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Abstract  
 

Analytical solutions are presented for the static 

deflection analysis of laminated polar orthotropic 

circular and annular plates. The analysis is based on 

the application of the first order shear deformation 

theory employed. Three linear partial differential 

equations for axisymmetric deformations are written in 

terms of displacements u, α and w.  Chebyshev 

collocation method is employed for the solution of the 

evaluation of static deflection problem. Numerical 

results are presented to show the validity and accuracy 

of the proposed method. Results of parametric studies 

conducted to evaluate the effect of parameters like 

orthotropic ratios, number of layers, lamination 

sequences and boundary conditions, on the response of 

laminated polar orthotropic circular and annular 

plates are also presented.   

 

 

1. Introduction  

 
Fiber reinforced laminated composites are being 

increasingly used in modern engineering applications 

due to their high specific strength and high specific 

modulus. The increased application of laminated 

composites in the primary components in structures 

like spacecrafts, high speed aircrafts, missiles, gas 

turbines, etc. are due to the number of advantages they 

offer in structural, operational, production and/or 

maintenance aspects.  

The use of advanced composite materials for structural 

elements brings in the need to develop new analytical 

and design techniques. With the present level of their 

application being what it is, it becomes a necessity to 

develop better mathematical models to predict the 

mechanical behavior of structural elements made up of 

such materials, under service loads. 

In the present work, it is proposed to study, the static 

deflection analysis of laminated polar orthotropic 

circular and annular plates by Chebyshev collocation 

method. A first order shear deformation theory is used 

in terms of u, α and w. These field variables are 

expanded in polynomials and then orthogonal point 

collocation method is used to discretise the governing 

equations. To demonstrate the convergence of the 

method, numerical results are presented for clamped 

and simply supported isotropic and polar orthotropic 

circular and annular plates. The validity of the 

analytical solution is confirmed by comparing with data 

obtained from open literature.  
 

2. Mathematical formulation 
 

The laminated plate of constant thickness h is 

composed of polar orthotropic laminae stacking 

symmetrically or anti-symmetrically about the middle 

surface of plate. Plate co-ordinates (r, θ, z) used are as 

shown in figure 1, where u, v, w denote the 

displacements of any point of the plate in the 

corresponding r, θ, z directions. 

 

 
 

Figure 2.1 Geometry of a n-layered laminate 

 

In this study, first order shear deformation theory is 

employed and the general displacement field is 

assumed in the form 

 

u (r, θ, z) = uº(r, θ) + z α1(r, θ),      

v (r, θ, z) = vº(r, θ) + z α2(r, θ),           

w (r, θ, z) = w(r, θ)                                                      (1) 
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where uº, vº, w denote the displacements of any point 

on the middle surface and α1, α2 are the rotations of the 

normal to the mid-plane about θ, r axes respectively. 

Strain displacement relations are of the following form 

in polar co-ordinates 

rrr κzεε  
,   θθθ κzεε  

, 

rθrθrθ κzγγ  
,   

 rzrz γγ ,     
 θzθz γγ

   
    (2)         

 

where the reference surface strains and curvatures are 

given by, 
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According to the shear deformation theory, the 

constitutive equations for the k
th

 layer of a polar 

orthotropic laminated plate can be written in the 

following form in polar co-ordinates.     
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where    C11 = 
θr

r

υυ1

E


,    C12 = 
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C44 = Grz ,       C55 = Gθz,      C66 = Grθ
                                        

(5) 

Where Er and Eθ are Young’s moduli of elasticity  in  r 

and θ directions. υ r and υ θ are Poisson’s ratios in r and 

θ directions.  Grθ, Gθz and Grz are the shear moduli in the 

respective planes. 

The stress resultants acting on a laminate are obtained 

as: 
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where z is the distance of the lamina from the middle 

plane. 

Substituting the stress strain relations, we have the 

constitutive matrix as 
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 where,          Aij = )z(z)(C 1kkk

n

1k
ij 



        ,        

                      i, j = 1, 2,6,4,5            
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                                            where i, j = 1, 2,6           (8)  

 

Aij are the extensional stiffnesses, Bij are the bending- 

extension coupling stiffnesses, Dij are the bending 

stiffnesses and K
2 

is the Shear correction factor 

introduced to account for non-uniform distribution of 

the transverse shear strains through the thickness of the 

plate, which is taken as π²/12. 

n is the total number of layers in the laminate.  

