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Abstract—The Yellow rust of wheat (Puccinia 

striiformis f.sp. tritici), is one of the most destructive diseases 

causing extensive yield loss throughout the world. The present 

study deals with transcript profiling using Affymetrix Wheat 

Genome Array GeneChip. Molecular function enrichment 

analysis suggested that the differentially regulated genes were 

mainly related to protein degradation and modification, cell 

signaling and stress related mechanisms. The knowledge and 

comprehension of currently applied methods is one of the 

central criteria for a successful work. This study would be 

helpful in identification of early induced genes in wheat 

pathogens by the information of the resistance genes. 

 
Keywords—Triticum aestivum; Wheat blast; Yellow rust; Leaf 

rust resistance;  Bioconductor R; Resistance genes. 

 

 

I. INTRODUCTION 

Triticum aestivum, common or bread wheat, is an 

annual grass in the Poaceae (grass family) native to the 

Mediterranean region and southwest Asia, which is one of 

several species of cultivated wheat, grown in temperate 

climates worldwide. Wheat is one of the top two cereal 

crops grown in the world for human consumption, along 

with rice (Oryza sativa). It is one of the most ancient of 

domesticated crops, with archaeological evidence of the 

cultivation of various species in the Fertile Crescent dating 

back to 9,600 B.C. The various species have been 

developed into thousands of cultivars that differ in 

chromosome number from the primitive diploid types, with 

7 pairs of chromosomes, to hybrid allopolyploids, with 14, 

21, and 28 chromosome pairs[1].  

 

Cultivars are variously categorized according to their 

horticultural requirements (spring vs. winter wheat), texture 

and food uses (hard wheat, which often contains more 

gluten and is used for bread; vs. pastry or flour wheat, used 

for cakes, biscuits, and cookies), or by growth form and 

seed characteristics. Wheat (Triticum aestivum) is high in 

carbohydrates, protein (although it lacks several essential 

amino acids), and vitamins B and E (if the grain is left 

whole) is used in countless breads and baked goods, and is 

an important source of calories. Wheat can be refined into 

starch and wheat-germ oil, and wheat gluten (the proteins 

that make it sticky) is used in many products. The straw is 

traditionally used for thatching and wickerwork; it can also 

be utilised to make pulp for paper etc. or as fuel. Wheat is 

also used to make beer and as animal fodder[2]. The 

FAO estimates that global commercial production of all 

types of wheat was 650.9 million metric tons in 2010, 

harvested from 217.0 million hectares; it is grown on 

around 4% of the planet’s agricultural land. Leading 

producers were China, India, the U.S., the Russian 

Federation and France. The cereal grain wheat is subject to 

numerous wheat diseases including bacterial, viral and 

fungal diseases. The rusts of wheat (Triticum aestivum) 

cause common and widespread wheat diseases that can be 

found in most areas of the world where wheat is grown. 

Wheat stem rust is caused by Puccinia graminis f. sp. 

tritici, wheat leaf rust by Puccinia triticina, and wheat 

stripe rust is caused by Puccinia striiformis[3]. The blast 

fungus Magnaporthe grisea causes a serious disease on a 

wide variety of grasses including rice, wheat, and barley[4]. 

 

Yellow rust of wheat (Puccinia striiformis f.sp. tritici), 

a basidiomycete belonging to the uredinales, is the cause of 

stripe rust on cereal crops and grasses like wheat, corn or 

maize as shown in the left of fig. 1. Several formae 

speciales of P. striiformis West. var. striiformis have been 

successively named on the basis of physiological 

specialization: P.striiformis f.sp. tritici collected from 

wheat[5]. Like other cereal rusts, P. striiformis forms races 

which are usually identified with a differential set of wheat 

cultivars[6]. Wheat blast, caused by Magnaporthe oryzae 

Triticum pathotype (wheat isolates), was first reported in 
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the State of Parana in Brazil in 1985. This fungus has since 

become a major pathogen. The disease also occurs on 

triticale, barley and black oats. The pathogen can infect all 

above-ground parts of wheat plant, but damage in the field 

comes mainly from head (spike) blast, which produces 

shriveled seeds or totally prevents grain filling as in the 

right of fig1. Symptoms closely resemble Fusarium head 

blight[7]. Yield losses to this disease range from low, when 

the weather doesn’t favor disease, to as high as 100% when 

conditions favor disease. Effective resistance is generally 

lacking for the wheat blast disease and fungicide treatments 

are unreliable when weather favors disease[8].  

