease with which it may 

be derived and programmed for a new architecture as it does 

not involve any unfolding over time as in BPTT.  

 

IV.  SIMULATION EXPERIMENTS 

Simulation studies were performed for (A) state estimation 

problem [6] and (B) tracking problem. The configuration for 

the KF and RNN for each of these problems is described 

below. 

 

A. System I: State Estimation Problem [6] 

 

Kalman Filter: The state update equation and measurement 

equation are given by: 

 

)()()(

)()1(9.0)(

tVtXtZ

tWtXtX




                      (5) 

and the noise sources are white Gaussian noise sequences 

with zero mean. The process noise covariance Q is 0.1997 

and the measurement noise covariance R is 0.1. It can be 

observed that this is a simple scalar version of the state 

estimation problem where the state transition and 

measurement systems are scalar valued, with coefficients 

taken as 0.9 and 1, respectively.  

 

RTRL: The architecture we took consisted of 1 input node, 3 

hidden nodes and 1 output node. 

 

B. System II: Tracking Problem 

 

Kalman Filter: The state can be described as  

 TtxtxtX )();()(   . 

 The state update equation and measurement equation are 

given by: 

 

)()()(

)()1()(

tVtHXtZ

tWtAXtX




                           (6) 

 

where  









10

11
A  , 










10

01
H  , 

2

12/1

2/13/1
qkQ 








  and 

2

rkR   

where kQ and kR are the process and observation noise 

covariance matrices and 1.0;01.0 22  rq  . 

 

RTRL: The architecture consisted of 2 input nodes, 8 hidden 

nodes and 2 output nodes. 

Simulation for each system is conducted as follows: 

Training data sets as well as a separate test data set are 

produced by running the system equations. Each data set 

contains 100 sequences of 100 I/O pairs (Z(n),X(n)), for a 

total of 10000 I/O pairs. The data are scaled to the range [-

1,1]. The RNN architecture comprises one hidden layer of 

nodes with nonlinear activation function (symmetrical 

transfer function tanh(x)), whereas the output nodes are 

linear. The state is initialized to some random value and the 
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weights are also initialized to random values, uniformly 

distributed between      -0.05 and +0.05. RTRL is used to 

train the net and it is trained until error criterion threshold is 

achieved (500 epochs). Testing is done with a separate data 

set and the results are reported in Figures 3 and 4. The KF 

parameters are computed using statistical estimation 

techniques over the same test data set.  

 

V. DISCUSSION 

Figure 3 depicts the simulation of the state estimation 

problem. Figure 3(a) compares the resulting kalman and 

neural filter estimates of the true state. Figure 3(b) shows the 

error plots of KF and RNN. From Figure 3, it is evident that 

KF and RNN show comparable performance on the 

estimation problem. Figure 4 depicts the simulation of 

tracking problem. Figures 4(a) and 4(c) show the 

performance of KF versus RNN with respect to tracking of 

position and velocity of a vehicle, respectively. Figures 4(b) 

and 4(d) depict the corresponding error plots of position and 

velocity. It is evident from these figures that the difference 

between the desired and estimated values (tracking error) for 

RNN are almost zero whereas that with KF is not zero but 

appears to be a random value with zero-mean. The tracking 

error behaviour of KF is in expected lines as per the 

algorithm. Kalman filter is a simple, on-line, optimal 

algorithm but works only for linear systems with Gaussian 

noise. RNN is expensive in terms of space and time 

complexities. However, nonlinear approximation can be 

achieved and there is no restrictive Gaussian assumption with 

RNNs. 

 

VI. CONCLUSION 

A recurrent neural network of the type described in this 

paper is capable of closely matching a basic KF in 

performance on state estimation and tracking problems. KF is 

less expensive computationally both in space and time 

complexities as compared to RNN trained via RTRL 

algorithm. However, the attractive feature of RNNs is that the 

technique works without any significant modifications for 

nonlinear and non-Gaussian cases also. Whereas in KF, 

whenever these assumptions are violated, the algorithm 

becomes differently structured and is more complex [4]. 

Thus, while the RTRL itself may not necessarily be the 

algorithm of choice for training recurrent networks, it may 

help provide a basis for both gaining a deeper understanding 

of existing recurrent network learning techniques and more 

importantly, creating more computationally attractive 

algorithms that allow one to optimize the trade-off between 

computational effort and learning speed. Other methods such 

as EKF are also available for training RNNs [8] and will be 

taken up in future, specifically for estimation and tracking 

problems. 
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Fig. 4(a) 

 

 
Fig. 4(b) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

0 20 40 60 80 100
-1

-0.5

0

0.5

1

time

P
o

s
it

io
n

Position Variation for Tracking Problem

time

Velocity Variation for Tracking Problem

V
e

lo
c

it
y

timetime

Velocity  Error for Tracking Problem

0 20 40 60 80 100
-0.3

-0.2

-0.1

0

0.1

E
rr

o
r

Position Error for Tracking Problem

E
rr

o
r

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

Desired

Kalman

RTRL

Kalman

RTRL

Desired

Kalman

RTRL

Kalman

RTRL

0 20 40 60 80 100
-1

-0.5

0

0.5

1

time

P
o

s
it

io
n

Position Variation for Tracking Problem

time

Velocity Variation for Tracking Problem

V
e

lo
c

it
y

timetime

Velocity  Error for Tracking Problem

0 20 40 60 80 100
-0.3

-0.2

-0.1

0

0.1

E
rr

o
r

Position Error for Tracking Problem

E
rr

o
r

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

Desired

Kalman

RTRL

Kalman

RTRL

Desired

Kalman

RTRL

Kalman

RTRL

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS050294
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 05, May - 2017

549