The stress resultants and stress couples defined in (6) 

and (7) must satisfy the following equilibrium 

equations (Ravichandran, 1989) 
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If the analysis is now restricted to only axisymmetric 

case, the deformations are symmetrical about z-axis, 

thus the stresses and strains are independent of θ  and  

0ττ zθrθ  , vº = 0, 2 = 0 and also )(
θ


= 0 

The governing equations for axi-symmetric case then 

can be written in terms of mid-plane displacements as, 
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For convenience, the following dimensionless 

parameters are introduced 
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where i, j = 1, 2,6 

Here, ET is the reference Young’s modulus. In case of 

laminated composites with layers of same material, ET 

is taken to be the Young’s modulus in the direction 

transverse to fiber direction. 

Thus the governing differential equations of the plate 

can now be expressed in dimensionless form as,  
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2.1 Polynomial series solution by collocation at 

Chebyshev zeroes 

 

The Chebyshev polynomials (x)Tn  are a class of 

orthogonal polynomials, which are defined as, 

cosnθ(x)Tn    

Where xcosθ      ,    1x1                               (13)   

                                                                          

These provide a solution of the second order 

differential equation, 
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 i.e., the shifted Chebyshev polynomials are orthogonal 

with respect to the weighing function 
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Any continuous function g(ξ) in the interval 1ξ0  , 

can be represented by a infinite series of the form 
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where gi (i=0,1,2,….) are the coefficients to be 

determined so as to obtain a best possible fit. The series 

in eqn.(20) is a fast converging one and good 
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approximation is obtained by taking a finite number of 

terms in the above series. 

i.e., 
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Where, the plus sign indicates that the first term of the 

series is to be halved. 

For a known function g(ξ), using the orthogonality 

conditions (eqn.18), the coefficients gr can be 

calculated as  
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rT  of degree r 

has r zeroes in the range 1ξ0  , which are used as 

the collocation points in the present study.            
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collocation points are taken at the zeroes of 

the Chebyshev polynomial. For static loads, the radial 

displacement, deflection and rotation are expanded as 

polynomials in ξ . 
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Substituting eqn. (23) in eqn. (12), the following 

equations are obtained. 
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ξn1)U(n

2
b)(a

3n
ξn2)U1)(n(n

b

22

11
 







































1N

1n
2

1n

n
22

1N

1n

2n

n

2

3n

n
11

ξ)b)(1a(ξ

ξα
d

b)(aξ)b)(1a(ξ

ξ1)α(n

b)(a

ξ2)α1)(n(n
d

 

  0
1N

1n
ξ1)W(nξα

h

a 2n
n

1n
n2

44 






            (26) 

 

There are 3(N+1) constants to be determined. The 

stipulation of the three boundary conditions at each 

edge provide six equations. 3(N-1) additional equations 

are obtained by forcing the satisfaction of each of the 

three differential equations at the (N-1) zeroes of  

)(ξT 1)(N

 , 1ξ0   - the (N-1)

th 
degree shifted 

Chebyshev Polynomial. 

The N
th 

degree Chebyshev Polynomial 

NT  has N 

zeroes at  
















 


2N

1)πi(2
cos1

2

1
ξ i       i = 1, 2, …N         (27)  

                                                        

Thus forcing the satisfaction of each of the three 

differential equations at the (N-1) zeroes of  )(ξT 1)(N

 , 

1ξ0   along with the stipulation of the three 

boundary conditions at each edge results in a set of 

simultaneous equations of the form,  

{0}{W}][L}{α][L{U}][L 131211     

{p}{W}][L}{α][L{U}}[L 232221                                                                                                                                          

{0}{W}][L}{α][L{U}][L 333231 
          

(28) 

                                                                         

Where }.......U..........,U,{U}U{ 1n21
T

  

            }........α..........,α,{α}α{ 1n21
T

  
  

            
}.W..........,W,{W}W{ 1n21

T


                  
(29) 

It can be seen that [L13] = [0] and [L21] = [0].            

 

These algebraic equations are then solved using LU 

Decomposition method. (William H. Press et al, 2002) 

The coefficients are then substituted in eqn. (23) to get 

radial displacement, transverse deflection and rotation 

at any point inside the plate. 
 