 

 
 

Fig.1. Yellow rust and blast fungus 

 

Microarrays are used to measure gene expression levels 

in different ways. An experiment was designed by which 

the microarray experiment was carried out and data were 

generated. The analysis of microarray data to produce lists 

of differentially expressed genes has several steps which 

can differ based on the type of data being assayed. 

However, all data follows the same general pipeline which 

involves reading raw data, quality assessing the data, 

removing bad spots/arrays from further analysis, 

preprocessing the data and calculating differential 

expression by statistical analysis[9]. In addition, higher 

level analysis may involve various methods relevant to the 

biological samples and the information required. The data 

provide information on RNA expression levels, not on 

mechanism or casuality. Data analysis usually leads to new 

hypotheses that are tested in follow-up experiments which 

identify relevant metabolic and signaling pathways. Thus, 

the list of differentially expressed genes can subsequently 

be annotated with useful information that explains the 

various genes function, for example, gene ontology[10]. In 

this paper, the common resistance genes are identified so 

that this work can help in making a foundation in further 

studies.  

 

II. MATERIALS AND METHODS 

The current study has planned to take gene expression 

data from Gene Expression Omnibus (GEO) and aimed to 

get genes which were not found by the studies conducted 

previously(http://www.ncbi.nlm.nih.gov/geo). The series 

matrix of the sample is downloaded and they are saved in 

ZIP/winRAR format. For microarray analysis, we used a 

series of R/Bioconductor packages 

(http://www.bioconductor.org). Briefly, the CEL files were 

imported into R environment and the robust multi-array 

average (RMA) methodology, as implemented in the affy 

package, was used for microarray normalization. Following 

normalization, a non-specific filtering step was carried out.

 For the given gene list, The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) tool was 

used to identify enriched biological themes, 

particularly GO terms and also discover enriched 

functional-related gene groups and convert gene identifiers 

from one type to another(http://david.abcc.ncifcrf.gov). The 

common gene list are found by using 

Jvenn(http://www.bioinfo.cau.edu.cn/jvenn/). The agriGO 

(http://bioinfo.cau.edu.cn/agriGO), a web-based tool and 

database is used for the gene ontology analysis. The 

complex networks can be visualized using Cytoscape 

(http://cytoscape.org/) an open source software platform. 

The UniProt Knowledgebase (UniProtKB) was referred for 

the collection of functional information on proteins, with 

accurate, consistent and rich annotation 

(http://www.uniprot.org/uniprot/). 

 

III. RESULTS AND DISCUSSION 

The goal was to identify a set of genes which are 

common and differentially expressed in the fungal diseases 

of wheat. The samples for different fungal diseases like 

yellow rust(GSE31761) and blast fungus(GSE31760)  are 

downloaded from GEO database in order to perform 

expression analysis. The National Center for 

Biotechnology Information’s(NCBI) Gene Expression 

Omnibus(GEO) database was queried for datasets of wheat 

involving two infectious fungal pathogens: Puccinia 

striiformis and Magnaporthe grisea. GEO datasets were 

selected based on the following inclusion criteria: Both the 

datasets are of the same organism triticum aestivum. The 

samples must be originated from Affymetrix Wheat 

Genome Array GeneChip. Each dataset must have atleast 3 

groups and the supplementary files must be of the type 

.CEL file. All criteria for dataset inclusion in the final 

analysis were chosen prior to the analysis. 

 

A. Pre-processing 

The installation and loading of packages from the 

libraries are done using Bioconductor R. The current 

working directory is set in the beginning. The datasets will 

be unzipped in .CEL files format and screened in a folder. 

Further preprocessing and analysis was performed using 

the .CEL files. The data preprocessing was done in 

bioconductor R after the .CEL files were imported into 

RMA for further processing. The .CEL files from the folder 

specified are read by using the ReadAffy command in R 

programming. 

B. Normalization 

The LIMMA package were used to normalize the 

microarray data. Subsequent background adjustment, 

quantile normalization of the raw data and estimation of 

probe sets signal intensities were to be done. Thus, 

probeset was summarized and the expression values were 

determined. This was done by using GeneChip RMA (GC-

RMA), an improved form of Robust Multiarray Averaging 
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(RMA) method of microarray normalization and 

summarization that is able to use the sequence specific 

probe affinities of the GeneChip probes to attain more 

accurate gene expression values. The boxplot then appears 

after normalization as in fig.2. 