 

 

3. Convergence and comparison studies 
 

In order to validate the procedure implemented, static 

analysis has been conducted on isotropic plates.  The 

convergence analysis of the Chebyshev collocation 

method for static deflection of circular and annular 
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plates is first carried out. Table 3.1 shows the results of 

analysis of an isotropic circular plate subjected to 

axisymmetric pressure q, with increasing number of 

terms used in each of the series in eqn. (23). It can be 

observed that sufficiently accurate, converged solution 

is obtained taking 10 – 12 terms used in each of the 

series.  

Isotropic circular and annular plates subjected to 

various types of pressure loads are now analyzed. 

Table 3.2 and Table 3.3 shows the results of static 

deflection and rotation of the transverse normal in 

radial direction, obtained using the present solution. It 

can be observed that the present solution provides 

results comparing reasonably well with the results 

obtained by CPT [Warren C. Young (1989)]. The 

deviations between the results can be attributed in fact 

to effect of shear deformations as the plates considered 

herein are moderately thick plates. (a/h = 10) 
 

Table 3.1 Static deflection of isotropic circular 

plates - convergence study   

a = 100 mm, h=10 mm, υ = 0.3, q = 100 N/mm
2
, 

Eθ = 2.10 kN/mm
2
   

Boundary condition: clamped edges 

h

w
10W

ο
2

  

Number of terms in 

Chebyshev series 

N 

Maximum 

deflection 

W 

4 

6 

8 

10 

12 

0.8438 

0.8437 

0.8438 

0.8437 

0.8437 

 

 



Table 3.2 Static solution for isotropic circular plates 

a/h = 10 ,          υ = 0.3 

 

Type of load 

Boundary 

Condition 

 Present 

(FSDT) 

Warren C. Young (1989) 

(CPT) 

Uniformly 

Distributed 

Load 

Clamped Kymax  0.01622 0.01563 

Simply 

Supported  

Kymax 

Kθmax 

0.06430 

0.09615 

0.06370 

0.09615 

Uniformly Varying  

Load 

Clamped  Kymax 0.00693 0.00667 

Simply 

Supported 

Kymax 

Kθmax 

0.03257 

0.05128 

0.03231 

0.05128 

Parabolically 

Varying  

Load 

Clamped  Kymax 0.00362 0.00347 

Simply 

Supported 

Kymax  

Kθmax 

0.01964 

0.03205 

0.01949 

0.03205 

Wmax = Kymax 
D

4
aq

                           αmax = Kθmax 

D

3
aq

                                          

 

Table 3.3 Static solution for isotropic annular plates 

a/h = 10 ,          b/a = 0.1,          υ = 0.3                                                                                            

Type of load Boundary 

Condition 

 Present 

(FSDT) 

Reference 

(CPT)* 

Uniformly Distributed 

Load 

 

 

 

C – C Kymax 0.0020 0.0018 

S
a
 – C  

 

Kymax 

Kθb 

0.0025 

0.0100 

0.0025 

0.0135 

C
a
 – S Kymax 

Kθa 

0.0044 

0.0140 

0.0040 

0.0147 

S – S Kymax 

Kθb 

Kθa 

0.0061 

0.0196 

0.0176 

0.0060 

0.0264 

0.0198 

Uniformly Varying  

Load 

 

 

C – C Kymax 0.0010 0.0009 

S
a
 – C  

 

Kymax 

Kθb 

0.0013 

0.0043 

0.0013 

0.0059 

C
a
 – S Kymax 

Kθa 

0.0026 

0.0087 

0.0024 

0.0093 
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S – S Kymax 

Kθb 

Kθa 

0.0035 

0.0114 

0.0108 

0.0034 

0.0137 

0.0119 

   

Parabolically Varying 

Load 

C – C Kymax 0.0006 0.0005 

S
a
 – C  

 

Kymax 

Kθb 

0.0007 

0.0025 

0.0007 

0.0031 

C
a
 – S Kymax 

Kθa 

0.0017 

0.0060 

0.0016 

0.0064 

S – S Kymax 

Kθb 

Kθa 

0.0022 

0.0074 

0.0073 

0.0022 

0.0083 

0.0080 

   Wmax = Kymax 
D

4
aq

   ,           α = Kθ 

D

3
aq

                                                         * Warren C. Young (1989) 

      a    
Boundary condition at inner edge of the plate 

 

4. Parametric study 
 

In order to bring out the effect of shear deformation in 

case of plates undergoing axisymmetric deformations, 

different shear moduli are considered. 

(1) rzG   (4) 
υ1

E5.0
Grz


  

(2) 
υ1

E75.0
Grz


   (5) 

υ1

E375.0
Grz


  

(3) 
υ1

E625.0
Grz


  (6) 

υ1

E25.0
Grz


  

Table 4.1 shows the results of analysis of an isotropic 

plate undergoing axisymmetric deformations. For very 

large value of shear modulus, the results of the present 

work are comparable with the results given by Warren 

C. Young (1989). It can also be observed from this 

table that the results with different values of shear 

moduli considered (in the narrow range) are very close 

to each other and to the value due to CPT, which 

neglects shear deformation. 

Table 4.2 and Table 4.3 show the results of a study 

conducted to know the effect of orthotropy ratio on the 

transverse deflection and radial displacement of 

laminated polar orthotropic circular and annular plates 

respectively. The need to select proper shear correction 

factor K
2
 in the analysis makes the first order shear 

deformation theory of the present work somewhat 

empirical. There are different recommendations for the 

selection of shear correction factors. Quite often the 

value of π
2
/12 recommended for isotropic plates is 

assumed to be appropriate even in the case of 

composite plates and the same is followed here. It can 

be seen that, the increase in orthotropy ratio decreases 

the displacements for all the lamination schemes 

considered herein. Also, in case of annular plates, 

among the different lamination sequences, the least 

deflection is observed when the laminate is made up of 

laminae in which fibers are arranged in 0º only. 

Surprisingly, in case of circular plates with simply 

supported boundary condition, the least deflection is 

observed when the laminate is made up of laminae in 

which fibers are arranged in 90º only. In case of 

unsymmetric and anti-symmetric laminates, since the 

coupling rigidity [Bij] exists, radial displacements are 

also observed. 
   

Table 4.1 Effect of shear deformation on the 

deflection of plate 

a/h = 10,      Boundary condition: clamped edges 

E

υ)(1G 
 

Kymax 

Present 

(FSDT) 

(CPT)* 

 
0.75 

0.625 

0.5 

0.375 

0.25 

0.01562 

0.01602 

0.01610 

0.01622 

0.01642 

0.01682 

0.01563 

 

Wmax = Kymax 
D

4
aq

           * Warren C. Young (1989) 
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Table 4.2 Effect of orthotropy ratio on displacements of laminated polar orthotropic circular plates 

a = 100 mm,   h = 10 mm,   υrθ = 0.31,   Grz/Eθ = 0.253,   q = 100 N/mm
2 
,    

 

BC 

 

Displacement 

Er/Eθ 5 10 15 30 

Lamination scheme 

 

 

 

 

Clamped 

 

 

 

W 

 

90º 

90º/0º/90º 

90º/0º/0º/90º 

0º/90º 

90º/0º/90º/0º 

0º 

0º/90º/0º 

0º/90º/90º/0º 

0.0582 

0.0559 

0.0516 

0.0469 

0.0438 

0.0428 

0.0417 

0.0403 

0.0408 

0.0378 

0.0333 

0.0304 

0.0271 

0.0250 

0.0248 

0.0232 

0.0327 

0.0297 

0.0256 

0.0234 

0.0206 

0.0191 

0.0190 

0.0186 

0.0223 

0.0195 

0.0166 

0.0153 

0.0136 

0.0125 

0.0125 

0.0123 

U 0º/90º 

90º/0º/90º/0º 

0.0172 

0.0026 

0.0056 

0.0018 

0.0040 

0.0014 

0.0027 

0.0008 

 

 

 

 

Simply 

Supported 

 

 

 

W 

 

0º 

0º/90º/90º/0º 

0º/90º/0º 

0º/90º 

90º/0º/90º/0º 

90º/0º/0º/90º 

90º/0º/90º 

90º 

0.6379 

0.2270 

0.1846 

0.1933 

0.1812 

0.1459 

0.1418 

0.1404 

0.4349 

0.0494 

0.4104 

0.1820 

0.1063 

0.0835 

0.0815 

0.0810 

0.4204 

1.2854 

0.3639 

0.1328 

0.0759 

0.0597 

0.0585 

0.0584 

0.4090 

0.3627 

0.2728 

0.0796 

0.0425 

0.0340 

0.0336 

0.0337 

U 0º/90º 

90º/0º/90º/0º 

0.0914 

0.0098 

0.0498 

0.0074 

0.0334 

0.0057 

0.0193 

0.0033 

h

w
W

ο

             
2

ο

h

au
U


  