 

 

Fig.2. Boxplot after normalization for GSE31761 

 

C. Quality Control 

 To run the statistical algorithm in bioconductor R, 

a matrix design was built which was created by grouping of 

the samples. List of possible number of comparisons was 

made before running the statistical algorithm. The 

significant probe sets were extracted that met the criteria of 

0.001 ( p-value). The heat map was then generated.   The 

Hierarchical clustering was done by generating a Heat Map 

by using heatmap function of R package. The clustering of 

samples are shown horizontally above the heatmap and the 

probeset ID’s are shown vertically in the left side of the 

heatmap as shown in the fig.3. In the cluster analysis of the 

probe sets of dataset GSE31761, red colour indicates the 

highly expressed probe sets and green colour indicates the 

less expressed probesets. 

 

 
 

Fig.3. Heatmap generated for GSE31761 

 

 

 

 

D. Differentially Expressed Genes 

Statistical tests are carried out that will be used to 

identify the genes that are differentially expressed among 

the two datasets. The significant p-values are selected as 

parameters. For this analysis, p-value is used which is a 

measure that allows us to control how big a proportion of 

false positives (genes that we think are differentially 

expressed but really are not) we are willing to accept. Often 

the results of microarray experiments are verified using 

other methods, and then we may want to filter out genes 

that exhibit differences in expression that are so small that 

we will not be able to verify them with another method. 

This is done by adding one last criterion to the filter: 

Difference should have a significant value higher than 0 or 

lower than 0, as we are working with log transformed data, 

the group mean difference is really the fold change, so this 

filter means that we require a fold change above 0 and 

below 0. Note that the significant value > is important 

because the difference could be negative as well as 

positive. The result is that we end up with a list of genes 

that are likely candidates to exhibit differential expression 

in the two groups. 

A number of summary statistics are computed for each 

gene. The log-fold change is the log expression level for 

that gene. The AveExpr is the average expression level for 

that gene across all the arrays and channels. Differential 

expression analysis of genes was performed by means of 

the moderated t statistics(t) using Benjamini-Hoschberg 

false discovery rate (FDR) correction. The moderated t-

statistic(t) is the ratio of the M value to its standard error. 

In addition, p value threshold of <0.001 was used for the 

comparison, in order to extract the significantly 

differentially expressed genes. Each p-value has an 

adjacent p-value for each of the gene. The log odd 

statistics(B) is shown for each gene. For the dataset 

GSE31761, the list of genes >0 are the up-regulated value 

and the list of genes <0 are the down-regulated values. The 

process of the data analysis, pre-processing, normalization, 

quality control and the differential genes expressed for the 

dataset GSE31761 must also be carried out for the other 

dataset in the same way. The combined results of both the 

datasets are used in the further work. 

 

E. Common Gene List 

The common genes between the two datasets are 

acquired using Jvenn that is represented in venn diagram 

and a bar chart. The up-regulated and down-regulated 

probe ids of both the datasets are pasted in the given box. 

Venn diagram shows the overlap of up-regulated and 

down-regulated genes in response to the two datasets: 

GSE31760(green) and GSE31761(blue). Area of overlaps 

is not proportional to the overlap. The numbers of genes in 

each region of the diagram are indicated. There are 40 

genes that are common between the two datasets as shown 

in fig.4.  
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Fig.4. Common genes between both the datasets. 

 

Out of those common genes, 37 common genes are up-

regulated and 2 common genes are down-regulated. Some 

genes may not be shown as they belong to the species of 

different organisms. The list of common genes between the 

two datasets is shown in Table1. The gene names that are 

not shown are uncharacterized proteins.  

Table 1. Common gene list 

AFFYMETRIX_3PRIME_IVT_ID Name

Ta.18203.1.S1_at blue copper-binding protein homolog

Ta.27762.1.S1_x_at thaumatin-like protein

Ta.21342.1.S1_x_at chitinase 3

Ta.24501.1.S1_at thaumatin-like protein

Ta.28.1.S1_at glucan endo-1,3-beta-D-glucosidase

TaAffx.15327.1.S1_at glucan endo-1,3-beta-D-glucosidase

Ta.82.1.S1_at peroxidase

Ta.8447.1.S1_a_at No Homology

Ta.21281.1.S1_at No Homology

Ta.97.1.S1_at No Homology

TaAffx.107507.1.S1_at No Homology

Ta.8674.1.A1_at No Homology

TaAffx.24475.1.S1_x_at No Homology

Ta.13.1.S1_at No Homology

Ta.15072.1.A1_at No Homology

Ta.22615.1.S1_at No Homology

Ta.97.2.S1_x_at No Homology

Ta.3133.1.S1_x_at No Homology

Ta.30501.1.S1_at No Homology

TaAffx.28302.2.S1_at No Homology

TaAffx.110196.1.S1_s_at No Homology

TaAffx.108437.1.S1_at No Homology

Ta.5518.1.S1_at No Homology

Ta.14946.1.S1_at No Homology

TaAffx.6454.1.S1_at No Homology

Ta.27314.1.S1_at No Homology

Ta.8990.1.S1_at No Homology

TaAffx.110081.1.S1_x_at No Homology

Ta.22619.1.S1_x_at No Homology

TaAffx.107979.1.S1_at No Homology

TaAffx.108437.1.S1_x_at No Homology

Ta.21556.1.S1_at No Homology

TaAffx.28047.1.S1_at No Homology

Ta.21556.1.S1_x_at No Homology

Ta.13991.1.S1_x_at No Homology

Ta.11087.1.S1_at No Homology

Ta.30731.1.S1_at No Homology  

 

 

 

 

F. Functional Annotation 

The total differentially expressed genes; Up regulated 

and Down regulated, were mapped to DAVID open source 

database, this indexing will give curated evidence and 

confirmation of these genes as differentially expressed. The 

annotation results show that the probe id list has two 

functional categories and three protein domains. In 

functional categories, the functions of 13 genes are given 

from the SwissProt-Protein Information Resource and the 

sequence features of 11 genes are from the UniProt 

database. There are 13 genes having Protein domains 

shown from Interpro. The Protein Information Resource 

superfamily has 10 genes and there are 6 genes having 

protein domains in Smart. The probe ids are converted to 

gene names using the gene accession conversion tool. This 

makes it possible to know the interaction of the genes by 

the columns From and To. 

 

G. Gene Ontology Annotation 
The gene list will be annotated to see the patterns in the 

biological annotations of the genes in the list of candidate 
differentially expressed genes.  Each of the two groups of 
genes, that is, showing parental dominance expression and 
non-additive expression, both in their entity and as further 
categorized subgroups, were analyzed with Gene Ontology 
(GO) annotation using AgriGO, a web-based database tool 
for gene ontology annotations of agricultural crops. The 
Singular Enrichment Analysis (SEA) tool was used to 
perform the GO annotations and statistical analysis for GO 
term-enrichment. The SEA analysis computed GO term 
enrichment in one set of genes by comparing it to another 
set, then named the target and reference list, respectively. 
The Fisher exact test was used for statistical analysis with 
Yekutieli FDR based multi-test adjustment method with the 
significance of P-value < 0.01. The GO processes can be 
represented in a graphical way as shown in fig. 5. 

  

Fig. 5 Graphical results 

AgriGO also displays the results by representing them 

in a bar chart as shown in fig.6. In the biological process 

about 42% of the genes were mostly enriched in the 

cellular process and the metabolic process. The catalytic 

activity and the binding activity had the highest percent of 

genes enriched (40%) in the molecular function. The cell 
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part and the organelles were more enriched in the cellular 

component which had more than 56% of the genes. 

 

Fig. 6 Bar chart of the biological annotation 

 

There were 11 significant GO terms shown.  An 

important annotation is the Gene title which describes the 

gene and is much more informative. The fig.7 summarizes 

the GO annotation terms along with its ontology and 

description.  

 

Fig.7. Gene Otology terms list  

 

H. Mapping of Differentially Expressed Genes to Pathway 

Databases. 

The genes are interconnected to different genes which 

can be predicted by the network topology using the 

cytoscape software. The network statistics can be done in 

cytoscape for network analysis of pathways. The file is 

imported and the interactions are being defined in a new 

window which appears after importing the file. The 

network can also be assigned names at the top of the 

window. The file has to be imported and the columns are 

set as the source and target. After importing the file a 

network appears. The edges and nodes are shown in the 

network. The analysis of the network statistics is done by 

using the network analyzer in tool box. 