Table 4.3 Effect of orthotropy ratio on displacements of laminated polar orthotropic annular plates 

a = 100 mm,   h = 10 mm,   b = 10 mm,   υrθ = 0.31,   Grz/Eθ = 0.253,   q = 100 N/mm
2
    

 

BC 

 

Displacement 

Er/Eθ 5 10 15 30 

Lamination scheme 

 

 

 

 

C – C 

 

 

 

W 

 

90º 

90º/0º/90º 

90º/0º/0º/90º 

0º/90º 

90º/0º/90º/0º 

0º/90º/90º/0º 

0º/90º/0º 

0º 

1.2031 

1.1303 

0.9981 

0.8386 

0.7408 

0.5934 

0.5746 

0.5673 

1.0107 

0.9063     

0.7600 

0.6513 

0.5472 

0.4470 

0.4354 

0.4309 

0.8956 

0.7823 

0.6437 

0.5634 

0.4704 

0.3941 

0.3857 

0.3825 

0.7150 

0.6038 

0.4938 

0.4489 

0.3831 

0.3375 

0.3327 

0.3309 

U 

 

0º/90º 

90º/0º/90º/0º 

0.2743 

0.1108 

0.2283 

0.0796 

0.1888 

0.0610 

0.1236 

0.0360 

 

 

 

 

 

 

S - S 

 

 

 

 

 

 

 

 

W 

 

 

90º 

90º/0º/90º 

90º/0º/0º/90º 

0º/90º 

90º/0º/90º/0º 

0º/90º/90º/0º 

0º/90º/0º 

0º 

3.9604 

2.9180 

2.3716 

1.7369 

1.7061 

1.3923 

1.3455 

1.3255 

1.7014 

1.6621 

1.5949 

1.1620 

1.1210 

0.9238 

0.8932 

0.8814 

1.4370 

1.2933 

1.2860 

0.9406 

0.9014 

0.7560 

0.7346 

0.7265 

1.0204 

0.9317 

0.8963 

0.6936 

0.6576 

0.5806 

0.5722 

0.5692 

U 0º/90º 

90º/0º/90º/0º 

0.3120 

0.1333 

0.3015 

0.1162 

0.2637 

0.0954 

0.2036 

0.0664 

h

w
10W

ο
2

             
2

ο
2

h

au
10U


  
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5. Conclusions 

Studies have been conducted to understand the static 

deflection characteristics of composite circular and 

annular plates by the Chebyshev collocation technique 

using first order shear deformation theory. 

Convergence tests were conducted for the Chebyshev 

collocation technique and it can be seen that there is 

excellent convergence even when we take four or six 

terms in the series for the problems considered. Further, 

numerical results have been worked out for isotropic 

and polar orthotropic laminated circular and annular 

plates with different combinations of clamped and 

simply supported boundary conditions. 

From the results it can be seen that, the increase in 

orthotropy ratio decreases the displacements for all the 

lamination schemes considered. Also, in case of 

annular plates, among the different lamination 

sequences, the least deflection is observed when the 

laminate is made up of laminae in which fibers are 

arranged in 0º only. Surprisingly, in case of circular 

plates with simply supported boundary condition, the 

least deflection is observed when the laminate is made 

up of laminae in which fibers are arranged in 90º only. 

In case of unsymmetric and anti-symmetric laminates, 

since the coupling rigidity [Bij] exists, radial 

displacements are also observed. 

 

6. References 
 
[1] Ravichandran, V., “Some studies on the analysis of 

circular multilayer plates”, M.Tech. Dissertation, Department 

of Applied Mechanics, IIT Madras, India,1989. 

[2] Warren C. Young, “ROARK’S FORMULAS for stress and 

strain”, Mc-Graw Hill Book Company, 6th edition, 1989. 

[3] William H. Press, Saul A. Teukolsky, William T. 

Vetterling and Brian P. Flannery, “Numerical Recipes in C”, 

Cambridge University Press, Cambridge, U.S.A, 2002. 

[4] Fox, L., and Parker, I.B., “Chebyshev Polynomials in 

Numerical Analysis”, Oxford University Press, 1968. 

[5] Robert M. Jones, Mechanics of     composite materials, 

Hemisphere Publishing Co., New York, 1975. 

[6] Antia, H.M., “Numerical methods for scientists and 

engineers”, Hindustan book agency, Newdelhi, India, 2002. 

 

 

871

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T