 

 

 

The network has parameters that are set to visualize the 

network. This is done by clicking visualize parameters 

below. A new window appears showing the parameters that 

can be set. The arrows between the nodes can be directed 

or undirected. The edges, nodes and arrows can be set in 

different colours. The red colour represents highly 

expressed genes and the green colour represents low 

expressed genes as shown in fig.8. The nodes or genes can 

be zoomed to view the names of the genes expressed in the 

topology. The list of highly expressed genes along with its 

gene ID, gene symbol and the function of those genes are 

shown in Table2. 
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Fig.8 Network topology 

Table 2. List of highly expressed genes 

Gene ID Gene Name Gene Symbol

606343 tousled-like protein kinase TLK1

100146083 calreticulin CRT

542771 wpk4 protein kinase wpk4

100127073 PTF1 LOC100127073

543292 thaumatin-like protein LOC543292

543090 allene oxide synthase TaAOS

100037657 CBFIIIc-D3 LOC100037657

543498 germin protein precursor LOC543498

542994 glutathione transferase gstu3

780696 alternative splicing regulator RSZ38

543153 AML15 TaAML15

606342 ribosomal protein S29 LOC606342

100125682 sulfur-rich/thionin-like protein LOC100125682

606326 NAC domain transcription factor NAC2

543365 peroxidase LOC543365

543380 phenylalanine ammonia-lyase wali4

606315 glycosyltransferase a3a

542826 blue copper-binding protein homolog S85

542788 glucose-6-phosphate dehydrogenase g6pdh

606333 ribosomal protein L6 LOC606342

100146081 homeobox-like resistance protein HLRG

100136972 cryptochrome 2 Cry2

543422 pathogenesis-related protein 1 LOC543422

100037560 flavanone 3-hydroxylase LOC100037560

542892 metallothionein LOC542898

543216 ubiquitin carrier protein LOC543216

543491 S-adenosyl-L-homocysteine hydrolase SH6.2

100049026 WRKY transcription factor WRKY10

543321 pSBGer1 protein pSBGer1

780664 U2AF small subunit LOC780664

54330 glucan endo-1,3-beta-D-glucosidase LOC543330

606311 histone H1 WH1A.3 TAc41

  

The functions of highly expressed genes in the 

pathways are shown in Table 3. The differentially 

expressed genes were mapped to their pathway. This gave 

the information about the genes and the pathway on which 

the gene acts. 
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Gene Symbol Function

TLK1 perform cell autonomous functions 

CRT plays a key role in many cellular processes 

wpk4 shows increased transcript levels in response to multiple stimuli

LOC100127073 DNA binding

LOC543292 defense response, response to biotic stimulus

TaAOS heme binding, iron ion binding, oxidoreductase activity, acting on paired donors

LOC100037657 recognition of interaction partners and transactivation potential of a specific set of CBF proteins.

LOC543498 play an important role in several aspects of plant growth and defense mechanisms.

gstu3 glutathione transferase activity, metabolic process

RSZ38 nucleic acid binding, nucleotide binding, zinc ion binding

TaAML15 positive regulation of growth, positive regulation of meiosis, nucleic acid binding, nucleotide binding

LOC606342 translation, metal ion binding, structural constituent of ribosome

LOC100125682 plant defense response

NAC2 tolerances to drought, salt, and freezing stresses

LOC543365 response to environmental stresses such as wounding, pathogen attack and oxidative stress.

wali4 produces environmental stresses such as wounding, HgC12, UV light, and funga1 elicitors

a3a transferase activity, transferring glycosyl groups

S85 copper ion binding, electron carrier activity.

g6pdh salt stress response

LOC606342 translation, structural constituent of ribosome.

HLRG involved in race-specific responses to stripe rust

Cry2 Subcellular Localization and Involvement in Photomorphogenesis and Osmotic Stress Responses

LOC543422 extracellular region

LOC100037560 oxidoreductase activity, with incorporation or reduction of molecular oxygen.

LOC542898 metal ion binding, 

LOC543216 protein modification; protein ubiquitination

SH6.2 control of methylations via regulation of the intracellular concentration of adenosylhomocysteine

WRKY10 sequence-specific DNA binding transcription factor activity

pSBGer1 manganese ion binding, nutrient reservoir activity

LOC780664 RNA binding, metal ion binding, nucleotide binding.

LOC543330 carbohydrate metabolic process, Catalysis of the hydrolysis.

TAc41 nucleosome assembly, DNA binding 

I.
 

Identification of Common Resistance Genes
 

Plants have evolved
 
R genes

 
(resistance genes) whose 

products allow recognition of specific pathogen effectors, 

either through direct binding of the effector or by 

recognition of the alteration that the effector has caused to 

a host protein. Resistance genes help in identifying the 

need of benefits in agriculture and for further
 
studies.

 

The list of common resistance genes for both datasets is 

shown in the Table 4. The gene id and gene names are
 

shown for the respective genes. The resistance genes are 

given
 
for each gene which are resistant to that particular 

gene in the process. The function of each gene represents 

protein coding.
  

 

Table 4 Common resistance genes

 

Gene ID Gene Name Resistance gene

543330 glucan endo-1,3-beta-D-glucosidase Yr5

542826 blue copper-binding protein homolog Lr34/Yr18

542780 chitinase 3 Sr5/Sr24

543342 thaumatin-like protein Yr26

543285 peroxidase Sr5/Sr6

543330 glucan endo-1,3-beta-D-glucosidase Yr5

543342 thaumatin-like protein Yr26
 

 

Table 3 Functions of highly expressed genes
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IV. CONCLUSION 

 High throughput technologies, such as gene expression 

arrays and protein mass spectrometry allow one to 

simultaneously evaluate thousands of potential biomarkers 

that distinguish different tissue types. The common genes 

responsible to cause the rust in wheat have been identified 

using a technique called DNA microarray analysis. As an 

overview of the entire process, relevant data from GEO is 

acquired, tabulated and subjected to various analysis tools 

that could generate relevant annotations. Additionally, 

connections to related metabolic pathways and common 

differentially expressed genes are shown in the results. The 

study looks forward of investigating the common genes 

responsible to cause the rust disease in wheat. The 

Functional annotation and expression profiling can 

implicate subsets of genes in compatibility and 

incompatibility of leaf rust in wheat. Extensive studies on 

other related genes will help to understand their role in leaf 

rust infection in wheat. Many new genes have to be 

identified that can be useful for future studies.  

 

ACKNOWLEDGMENT 

 

The authors would like to thank Siddaganga Institute of 

Technology, tumkur for their technical support and 

assistance. We are grateful to GM Institute of Technology 

for their guidance in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

REFERENCES 

[1].  http://eol.org/pages/1115240/overview 

[2].  http://www.cropscience.bayer.com/en/Crop-       
Compendium/Crops/Wheat.aspx  

[3].   Kolmer, J., “Leaf Rust of Wheat: Pathogen Biology, Variation and 

Host   Resistance”, Forests, Vol 4, 2013, pp 70-84. 
[4].   Talbot, N.J., “On the trail of a Cereal Killer: Exploring the Biology  

of Magnaporthe grisea”, Annu. Rev. Microbiol, Vol 57, 2003, pp 

177–202. 
[5].   Coram, T.E., Settles, M.L., and Chen, X., “Transcriptome analysis 

of high-temperature adult-plant resistance conditioned by Yr39 

during the wheat–Puccinia striiformis f. sp. tritici interaction”, 
Molecular Plant Pathology, Vol 9, 2008, pp 479–493 

[6].   Bozkurt, O., Akkaya, M., “Transcription profiling of wheat 

interacting with incompatible and compatible yellow rust in a Yr1-
containing genotype”, 2011. 

[7].   Bockus, W., Cruz, C., Stack, J., Valent, B., Farman, M., Hershman, 

D., Paul, P., Peterson, G., Pedley, K., and Magarey, R., “Recovery 
Plan  For  Wheat Blast  Caused by  Magnaporthe oryzae Triticum 

pathotype”, June 2013 

[8].   Tufan, H.A., McGrann, G.R.D., Magusin, A., Morel, J.B., Miche, 
L., and Boyd, L.A., “Wheat blast: histopathology and transcriptome 

reprogramming in response to adapted and nonadapted Magnaporthe 

isolates”, New Phytol, Vol 184(2), 2009, pp 473-84 
[9].   Slonim, D.K., Yanai, I., “Getting Started in Gene Expression 

Microarray Analysis”, PLoS Computational Biology, Vol 5, October 

2009, issue 10, e1000543. 
[10]. Clarke, J.D., and Zhu, T., “Microarray analysis of the transcriptome 

as a stepping stone towards understanding biological systems: 

practical considerations and perspectives”, The Plant Journal, Vol 
45, 2006, pp 630–650. 

751

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080662

(This work is licensed under a Creative Commons Attribution 4.0 International License.)


